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ABSTRACT IN ENGLISH

The exotic physics of topological phases like topological insulators (TIs), topological crys-
talline insulators (TCIs), quantum spin Hall insulators (QSHIs), Dirac semimetals (DMs),
Weyl semimetals (WSMs), and nodal-line semimetals (NDLSMs) have been the subject of

extensive theoretical and experimental work over the past few decades. In most cases, symmetries
play an important role in protecting the topological phases. One of the simplest and most funda-
mental of these is the time-reversal symmetry (TRS). The TRS symmetry is broken by inducing
magnetism through magnetic doping and creating magnetic heterostructure. Topological materi-
als lacking TRS may exhibit magnetic topological phases such as antiferromagnetic topological
insulators, magnetic Weyl, Dirac, and nodal-line semimetals, and quantum anomalous Hall
phases. However, it is challenging to find realistic materials that can support exotic topological
states. The advancement of nanoscience and nanotechnology, as well as the commercialization of
applications like quantum spintronics and quantum communication, demands the discovery of
new candidate materials exhibiting exotic behaviors.

In search of new materials as candidates for exotic quantum phenomena, this thesis primarily
focus on two different classes of materials-

(i) The topological phases in HgTe-based 3D superlattices: We use ab initio simulations
to study the evolution of topological phases as a function of hydrostatic pressure and uniaxial
strain in two types of superlattices: HgTe/CdTe and HgTe/HgSe, in our search for materials
with three-dimensional flat band dispersions. Isoenergetic nodal lines have been discovered in
short-period HgTe/CdTe superlattices, which could host strain-induced three-dimensional flat
bands at the Fermi level without doping. There are a wide variety of topological phases in the
phase diagram of short-period HgTe/HgSe superlattices. An perfect Weyl semimetal phase is
realized in an unstrained HgTe/HgSe superlattice. The superlattice transforms into a small-gap
topological insulator with many band inversions when subjected to compressive uniaxial strain.

(ii) The quantum phase of MSi2Z4, a new synthetic 2D material (M = Mo, W, and Z = N, P,
As): Ultra-thin films of the 2D synthetic material MSi2Z4 (M = Mo or W and Z = N, P, and As) are
studied for their spin-dependent electronic properties and topological exotic phases for quantum
device applications using first-principles modeling. In the 2H phase, while MSi2Z4 (M= Mo,W
and Z= N or As) monolayers are stacked to form bilayers or bulk, the electronic properties of the
resulting material vary depending on its thickness. As a result of spin-orbit coupling (SOC), we
observe that the monolayers are semiconductor having a 100 % spin polarization, with the spins
locked in opposite directions along an out-of-plane direction at K and K′, leading to spin-valley
coupling. The spin polarization in the bilayer is zero due to the presence of the inversion symmetry.
We show that, like in MoS2 and WS2 bilayers, an out-of-plane electric field can flip the bilayers’
spin polarization. Moreover, we predict a family of 1T′ structure MSi2Z4 (M = Mo or W and Z = P
or As) materials with a switchable large bandgap QSH insulator. A band inversion between the
metal (Mo/W) d and p states of P/As is introduced by a distortion in the 2H phase, leading to the
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creation of spinless Dirac cone states absent of spin-orbit interaction. By including the spin-orbit
coupling, a 204 meV hybridization gap opens up at band crossing points, yielding spin-polarized
conducting edge states with spin Hall conductivity. Through the application of a vertical electric
field, we demonstrate that the inverted band gap can be manipulated, resulting in a topological
phase transition from QSH to a trivial insulator with Rashba-like edge states. For the creation of
various transistors, the electric field dependent features of 2H and 1T′ structures could turn out
to be extremely useful.

This thesis is a collection of publications related to the topological phase of HgTe-based 3D
superlattices and 2D materials MSi2Z4 (M= Mo,W and Z= N,P,As).
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ABSTRACT IN POLISH

Egzotyczna fizyka faz topologicznych, takich jak izolatory topologiczne (TI), topologiczne
izolatory krystaliczne (TCI), kwantowe spinowe izolatory Halla (QSHI), semimetale Diraca
(DM) , semimetale Weyla (WSM) i semimetale typu „nodal line” (NDLSM) stała się

ostatnimi czasy przedmiotem szeroko zakrojonych badań teoretycznych i eksperymentalnych. W
większości przypadków symetrie odgrywają ważną rolę w ochronie faz topologicznych, a jedną z
najprostszych i najbardziej fundamentalnych z nich jest symetria względem odwrócenia czasu
(TRS). Symetria TRS jest łamana przez indukowanie magnetyzmu poprzez domieszkowanie
magnetyczne i tworzenie heterostruktury magnetycznej. Materiały topologiczne pozbawione
TRS mogą wykazywać magnetyczne fazy topologiczne, takie jak antyferromagnetyczne izolatory
topologiczne, magnetyczne semimetale Weyla, Diraca i ”nodal line” oraz kwantowe anomalne
fazy Halla. Trudno jest jednak znaleźć rzeczywiste materiały, w których mogą realizować się
egzotyczne stany topologiczne. Postęp nanonauki i nanotechnologii, a także komercjalizacja
zastosowań, takich jak spintronika kwantowa i komunikacja kwantowa, wymaga prac nad
odkryciem nowych materiałów wykazujących egzotyczne zachowania.

W poszukiwaniu nowych kandydatów, w których mogą zachodzić egzotyczne zjawiska kwan-
towe, niniejsza praca koncentruje się przede wszystkim na dwóch różnych klasach materiałów:

( i ) Fazy topologiczne w supersieciach 3D opartych na HgTe : Używamy symulacji ab initio do
badania ewolucji faz topologicznych w zależności od ciśnienia hydrostatycznego i odkształcenia
jednoosiowego w dwóch typach supersieci : HgTe / CdTe i HgTe / HgSe, poszukując materiałów z
trójwymiarową płaską dyspersją pasmową. W krótkookresowych HgTe / CdTe odkryto izoener-
getyczne linie węzłowe supersieci , które mogą zawierać trójwymiarowe płaskie pasma wywołane
odkształceniem na poziomie Fermiego bez domieszkowania. Na diagramie fazowym krótkookre-
sowych HgTe / HgSe występuje wiele różnych faz topologicznych. Idealna faza semimetalu Weyla
jest realizowana w nienaprężonej supersieci HgTe / HgSe, która przekształca się w izolator
topologiczny z wąską szczeliną i wieloma inwersjami pasm, gdy jest poddawana ściskającemu
odkształceniu jednoosiowemu .

(ii) Faza kwantowa MSi2Z4, nowego syntetycznego materiału 2D (M = Mo, W i Z = N , P , As)
: Ultracienkie warstwy syntetycznego materiału 2D MSi2Z4 (M = Mo albo W, Z = N, P albo As)
są badane przy użyciu modelowania z pierwszych zasad pod kątem zastosowań w urządzeniach
kwantowych ich egzotycznych faz topologicznych z właściwościami elektronowymi zależnymi
od spinu. Gdy monowarstwy MSi2Z4 (M= Mo , W i Z = N albo As) są układane w stosy tworzą
dwuwarstwy lub układ objętościowy, i w związku z tym właściwości elektronowe otrzymanego
materiału zależą od jego grubości. W wyniku sprzężenia spin-orbita (SOC) obserwujemy, że
monowarstwy są półprzewodnikami o 100% polaryzacji spinowej, ze spinami zablokowanymi w
przeciwnych kierunkach wzdłuż kierunku poza płaszczyzną w K i K′ , co prowadzi do dolinowo-
spinowego sprzęgnięcia. Polaryzacja spinowa w dwuwarstwie wynosi zero ze względu na obecność
symetrii inwersji. Pokazujemy, że podobnie jak w przypadku dwuwarstw MoS2 i WS2 pole elek-
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tryczne poza płaszczyzną może odwrócić polaryzację spinowa dwuwarstw. Ponadto przewidujemy
istnienie rodziny struktur 1T′ MSi2Z4 (M = Mo lub W i Z = P albo As) z przełączalnym izolatorem
QSH o dużej przerwie wzbronionej. Inwersja pasma między metalicznymi (Mo/W) stanami d i p
P/As jest wprowadzana przez zniekształcenie fazy 2H, co prowadzi do powstania bezwirowych
stanów stożka Diraca bez interakcji spin-orbita. Uwzględniając sprzężenie spin-orbita, w punk-
tach przecięcia pasm otwiera się przerwa hybrydyzacyjna 204 meV, dając spolaryzowane spinowo
przewodzące stany krawędziowe ze spinowym przewodnictwem Halla. Poprzez zastosowanie
pionowego pola elektrycznego wykazaliśmy, że odwróconym pasmem wzbronionym można manip-
ulować, co skutkuje topologicznym przejściem fazowym z QSH do trywialnego izolatora ze stanami
krawędzi podobnymi do Rashby. Własności 2H i struktur 1T′ zależne od pola elektrycznego mogą
okazać się niezwykle przydatne Do tworzenia różnych tranzystorów,.

Niniejsza praca jest zbiorem publikacji związanych z fazą topologiczną supersieci 3D opartych
na HgTe i materiałach 2D MSi2 Z4 (M = Mo, W i Z = N, P, As).

iv



DEDICATION AND ACKNOWLEDGEMENTS

It’s difficult to believe my journey at the MagTop International Centre for Interfacing Mag-
netism and Superconductivity with Topological Matter (IF PAN) around four years ago. I can
clearly remember my first day as a doctorate student at IFPAN in 2018. I made the decision

to stay for the next four years after falling in love with IFPAN’s dynamic research atmosphere
quite early. The last four years have been the most remarkable in my life because I was able
to successfully earn my second personal research grant during that time. Since then, a lot has
happened. In addition to developing a confident and independent research perspective, I have
also established lifelong friends.As our pleasant journey is about to come to an end, I would want
to express my profound gratitude to everyone nearby.

First and foremost, I would like to express my deep gratitude to my thesis advisor, Prof. Dr.
hab. Carmine Autieri, for his guidance, inspiration, and support during this journey. I had the
good fortune to work with Dr. hab. Carmine Autieri on my PhD in 2018. His methodical approach
to problem solving, excitement, and ambition for doing outstanding physics have all greatly aided
me in getting to where I am now. He has aided me in numerous other areas of my life as well, not
only in terms of physics. He taught me many valuable things in life that I will always keep in
mind.

I would like to express my profound gratitude to Prof. Tomasz Dietl for all of his assistance,
especially in the early going when I was learning about the fascinating world of quantum
materials and electronic structure calculations. He constantly gives me good suggestions and
ways to enjoy my research.

I would like to express my sincere thanks to Dr. Barun Gosh for his unwavering support,
inspiration, and numerous discussions on a range of subjects throughout my Ph.D. career. He has
served as my mentor, older brother, and has taught me countless lessons.

I want to convey my gratitude to Professors Bahadur Singh, Mohammad Saeed Bahramy, Dr.
Alexander Lau, and Dr. Zahir Muhammad for their advice and assistance throughout the many
phases of my doctoral studies. We would like to express our gratitude to Prof. Bahadur Singh
for supporting numerous visits to his groups. Exposure to such eminent institutions has had a
significant influence on me. I really appreciate the productive collaboration and joint publications
of Prof. Amit Agarwal, Prof. Arun Bansil, Dr. Giuseppe Cuono, Prof. Carlo M Canali, and Sukanta
Kumar Jena.

I appreciate all the love and support from my family, especially my parents. In closing, I
would like to thank my older brother, Dr. Rakibul Islam, who inspired me to pursue a career in
academia by introducing me to the field of physics.

v





AUTHOR’S DECLARATION

I certify that the work presented in this dissertation is my individual research and
has not been submitted for consideration in any other academic awards. It has
been completed in accordance with the requirements of the Institute of Physics,

Polish Academy of Science (IFPAN), as well as the Code of Practice for Research
Degree Programs. It is the candidate’s own work, unless a particular reference in
the text indicates otherwise. Collaborative efforts are properly credited as such. The
work was done under the guidance of Dr. hab. Carmine Autieri, at MagTop, IFPAN
Warsaw, Poland.

SIGNED: .................................................... DATE: ..........................................

vii





LIST OF PUBLICATION

This thesis is based on the three papers mentioned below where I do contribute
as 1st author which is highlighted by bold text.

1. Rajibul Islam, Barun Ghosh, Giuseppe Cuono, Alexander Lau, Wojciech Brzez-
icki, Arun Bansil, Amit Agarwal, Bahadur Singh, Tomasz Dietl, Carmine Autieri
"Topological states in superlattices of HgTe-class materials for engineering three-
dimensional flat bands" Phys.Rev. Research 4, 023114 (2022)

2. Rajibul Islam, Barun Ghosh, Carmine Autieri, Sugata Chowdhury, Arun
Bansil, Amit Agarwal, Bahadur Singh "Tunable spin polarization and elec-
tronic structure of bottom-up synthesized MoSi2N4 materials" Phys. Rev. B 104,
L201112 (2021)

3. Rajibul Islam, Rahul Verma, Barun Ghosh, Arun Bansil, Carmine Autieri,and
Bahadur Singh "Switchable large-gap quantum spin Hall state in two-dimensional
MSi2Z4 class of materials" Physical Review B 106 (24), 245149

ix





LIST OF PUBLICATION RELATED TO THE THESIS

Athough the papers mention bellow are not included in this comprehensive
summary of the thesis.

1. Rajibul Islam, Sougata Mardanya, Alexander Lau, Giuseppe Cuono, Tay-
Rong Chang, Carlo M. Canali, Bahadur Singh, Tomasz Dietl and Carmine
Autieri "Axion insulating phase in superlattices without inversion symmetry"
(arXiv:2211.05152)
2. Rajibul Islam, Ghulam Hussain, Rahul Verma, Mohammad Sadegh Talezadehlari,
Zahir Muhammad, Bahadur Singh, Carmine Autieri "Fast electrically switchable
large gap quantum spin Hall states in MGe2Z4" ( arXiv:2211.06443)
3. Carmine Autieri, Cezary Sliwa, Rajibul Islam, and Tomasz Dietl, "Momentum-
resolved spin splitting in Mn-doped trivial CdTe and topological HgTe semicon-
ductors". Phys. Rev. B 103, 115209 (2021)
4. N. Pournaghavi, M. F. Islam, Rajibul Islam, Carmine Autieri , Tomasz Dietl ,
and C. M. Canali, "Realization of the Chern insulator and Axion insulator phases
in antiferromagnetic MnTe-Bi2(Se, Te)3-MnTe heterostructures". Phys. Rev.B
103, 195308 (2021)
5. Sukanta Kumar Jena, Rajibul Islam, Ewelina Milińska, Marcin Jakubowski,
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Jarosław Jureńczyk, Carmine Autieri, Tomasz Dietl "Electronic and optical
properties of InAs/InAs0.625Sb0.375 superlattices and their application for far-
infrared detectors". Journal of Physics D: Applied Physics 55 (49), 495301
11. Zahir Muhammad, Jan Szpakowski, Ghulam Abbas, Lin Zu,Rajibul Is-
lam, Yan Wang, Faiz Wali, Arka Karmakar, Maciej R. Molas, Yue Zhang, Ling
Zhu,Weisheng Zhao, Han Zhang "Anisotropic phonon and magnon vibration and
gate-tunable optoelectronic properties of nickel thiophosphite". Accepted in 2D
Materials
12. R Islam, G Cuono, NM Nguyen, C Noce, C Autieri "Topological Transition
in Pb1xSnxSe using Meta-GGA Exchange-Correlation Functional". Acta Physica
Polonica A 139 (2), 169-169

xii



LIST OF FIGURES

FIGURE Page

1.1 Schematic of different topological phases in TR preserved and TR broken materials. . 3

1.2 The band inversion of topological material HgTe in comparison to the normal insulator

CdTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The comparison of surface state of (a) Topological insulator (Bi2Se3) and (b) topological

crystalline insulator (SnTe). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The schematic diagram of different topological materials. . . . . . . . . . . . . . . . . . 7

1.5 (a) The DFT band structure around Weyl points. (b) the Fermi surface projected on

(001) surface and (c) associate berry curvature at fixed kz plane of the HgTe/HgSe 3D

superlattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 (a)The 2D band structure at a fixed kz plane (b) the Fermi surface projected on

(001) surface around the nodes and (c) associate node distribution in a 3D BZ of the

HgTe/HgSe 3D superlattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Schematic of the changes in topological states due to the presence of magnetism,

depicted in a simplified form, and showing the effects of magnetism with varying

magnetic orientations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Schematic diagram of the methods used for predicting new topological materials . . 16

xiii





C
H

A
P

T
E

R

1
INTRODUCTION

The Landau theory of phase transitions in condensed matter physics describes the transition

from one symmetric phase at high temperature to a less symmetric or symmetry broken phase

at low temperature in terms of a change in the local order parameters of the system[1–3]. Most

intriguingly, the free energy can expand in the order parameter close to the phase transition,

the order of the transition depends on whether or not the expansion coefficient vanishes at

the second, third, or higher order. The symmetries of the different phases determine the exact

form of the order parameter and the various terms in the free energy. Despite the fact that

the absolute value of the order parameter is not always known, Landau theory is the most

successful in explaining phase transition in a broad class of systems. Nonetheless, experimental

observation can be explained by this theory even without the knowledge of macroscopic details.

This formalism allows for the description of two very different systems using the same physical

language. However, this theory has its own shortcomings, it cannot account for experimental

observations involving non-local order parameters, such as those involving the quantum Hall

effect (QHE)[4].

In the last decade, several experimental observations have been changed the comprehension

of phases and phase transition of the materials. In the 1980, the observation of the quantum Hall

effect in the two dimensional (2D) materials under an applied electric field is the paradigm of

such experimental observations[5]. The Hall conductivity is quantized to an integer multiple of
e2

h , and the of this integer depends on the strength of applied magnetic field for a given density of

state. The states with different quantized value don’t breaks any symmetry, so the landau theory

can’t distinguish the phase. It has been shown the QHE phase poses non local order parameter,

which can describe the phases associated with quantization of the conductivity with magnetic

filed. The various quantum phases (or states) can be described with a non-local order-parameter

known as topological invariant which is different in different quantum states. In 1982 the first
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CHAPTER 1. INTRODUCTION

insight toward topological invariant is given by Thouless, Kohmoto, Nightingale and Nijs, they

shows different quantum states (or phases) can be distinguish with the TKNN invariant[6]. This

invariant can be comprehended in terms of the Berry phase associated with the Bloch wave

functions (uk), it could be express as-

C = 1
2π

∫
BZ

[
∇× A⃗(kx,ky)

]
(1.1)

where,

A⃗ =−i〈u(k)|∇u(k)〉 (1.2)

The quantum Hall conductivity in the transverse direction can be expressed as-

σxy = C
e2

h
(1.3)

The QHE is the first insight of the topological effect in condensed matter physics. In 1988,

Haldane shows QHE phase of the materials could be achieved by the lattice geometry effect

in absence of magnetic field. This phenomenon is described in the seminal paper without the

Landau picture, by adding complex 2nd nearest neighbor hooping [7]. It also shown, the QHE

phase can be evolve in the absence of spin-orbit coupling (SOC) and magnetic field, the complex

hopping parameter can break the time reversal symmetry. These discoveries are the milestone

for field of topological phase materials.

In the real materials graphene, Haldane model is generalized in the presence of SOC by Kane

and Male, in 2005 [8]. This paper describes how time reversal symmetric system the spin up and

spin down behaves like a opposite magnetic field. In this scenario, there is a non zero transverse

current at the edge although there is no net charge current. This non zero current at the edge

know as spin current, the phenomena called Quantum spin Hall (QSH) effect. The new phase is

characterised by the topological invariant called Z2 index [9]. Latter on on 2007, the QSH phase

of the materials experimentally observed in 2D quantum well of HgTe[10, 11] . This idea was also

generalized in 3D materials, it is called topological insulator which has topologically protected

surface states [12].

Last decade, the field of topological material is well studied, in the early days, the time-reversal

symmetry protected gaped topological material i.e topological insulator (TI) predicted theoretically

and endorse experimentally [13, 14]. Extend the field with new discoveries, the crystalline

symmetry protected gaped topological material called topological crystalline insulator (TCI)

[15]. Furthermore, the idea of topological field theory extended with the new discoveries of

gapless topological phase such as Weyl semimetal (WSM), Dirac semimetal (DSM) and Nodal

line semimetal(NDLSM) etc [16, 17]. In the broken time reversal system (introduce magnetism),

the interplay between magnetism and topology of gaped and gapless topological materials, the

different exotic phase evolve i.e quantum anomalous Hall (QAH), Insulator or Axion Insulator

(AI), magntic Weyl and nodal line semimetal (MWSM , MNDLSM)[18–23]. From the begging

of the topological phases, the DFT based first principle calculation play an important role in
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1.1. TR PRESERVE TOPOLOGICAL PHASE

Figure 1.1: Schematic of different topological phases in TR preserved and TR broken materials.

predicting new topological phase, and latter on verified experimentally. In the field of condensed

matter physics, identifying and exploring new phase of materials is a fascinating research area

[24, 25]. The new phase of the materials comes with novel properties and physical phenomena ,

which holds immense possibilities of application from spintronics to quantum communication

device[26].

The main aspect of this thesis is to explore new phases of materials in TRS preserved and TRS

broken system. We have studied nonmagnetic and magnetic heterostructure of HgTe based

materials and a new 2D material MoSi2Z4. Before going into the detailed discussion in the next

sections, we will start the details of different topological phases [see schematic of Fig. 1.1] and

there non local order parameters (topological invariant).

1.1 TR preserve topological phase

In this section, we will briefly describe different topological phases and topological invariant

in the presence of time reversal system. The most important signature of topological phase is

band inversion i.e the relative order of the band are inverted with respect to the atomic limit ,

at a certain momentum point(s) at the Brillouin zone (BZ). Both gaped and gapless topological

materials shows band inversion, Based on the nature and location of the band inversion in the

momentum space, various topological phase can be identified. The DFT based ab-initio calculation

can easily identify the band inversion picture. Fig. 1.2 demonstrates the band inversion in a

Topological materials HgTe in contrast of normal insulator CdTe, it shows specific momentum

point Γ, the relative bands Γ6 and Γ8 are inverted.

1.1.1 Gaped 2D and 3D topological phases

As we discuss previously, the 2D and 3D gaped topological materials in TR symmetric system is

classified depending on symmetries, mainly two types, (i) QSH insulator (in 2D) and TI (in 3D)

shows topologically protected Dirac cone at the time reversal invariant momentum (TRIM) points

protected by Time reversal symmetry, it is identified with Z2 invariant (υ0,υ1υ2υ3), ,where υ0 and

3



CHAPTER 1. INTRODUCTION

Figure 1.2: The band inversion of topological material HgTe in comparison to the normal insulator
CdTe.

υ1,υ2,υ3 are strong and weak topological indices [24, 25]. (ii) TCI in 2D and 3D, the topological

Dirac is protected by crystalline symmetries,band inversion can be noticed either either at non-

TRIM points or even number of TRIM points in the BZ, resulting vanishing strong indices υ0 of

Z2 invariant, So the Chern number or mirror Chern number can be used as topological invariant

[15, 27]. Next, we will discuss different theoretical approaches to calculate topological invariants.

Z2 invariant: There are many ways to calculate Z2 invariant[9], mostly used formalism is

developed by Fu-Kane-Mele[12]. TheZ2 invariant (υ0) is defined within this framework in a 2D

system as : -

(−1)υ0 =
4∏

a=1
δi (1.4)

where, δi is defined as δi= Pf [ω(k)/
p
ω(k) ] at the TRIM point. Here Pf is the Pfaffian of the

unitary matrix ω(k) at specific TRIM points, the matrix ω(k) represents with its element ωmn =
Um(k)ΘUn(−k), where Un(k) is the Bloch function for the n

′
th band at k point. The calculation δi

is simple for an inversion symmetric system, each bands has a definite parity eigenvalues at a

TRIM points [12], as the TRIM points are remain invariant under inversion symmetry operation,

δi can be expressed as-

δi =
Nocc∏
m=1

ζ2m(k) (1.5)

where ζ2m(k) = ±1,is the parity of the 2mth band at the ith TRIM point, and Nocc is the

number of occupied bands. In case of 2D system, any time reversal symmetric insulator can be

represented with only strong indices of Z2 invariant, the odd value of υ0 indicates system is

trivial and even value of υ0 corresponds to the non trivial phase of the materials.
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1.1. TR PRESERVE TOPOLOGICAL PHASE

In case of 3D system, the number of TRIM point is eight, the Z2 invariant could have both strong

and weak indies(υ0;υ1υ2υ3) [9, 12]. The strong indies can be represent as -

(−1)υ0 =
8∏

a=1
δi (1.6)

While, the other weak indies can be defined as the following way-

(−1)υ j=1,2,3 = ∏
n j=1;nk ̸= j=0,1

δi (1.7)

where n is the coefficient related to reciprocal lattice vector and can take value 0 or 1. For strong

topological insulator υ0 = 1 and other three indies (υ,υ2,υ3) could be zero or nonzero,while weak

topological materials has only non zero weak indies (υ,υ2,υ3) and zero strong indiesυ0. These

four indies are zero, in the case of trivial insulators. The Z2 invariant can be calculated for

both centrosymmetric (presence of inversion symmetry) and non-centrosymmetric (absence of

inversion symmetry) using the Wannier charge centre evaluation [28].

Chern number (C) and mirror Chern number (MC) : Chern number is a topological invariant,

it is calculated by the integration of Berry curvature over the first BZ. It can be defined as-

C±i = 1
2π

∑
n

∫
M
Ω±i.ds (1.8)

where, Ω denotes the Berry curvature sum over occupied bands. The non zero Chern number

distinguishes the trivial and nontrivial phase.

In the case of mirror symmetric system the Hamiltonian H(km) commutes with the mirror

operator (M ) i.e [H(km), M]= 0 in the mirror symmetric momentum plane. The bands corresponds

to the plane can be assigned with definite mirror eigenvalues of the values ±i as M2 =−1 in the

presence of SOC. So, the Hamiltonian can be split into two sub-spaces as-

H = H+i ⊕H−i (1.9)

Finally, we can define Chern number for each sub-spaces, and the mirror Chern number (CM)

can be expressed in terms of subspace Chern number as-

CM = C+i −C−i

2
(1.10)

In case of time reversal symmetric system, the mirror Chern number CM is a Z2 invariant. When

time reversal symmetry is broken in the system, the C+i and C−i are not related, so the mirror

Chern number become Z2 ×Z2 invariant [27].

One of the most important signature of topological materials is (d-1) dimensional topological state

of s d-dimensional materials, which connect conduction and valence band. In case of 3D system,

it has topological surface state which generally appear with a massless Dirac cone, the states are

protected by time reversal symmetry. As we discuss before, at the TRIM points, the odd number
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of surface Dirac cone appear in case of strong TI, whereas the even number of surface Dirac cone

appear in case of weak TI. The Dirac cone in weak TI is less robust in contrast of strong TI .

Unlike topological insulator (TI), which hosts surface states protected by time-reversal symme-

try, the surface state in topological crystalline insulator (TCI) is protected by the crystalline

symmetries (i.e rotational symmetry (cn), mirror symmetry (M), glide plane etc) [29, 30]. The

surface Dirac cone appear only particular plane which respect corresponding symmetry opera-

tions, whereas TI host surface states in every surface. For example,in case of a mirror symmetric

system, the surface Dirac cone appear perpendicular to the mirror plane. In case of two fold

rotational symmetry (c2) protected TCI has surface Dirac cone in the plane of rotational axis[31].

Another unique and important properties of a time-reversal symmetric topological insulator is

spin-momentum locking (i.e spin is locked at right angle of the momentum). As a result, the

opposite spins propagate in in opposite direction and a perfect spin polarization of the surface

current, which provide a highly efficient spin-torque generation. All these properties of TI make

it a promising materials candidate for a spintronics and quantum device application.

Here, we describe an example of a strong topological insulator (i.e Bi2Se3) and a topological

crystalline insulator (i.e SnTe). In case of Bi2Se3, the topological nature is characterized by the

Z2 invariant (1,000) [32, 33]. The band inversion in Bi2Se3 yield is a strong topological insulator.

Fig. 1.3 (a) show the surface band structure projected on (001) surface, the single surface Dirac

cone is located at the TRIM point in the BZ. For a mirror protected TCI phase in SnTe, the band

inversion happened at the L points of the face centred cubic BZ (fcc BZ) . The fcc BZ has four L

points, as consequence the strong topological indies (υ0) is zero. However, topological nature can

Figure 1.3: The comparison of surface state of (a) Topological insulator (Bi2Se3) and (b) topological
crystalline insulator (SnTe).
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be identified by mirror Chern number, the SnTe has mirror Chern number mod CM = 2 as L

points located at the M110 mirror invariant momentum plane [15], as consequence the mirror

protected Dirac cone along the projected mirror line of the (001) surface of the BZ as shown in

Fig. 1.3 (b).

1.1.2 Gapless 2D and 3D topological phases

The inverted band order is not only limited to the gaped system. So, the idea of topological

protection can be extended to various gapless system. The presence of a gap closing point in

the BZ is restrict to assigned a global topological invariant like TI and TCI, although locally

topological invariant can be assigned for a particular momentum points, where the valence band

and conduction band are separated in the BZ [16, 34]. For example, if C = 0 at kz = 0 and C =

1 at kz = 0.5, this indicated there is a gapless point in the kz plane. In contrast of topological

materials, mainly three different type of gapless topological semimetal phase reported till date

such a Dirac semimetal(DSM), Weyl semimetal(WSM) and Nodal line semimetal. Now, we will

discuss briefly these topological semimetallic phases.

1.1.2.1 Dirac Semimetal:

A four fold degenerate linear band crossing (gapless point) at the certain point of the momentum

path, which is generally prone to the gap opening. These gapless points are stable under certain

condition. In the low energy excitation, these gapless points respect the massless Dirac equation

of the particle physics [16]. The Dirac Hamiltonian can be written as-

H =
[

m v⃗k.⃗σ

v⃗k.⃗σ −m

]
(1.11)

Figure 1.4: The schematic diagram of different topological materials.
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where, the m and v are the mass term and velocity respectively. The σ= (σx,σy,σz) is the Pauli

matrix. When phase transition occur from trivial to topological state, the m change sign "+ "

to "− " and at the critical point achieved when m vanishes which correspond to massless Dirac

fermion. At the critical point, the original Hamiltonian decouple into a Hamiltonian as-

H =
[

0 v⃗k.⃗σ

v⃗k.⃗σ 0

]
(1.12)

The material which poses massless Dirac fermion is known as Dirac semimetal.

The Dirac semimetal can be classified depending on the origin of the protection of the gapless

point. depending of protection of the gapless point, it is could be (i) accidental band crossing

(ABC) host DSM and (ii) the symmetry enforced band crossing (SBC) host DSM [35].

ABC host DSM : When the time reversal symmetry (T) and inversion symmetry(P) coexist in a

materials the spins are double degenerate at each k point. In such a system, if two bands cross

each other, it leads to a DSM. Due to the coexistence of P and T symmetry, the Berry curvature

vanishes over the whole BZ, so the DSM has a net topological charge that is zero. So it is less

robust against perturbation. However, the presence of crystalline symmetries help to stabilize

the four fold degenerate band crossing and protected from the gap opening. Although, the Dirac

point crossing created due to ABC can be protected by the crystalline symmetries, but the ABC

is not enforced by the symmetries. Most well known such Dirac semimetal ar like Na3Bi and

Cd3As2 [36–40].

SBC host DSM : The symmetry-enforced DSM only exist at the high symmetry points of the

boundary of the BZ. This type of DSM required specific symmetries, it is characterized by the

four dimensional irreducible representation (FDIR) using the wave function around the crossing

points. It is robust, therefore gapless points can’t be gaped without breaking the particular

symmetry. Generally, it is difficult to find a symmetry-enforced DSM due to the constrain of

the FDIR, requirement of the linear dispersion in all directions and the position of the Dirac

point near the Fermi level. The β- BiO2 is a well known material candidate for such Dirac

semimetal[41, 42].

Although the chiral charge of the DSM vanishes, it is possible to identify DSM with its topology.

For example, the DSM material has non zero topological invariant (Z2) on a specific momentum

plane, and band crossing on a mirror plane is classified with mirror Chern number. The DSM

also shows topological surface state around the Dirac point. Fermi surface of the DSM also shows

Fermi arc like state which connects the projected Dirac point, the chirality +1 and -1 coincide at

the same point[16].

1.1.2.2 Weyl Semimetal

One should go back to the Dirac Hamiltonian in Eq. 1.11 to understand basics of the Weyl

semimetal. It reveals, the Dirac Hamiltonian decoupled into two separate equations given by

8
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±v⃗k.⃗σ . These each equations correspond to the two component of chiral Weyl fermion with

chirality ±1. This argument holds when the Kramers degeneracy is not preserved for every

momentum point k, which means either time reversal(T ) or particle-hole(P ) symmetry should

not present, at least one symmetry must be broken [16]. In a such condition, a linear two fold

degenerate band crossing of non-degenerate band can occur in any generic momentum points k in

the three-dimensional BZ. In the presence of crystalline symmetry can restrict the band crossing

at a particular momentum point. The Hamiltonian around the Weyl point can be expanded as-

H(δk)= ϵ0(k0)+v0.δk+ ∑
i, j=x,y,z

vi jδkiσ j (1.13)

where, σx,y,z are the Pauli matrices and v0,vx,y,z characterize the band dispersion near band

crossing point. The 3rd term of the eqn is encode the topological character of the Weyl point, it

act as a monopole of momentum space Berry curvature. The Berry curvature (F ab
n (k)) and Berry

connection (Aa
n(k)) of a particular energy band are defined as-

F ab
n (k)=∇aA b

n (k)−∇bA a
n (k), A a

n (k)=−iψn(k)∇aψn(k) (1.14)

where ∇a ≡ δ/δka and a,b=x,y,z. The two important fact of Weyl physics are- (i) As Nielsen-

Ninomiya theorem state that "the total monopole charge integrated " over the BZ mush banishes,

sum over all chiral fermion must be zero" [43]. This indicate Weyl fermion always exist as a pair of

opposite monopole charge .(ii) The Beery curvature vanishes if both T and P symmetry preserve,

as T symmetry implies F ab
n (k)=−F ab

n (−k) and P symmetry implies F ab
n (k)=F ab

n (−k). Hence,

the Berry curvature of a monopole charge of a Weyl point demonstrating that the existence of

Weyl point requires at least one of these symmetries to be broken.

As a consequence, the Weyl semimetal shows important signature in Fermi surface and Berry

curvature. In the Fermi surface, it hosts the Fermi arcs which connect the chiral partner of a

Weyl point. Similarly, the Weyl points of chirality +1 and -1 act as a source and sink of the Berry

Figure 1.5: (a) The DFT band structure around Weyl points. (b) the Fermi surface projected on
(001) surface and (c) associate berry curvature at fixed kz plane of the HgTe/HgSe 3D superlattice.
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curvature, respectively. As an example we will discuss a P broken system i.e HgTe/HgSe 3D

superlattice. Fig. 1.5 (a) shows two fold degenerate band crossing leads to a Weyl semimetal

phase, the Fermi surface projected on 001 surface shows Fermi arcs which connect opposite

chirality [see Fig. 1.5 (b)]. The Berry curvature of this material in Fig. 1.5(c) shows chirality +1

(green circle) and chirality -1 (yellow diamond) act as a source and sink of the Berry flux.

In the past decade, several Weyl semimetals have been explored, the materials like TaAs,

NbAs, WTe2, LaAlGe etc illustrate the inversion breaking Weyl semimetal where as Co2Sn2S2

and Co2MnGa are the time reversal symmetry broken magnetic Weyl semimetals[44–48]. Due to

its distinct Berry curvature properties, the WSM shows interesting physical properties such as

chiral anomaly, anomalous Hall effect, axion electrodynamics etc.. [16, 49].

1.1.2.3 Nodal line Semimetal

The another type of gapless topological semimetal is the nodal line semimetal(NDLSM). it

features a gapless points along an one dimensional nodal lines of a linear band crossing of the

conduction and valence band, unlike a zero dimensional band touching points in DSM and WSM.

The band crossing of the nodal lines can be four fold degenerate (Dirac nodal line semimetal) and

two fold degenerate (Weyl nodal line semimetal), it is protected by the crystalline symmetries of

the materials. Generally, such band crossing occur when bands with different crystal symmetry

eigen value cross along a rotational axis or on a mirror or on the glide-invariant plane in the

BZ [50]. A nodal line semimetal can be classified with the topological invariant, Fermi surface

geometry and linking structure of the multiple nodal line. Now, we can discuss different nodal

lines -

Z2 Berry phase nodal line semimetals: In the presence of vanishing spin-orbit coupling

in a T and P symmetric system, the four fold degenerate (kramers degeneracy) band crossing

along one dimensional nodal line is belongs to Berry phase nodal line semimetal class. The

presence of the P symmetry indicate one could analyzed Z2 using the parity of the Bloch state at

the TRIM points. Similarly, the Berry curvature around the TRIM point give rise to Z2 invariant

like 3D TI. Once strong spin-orbit coupling introduce in the system, the gap become open and

the Z2 phase Dirac semimetal turned into a 3D TI, it doesn’t change the band inversion but

change the parity eigenvalues of the occupied Bloch state. The band inversion can be tuned with

impurity of strain, it also influences the size of the nodal line which is a interesting platform

to study correlated materials and flat band physics. Examples of the Z2 Berry phase nodal line

semimetals are the ZrSiS[51–53] family TiB2 [54, 55] family and Mg3Bi2 [56] etc.

Z2 monopole charge nodal line semimetals : unlike Z2 Berry phase nodal line semimetal,

a nodal line semimetal can have quantized monopole charge when the T and P are preserve

and the spin orbit coupling is vanishingly small. The Z2-quantized monopole charge nodal line is

more stable as the can only be remove by pairwise annihilation, a isolated charge monopole nodal

line cannot be removed [57, 58]. This phenomena is quite similar to Weyl physics. The non trivial
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Figure 1.6: (a)The 2D band structure at a fixed kz plane (b) the Fermi surface projected on (001)
surface around the nodes and (c) associate node distribution in a 3D BZ of the HgTe/HgSe 3D
superlattice.

phase of the Z2 monopole charge nodal line semimetal is characterized by Wilson loop evaluation.

Example of such nodal line is ABC stucking of the graphdiyne[59, 60].

Mirror symmetry and glide mirror symmetry protected nodal line semimetal : In

the presence of mirror symmetry (M ) or glide-mirror symmetry (G ), the materials can host a

nodal line in the mirror (glide) symmetry-invariant plane. The bands can cross each other without

hybridization if bands comes from different mirror (glide) symmetry. In the absence of the SOC,

let us consider a mirror operator in a kz plane Mz. In the momentum space-

Mz : (kx,ky,kz)→ (kx,ky,−kz) (1.15)

and the Hamiltonian must satisfy-

M−1
z H(kx,ky,kz)Mz = H(kx,ky,−kz) (1.16)

In order to obtain the band crossing associated with the mirror operator Mz can be observed at a

fixed kz plane and the eigenvalue of conduction ECB (kx,ky) should be equal to the eigenvalue of

valence band EV B (kx,ky). The mirror operator Mz creates a constraint of the kz plane, it makes

a band crossing points of a one dimensional line in the kx-ky plane. Since the mirror operator is

invariant on a fixed plane, the nodal line is locked to that plane. This kind of nodal line can be

from with accidental band crossing and doesn’t required partner like Zz monopole charge nodal

line. Once the strong spin-orbit coupling is present in the system the mirror symmetry protected

nodal line can be either annihilated or split into two fold degenerate Weyl nodes, this depends on

the presence of other symmetries. The example of mirror protected nodal line semimetals are

CaAgP [61, 62] and PbTaSe2[63] families.

The non trivial nature of a nodal line semimetal give rise to topological surface state known

as drumphead surface state. As a example here we demonstrate the band structure of a fixed
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Figure 1.7: Schematic of the changes in topological states due to the presence of magnetism,
depicted in a simplified form, and showing the effects of magnetism with varying magnetic
orientations.

kz plane which creates one-dimensional node distribution in Fig. 1.6(a), associate topological

surface state are shown in the Fermi surface projected on (001) is shown in Fig. 1.6(b), and the

distribution of the one-dimensional line nodes in a 3D BZ shows that the nodes are locked to a

fixed kz plane [see Fig. 1.6(c)].

1.1.3 TR broken gaped and gapless topological phases

The realization of the quantum Hall insulator in the presence of external magnetic field is the first

ever predicted magnetic topological insulator. Latter on Haldane shows, the magnetic topological

phase can be achieved without external magnetic field, in the presence of magnetic impurity or

intrinsic magnetic order can host quantized Hall conductivity. Depending on the magneto-electric

coupling response in the presence of intrinsic magnetization, the behaviour of anomalous Hall

conductivity, it also influence the topological surface state as shown in Fig. 1.7, which leads to

different magnetic insulator phases [64]. We will discuss those phases in details-

Anomalous quantum Hall insulator: In the presence of ferromagnetism in the topological

insulator, the Hall conductivity become quantized to ±e2/h and known as quantum anomalous

Hall insulator. As the ferromagnetism induced exchange splitting pushed the one set of spin-

polarized band to the topologically trivial or bulk bands, it host only one spin channel which
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connect the valence and conduction bands and remain topologically connected. In case of 2D

materials, this topologically protected spin channel is called as chiral edge state. However in

3D materials, a gap will be open at the surface perpendicular to the magnetization direction or

cloud host chiral surface state. For example, the magnetically doped Bi2Te3 family and HgTe

materials are theoretically predicted as a QAHI[65], latter on experimentally validated in Bi2Te3

[18] compound successfully however HgTe need external magnetic field [66].

Axion insulator: In the topological insulators , the gaped surface state resulting from local

breaking T is enforced a half quantized anomalous Hall conductivity (AHC) of e2/2h. This

connected to the axion phase angle θ which is characterized by the formula of Chern Simons

magnetoresistance coupling. Its represents as-

S = θe2

4π2h

∫
d3xdtE.B (1.17)

where θ has the values 0 or π, E and B are the electric and magnetic respectively. The term θ = π

for the strong TI case and θ = 0 for the topologically trivial vacuum phase, this corresponding

to the “axion Z2” classification. The important signature of the axion insulator are (i) the half

quantized surface AHC , (ii) gaped topological surface state, (iii) the Chern number is zero as

net AHC is zero [22, 67]. The half quantized surface AHC of the top and bottom surface are

cancel out which lead to the C = 0 in case of AI, where as in AQHI it is added to make C=1.

The AI phase is predicted in 2D materials such as MnBi2Te4 family and in 3D ferromagnetic

materials axion insulator state is noticed which shows part of chiral hinge state similar to the

higher order topology [68]. the experimental observation of the AI is not successfully done in

MnBi2Te4 material class [19].

Antiferromagnetic topological insulator: Consider an antiferromagnet that breaks a

crystal’s primitive lattice translation symmetry (t 1
2
) and time reversal tau while maintaining the

combinations S = τt 1
2
. The S symmetry results in a Z2 topological classification of insulators that

distinguishes between the "antiferromagnetic topological insulator" (AFTI) phase and the regular

insulator phase. Its features, including a quantized magnetoelectric effect, are similar to those of

the "strong" topological insulator with time-reversal symmetry. It also has been observed in the

2D materials in the presence of nonsymmorphic symmetry, the topological state are projected

by the rotation symmetries. The interplay between AFM, symmetry, and topology, several AFM

topological states with novel physical properties have been proposed [69, 70].

Several magnetic gapless topological phases are predicted theoretically and later observed

experimentally, and they have quite similar signature like nonmagnetic topological gapless

phases. Example of such materials are magnetic Weylsemimetals Co2Sn2S2 and Co2MnGa

[44–48].

1.2 The main theme and content of the thesis
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METHODOLOGY

We have used extensively ab-initio method in this thesis as a theoretical tools. The three step

process [see Fig- 2.1] has been adopted for calculating topological properties, these steps are-(i)

Density functional theory (DFT) based calculation using VASP code[71] to extract Bloch function,

(ii) Wannier function based tight-binding (TB) parameters and Hamiltonian from DFT using

wannier90 code [72, 73], (iii) TB modelling for electronic properties using wanniertools code

[74]. The DFT based technique along with wannier function based TB approach widely used as

an powerful theoretical tools to explore new exotic topological phase of materials [75, 76]. As

the name ab-initio suggests, DFT method don’t rely on empirical parameters and is capable in

predicting topological properties from crystal structure of the materials (i.e electronic density of

the structure). Last decades, theoretically predicted new topological materials using ab-initio

method were verified experimentally. In predicting new topological materials, this method indeed

a very powerful technique.

This chapter describes the overview of DFT and Wannier based tight-binding methods. In

sec. 2.1, we discuss about many body problem to one electron problem. In sec. 2.2, we review

different concept and aspect of DFT methods, this include Kohn-sham theorem, plane wave basis

set, pseudo potentials and different exchange correlation functional formalism. In sec 2.3, we will

discuss about the constructing of the Wannier tight-binding Hamiltonian from DFT. Finally, we

have illustrate the methods to obtain topological invariant (i.e. Z2, Chern number etc..), surface

states, anomalous Hall conductivity using Wannier based tight binding formalism incorporated

in wanniertools.
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Figure 2.1: Schematic diagram of the methods used for predicting new topological materials

2.1 Many body electron system

The accurate properties of a material can be estimated with considering all possible interac-

tion (i.e electron-electron, electron-nucleus,and nucleus-nucleus interaction) of the system. The

Hamiltonian of a materials with many-body interaction is described as follows-

Ĥ = T̂n + T̂e + V̂n−n + V̂e−e + V̂n−e (2.1)

In Eq. 2.1 T̂n and T̂e represents the kinetic energy of the nuclei and electron of the system

T̂n =
K∑
α=1

(−iℏ∇Rα
)2

2Mα

T̂e =
N∑

i=1

(−iℏ∇i)2

2m

where, the Rα denotes Cartesian coordinate of α nucleus with mass Mα and m is mass of the

electron in N electron system.

In Eq. 2.1, the interaction potentials between particles are represented as: the repulsive

potentials of nucleus-nucleus and electron-electron are Vn−n and Ve−e respectively, the attractive

potentials between nuclei-electron is Vn−e [77].

V̂n−n =
K∑

α,β=1;α<β

ZαZβe2∣∣∣R⃗α− R⃗β

∣∣∣
V̂e−e =

N∑
i, j=1;i< j

e2∣∣⃗r i − r⃗ j
∣∣
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V̂n−e =−
K∑
α=1

N∑
i=1

Zαe2∣∣∣R⃗α− r⃗ i

∣∣∣
where ri and r j denoting the position of ith and jth electron. The Hamiltonian of a many

electron system can be written as -

Ĥ =
K∑
α=1

(−iℏ∇Rα
)2

2Mα
+

N∑
i=1

(−iℏ∇i)2

2m
+

K∑
α,β=1;α<β

ZαZβe2∣∣∣R⃗α− R⃗β

∣∣∣ +
N∑

i, j=1;i< j

e2∣∣⃗r i − r⃗ j
∣∣ − K∑

α=1

N∑
i=1

Zαe2∣∣∣R⃗α− r⃗ i

∣∣∣ (2.2)

By considering all term of the Hamiltonian in Eq. 2.4, one can solve the time-independent

Schrödinger equation to get the electronic properties of a many-electron system.

Ĥ Ψ= E Ψ (2.3)

Here, E and Ψ are the eigenvalues and many-body electronic system. The real systems poses very

high number ∼ 1023 of ions and electrons, it make difficult to get exact solution of the equation

with available resource in recent world. In order to solve this equation, approximations are

required.

The first and important approximation in Eq.2.5 is Born Oppenheimer approximation [78]: since

the ions in a typical solid move much slowly compared to the electrons, one can decouple the

motion of electrons and ions. According to this approximation, the kinetic energy of ions is

neglected and potential energy is merely constant. Thus, Hamiltonian reduces to -

Ĥ =
N∑

i=1

(−iℏ∇i)2

2m
+

N∑
i, j=1;i< j

e2∣∣⃗r i − r⃗ j
∣∣ − K∑

α=1

N∑
i=1

Zαe2∣∣∣R⃗α− r⃗ i

∣∣∣ (2.4)

Due to this approximation, we can decouple wave function that can be written as as a product

of electronic and ionic wave functions i.e-

Ψ=ψn
ik(R⃗α) ψe

k (⃗r i, R⃗α) (2.5)

The Schrödinger equation with Born-Oppenheimer approximation can written as-

[T̂e + V̂e−e + V̂n−e] ψe
k (⃗r i, R⃗α)= Ek(R−α) ψe

k (⃗r i, R⃗α) (2.6)

The Eqn.2.6 represents a stationary eigenvalue problem for any sets of frozen ions located at Rα.

The ground state configuration by solving Eqn.2.6 is a formidable task due to (i) large number

and quantum nature of the electrons (ii) complicated geometry of many electron system (iii)

a number of meta-stable state arrangement of the nuclei. So more efficient approximation is

needed to handle this problem even the motion of ions is ignored. The next simplest and effective

Hartree-Fock (HF) or (self consistent field approximation) [79], in which the ground state wave
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function ψe
0 of a many electron system represent in terms of a product of individual single particle

states or so-called Slater determinant.

ψe
0(⃗r1σ1, .....⃗rNσN )≈φ1...N (⃗r1σ1, .....⃗rNσN ) (2.7)

where,φi and σi are the single electron wave function and spin of a N-particle system and ground

state wave of function φ1...N are determined variationally. The HF equation looks similar to the

ordinary Schrödinger equation, the effective potential is non local in nature with two terms the

(i) Hartree (direct Coulomb) potential VH(r) and (ii) the exchange potential VHF
x .[

(−iℏ∇i)2

2m
+VH(r)+V HF

x

]
φi (⃗r,σ)= E iφi (⃗r,σ) (2.8)

where, VH(r) and VHF
x (⃗rσ, r⃗′σ′) cab be express as-

VH(r)=
∫

d3r′

|⃗r− r⃗′|
∑

σ′=↑,↓

∑
j ̸=i

∣∣φ j (⃗r′σ′)
∣∣2

V HF
x (⃗rσ, r⃗′σ′)=− e2

|⃗r− r⃗′|
N∑

j=1
φ j (⃗rσ)φ∗

j (⃗r′σ′)

The potentials estimated self consistently : start with the initial guess of the total potential, the

states φi and the potentials which improves step by step. This iterative process is stopped once a

suitable accuracy is achieved. The electrons in HF approach the average field of the complete elec-

tron cloud and ignored Couloumb repulsion between electrons. In order to incorporate Couloumb

repulsion, one has to include unoccupied states (finite or infinite) along with occupied states in

the HF ground state. The improved correlated wave function can be expressed as-

ψk (⃗r1σ1, .....⃗rNσN )= ∑
i1....iN

ck
i1...iN

φi1...iN (⃗r1σ1, .....⃗rNσN ) (2.9)

The expansion coefficient can be determined using various methods. For efficient numerical

implementations, the single-particle orbitals from which φi1....iN are constructed can must be

expanded in terms of some finite set of basis functions -

φi (⃗rσ)=
M∑

k=1
bi,kσηk (⃗r) (2.10)

Using the matrix elements 〈ηk|ηl〉, Eq. 2.8 can be turned into a eigenvalue problem, where bi,kσ

and determine either sequentially or simultaneously. According to to the HF scheme, the effective

single particle scheme is wind up with

M∑
l=1

∑
σ′

[〈
ηk

∣∣∣∣− (ℏ∇i)2

2m
δσ,σ′ + ˆve f f ,σ,σ′

∣∣∣∣nl

〉
−ϵi

〈
ηk|ηl

〉]
bi.lσ′ = 0 (2.11)

Where, ˆve f f .σ,σ′ is the total potential experience by electrons. In the correlated ab-initio

method, the computational demands is increased by a factor of the order of the electron number
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N: M scale linearly with it. To improve correlation calculation, the method like Møller and plesset

(the second and fourth perturbation theory, MP2 or MP4), configuration interaction (CI), multi-

configuration self-consistent field (MCSCF) , couple cluster approach (CC), are quite accurate,

but very expensive in terms of computational cost. Next question arise, are there any effective

method which can map a fully interactive many-body problem onto an effective single particle

problem in a more complete fashion which includes correlation in some way. The answer is yes,

the density functional theory (DFT) is the alternative and remarkable theory that replace wave

function approach by simpler electron density (ρ).

2.2 Density functional theory (DFT)

The central idea in Density functional theory is to use the electronic density instead of wave func-

tion of a many-body system which reduces the number of scaling factor in numerical algorithm,

the ground state electronic density can be represented as-

ρ(⃗r)= 〈Ψ0
∣∣ρ̂(⃗r)

∣∣Ψ0〉

= N
∑

σ1....σN

∫
d3r2....d3rN |(⃗r1σ1, r⃗2σ2...⃗rNσN ) |Ψ0〉|2

(2.12)

This idea was formulated in a proper framework by Hohenberg and Kohn in 1964 [80] in term of

two theorems :

♦ The extend potential Vext(r) of an interacting many-electron system can be expressed

as a unique functional ground state energy of this system is also a unique function of

ρ(r) i.e E=E[ρ].

♦ The total energy functional, E[ρ(r)] has a minimum equal to ground state energy

corresponding to ground state density ρ(r).

2.2.1 Kohn-Sham equation

Unfortunately, the explicit form of E[ρ(⃗r)] is not described in Hohenberg-Kohn (HK) theorem.

This problem can be simplified by an exact mapping of the interacting N-particle problem onto a

suitable effective non-interacting system. It is possible within Kohn-Sham (KS) scheme[81]. In the

KS-scheme, the single particle orbitals are considered as KS orbital (ΨKS
i (⃗r)) which reproduces

the density of the actual system-

ρ(⃗r)=
N∑

i=1

∣∣∣ΨKS
i (⃗r)

∣∣∣2 (2.13)

Here, the ΨKS
i (⃗r) follow the KS equation-

[
− (ℏ∇i)2

2m
+V [ρ]

e f f (⃗r)
]
ΨKS

i (⃗r)= E iΨ
KS
i (⃗r) (2.14)
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where, Ei are the KS eigenvalues, V[ρ]
e f f (⃗r) is the effective functional which is a function of the

electron density ρ. The V[ρ]
e f f (⃗r) can be rewrite as-

V [ρ]
e f f (⃗r)=V [ρ]

ext (⃗r)+V [ρ]
H (⃗r)+V [ρ]

XC (⃗r) (2.15)

V[ρ]
ext (⃗r) is characterise the coupling between the particles and the external potential

V [ρ]
ext (⃗r)=

∫
d3rvextρ(⃗r) (2.16)

V[ρ]
H (⃗r) in the classical(Hartree) interaction energy between the N particles with density ρ

V [ρ]
H (⃗r)= 1

2

∫
d3r

∫
d3r′

ρ(⃗r)ρ(⃗r′)
|⃗r− r⃗′| (2.17)

V[ρ]
XC (⃗r) is the exchange-correlation functional which includes all complicated many-body effect

V [ρ]
XC (⃗r)= δEXC[ρ]

δρ(⃗r)
(2.18)

Here EXC is the exchange-correlation part of the total energy which considers all possible

many-body effect assuming the validity of Eqn. 2.13. The exact from of the EXC is unknown, it

could be estimated self consistently as it is a function of electron density.

The Kohn-Sham equation can estimate exact ground state energy if the exact V[ρ]
e f f (r) is estimated.

The exact form of the exchange-correlation term of a many electron system is tricky to know and

computationally expensive. The various approximation method incorporated in DFT to calculated

the EXC[ρ]).

2.2.2 Exchange correlation functional

The exchange correlation functional EXC consist of two part the Exchange EC[ρ] and correlation

EX [ρ] functional in conventional many-body theory. It is calculated with various approximation,

the two most popular approximations are the local density approximation (LDA)[82, 83] and the

general gradient approximation (GGA)[84–86].

2.2.2.1 LDA approximation

The basis of all approximation exchange correlation approximation is the local density approxima-

tion(LDA)[82]. It is assumed that the whole electron gas has a slowly varying density profile ρ(r).

Therefore, the exchange correlation energy at a small elemental volume d3r should remain locally

homogeneous. Therefore, the EXC within LDA approximation for the whole system is given by-

EXC[ρ]=
∫
ρ(⃗r)ϵxc[ρ(⃗r)]d3r (2.19)

where ϵxc(ρ) is the exchange relation energy per particle uniform electron gas of the density ρ(r).

The form of ϵxc can be obtained from high level many-body calculations for a uniform electron

gas.For example, the forms developed by Gunnarsson and Lundqvist or Ceperly and Adler are

used in many of the current implementations of LDA.
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2.2.2.2 GGA approximation

This approximation works pretty well for systems with uniform electron density. and therefore

yields good results for the metals. Unfortunately, it underestimates the band gap of semicon-

ductors up to 50%. Unlike LDA, the GGA approximation includes first order correction of the

density. Therefore, it also includes the effect of local inhomogeneity of the electron density. The

total exchange correlation energy can be expressed as-

EXC[ρ(⃗r)]=
∫
ρ(⃗r)ϵxc[ρ(⃗r),∇ρ(⃗r)]d3r (2.20)

The most famous implementation of GGA method is developed in 1963 by Perdrew, Burke

and Ernzehof (PBE)[84]. The other implementations are by Predrew and Wang (PW91)[85] and

various version of PBE version for solid PBE-sol [86] etc. In certain materials, the GGA works

better than LDA. Similar to LDA, the GGA also underestimates the bandgap [87].

2.2.2.3 Beyond GGA

To improve the band gap problem and electronic structure of the materials, various methods

are used in DFT, for example LDA+U,GGA+U scheme, van der waals correction (vdW) strategy,

meta-GGA functional scheme, various hybrid functional like HSE and many body approach like

GW etc [88–90]. In this thesis we have extensively used GGA,GGA+U,vdW, MBJGGA and HSE

functional for the calculation of 2D vdW materials to 3D narrow gap semiconductors.

In the next section, we describe most popular method to solve the Kohn-Sham equation with the

pseudopotential using a plane-wave basis set.

2.2.3 Plane wave basis set

According to the Bloch theorem, the crystal wave function for each band i and crystal momentum

k can be written as-

Ψik (⃗r)= ek⃗.⃗ruik (⃗r), uik (⃗r+ R⃗)= uik (⃗r) (2.21)

where uik (⃗r) is the cell periodic part with the lattice vector R, it is required to be expand in the

some basis sets to perform numerical calculations. The choice of the basis set for solids is plane

wave basis set. The Bloch wave function Ψik (⃗r) can be expand in a plane wave basis set with

periodic condition as -

Ψik (⃗r)=∑
G

CG⃗
i,kei(⃗k+G⃗) (2.22)

Here, G is the reciprocal lattice vector, and CG⃗
i,k is the expansion coefficient. Ideally, the sum

contains an infinite number of plane waves but it should be restricted to an optimal number of
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plane wave to improve computational efficiency. In practice, only consider the all G vector within

a sphere with a radius
∣∣∣G⃗max

∣∣∣ , keeping origin at the center[91]. The
∣∣∣G⃗max

∣∣∣ is estimated from

the kinetic energy cut off (Ecut) using the following equation-

Ecut =
ℏ2

∣∣∣⃗k+ G⃗max

∣∣∣2
2m

(2.23)

2.2.4 Pseudopotential

The wave function of the valence electron must satisfy the orthogonality condition with the core

electron wave functions. As a results, the energy scale spanned by the core electrons energy

scale spanned by the core electrons are vastly different from those of valence electron, the rapid

oscillation of the wavefunction closer to the core of atoms. Therefore large number of plane waves

are needed in Eq 2.22 to properly describe the valence electron wave function. But, the core

electrons plan insignificant role in the properties of the solid. Therefore, an efficient approach

named pseudopotential [91] approach can be used instead of the real potential, where the strong

Coulomb potential of the nucleus and the effect of tightly bound core electron is replaced and an

effective ionic potential acting on the valence electron.

Let us consider that the actual wave function of the system satisfies the Kohn-Sham[81] equation:[
− (ℏ∇i)2

2m
+V [ρ]

e f f (⃗r)
]
ΨKS

i (⃗r)= E iΨ
KS
i (⃗r) (2.24)

A pseudo wave function can constructed as-

ΨKS
i (⃗r)= (1− P̂)φi (⃗r) (2.25)

where the projection operation P is given by,

P̂ =∑
j

∣∣k j
〉〈

k j
∣∣ (2.26)

Here, the P projects any function to the core states (
∣∣k j

〉
). It can be shown that ψi(r) satisfies a

similar equation as ΨKS
i (r) : [

− (ℏ∇i)2

2m
+Vps(r̂)

]
φi(r̂)= E iφi(r̂) (2.27)

where, Vps(r) is the pseudopotential and it can be expressed as -

Vps(r)=V [ρ]
e f f (⃗r)−

[
− (ℏ∇i)2

2m
+V [ρ]

e f f (⃗r)
]

P̂ +E iP̂ (2.28)

Note that, Eq. 2.27 yields the same eigenvalues as the actual equation. It is generally a smooth

wave function and can be reproduced using a smaller set of plane waves. The pseudo wave

functional generally mimics the true wave function beyond a cut off radius. Two methods are used
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to calculate pseudo potentials a) norm-conserving approach developed by Kleinmab and Bylander,

(b) the ultrasoft pseudopotential method developed by Vanderbilt. In case of norm conversing

potential, the norm of an actual wave function must be reproduce using the norm of pseudo

wavefunction within the cutoff radius. However, it is not maintained in ultrasoft pseudopotential.

Usually ultrasoft pseudopotential is used less number of basis sets and less cut off energy. These

type of pseudopotential is used in code like Quantum espresso[92].

Apart from the pseudopotential, there is projector augmented wave(PAW) method, it is lies

in between all-electron and the pseudopotential. In this method, the wave function is decide into

two part, 1st part is a partial wave expansion within a atom centered sphere, and 2nd part is

pseudopotential outside augmented region. Therefore, PAW PAW method are better because they

consider both core electrons, at the same time, used pseudopotential method to deal with valence

electrons. The PAW potential is generally used in codes like VASP, GPAW etc... In this thesis, we

have performed our calculation using PAW method in-build in VASP code.

2.3 Wannier based tight-binding model

In this sub section, we describe the tight-binding approach within the framework of the maximally

localized Wannier functions (WF) [77, 93]. The Bloch wave function is generally expressed as a

linear combination of localized orbitals. It is an efficient approach to explore accurate description

of the electronic structure with less computational power. In case of topological materials [76, 94],

the WF base tight binding approach appears to be a powerful tools in past decades. Specially, the

denser k-point grid is essential for many topological electronic properties finding which is hard in

DFT based coarse-grained sampling of the Brillouin zone (BZ). For example, the finding of Weyl

point or nodal points which can be located in the any point of the BZ, or the calculation of the

Berry phase/Berry curvature needs much dense k-grid. The main idea of Wannier based tight

binding model is to extract the real space hopping parameter for the relevant bands near the

Fermi energy [94]. This reduce the size of the matrix. The k-space Hamiltonian can be constructed

using the real space hopping parameters.

The Wannier functions is considered as the Fourier transform of the Bloch functions [73, 77, 95],

it is associated with the nth Bloch band Ψnk can be represented as-

Wn,R⃗ = Vcell

(2π)3

∫
BZ

e− i⃗k.R⃗Ψnkd3k (2.29)

Here, R is the unit cell index, and Vcell is the unit cell volume. Note that, since Ψnk(r) has a

gauge freedom, it can be smooth over the Brillouin zone by choosing a suitable gauge. The Wnk

decay rapidly with |⃗r− R⃗| . Therefore, Wannier functions are generally well localized and are

orthogonal to each other in the real space, i.e.

〈Wmk|Wnk〉 = δmnδRR′ (2.30)
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and they span the same Hilbert space as the Bloch functions. The matrix elements for the

Hamiltonian in the Wannier basis can be written as

Hmn(R)= 〈Wmk|H |Wnk〉 (2.31)

Once the real space hopping elements are known, The k-space Hamiltonian can be obtained as

follows-

Hmn(K)=∑
R

eik.RHmn(R), (2.32)

or,

Hmn(K)=∑
R

eik.(R⃗+⃗τm−⃗τn)Hmn(R⃗) (2.33)

where τn represents the location of the nth Wannier orbital in the unit cell. The eigenvalues

of the different approach in Eq. 2.32 and 2.33 are same but their eigenvectors are different. The

Eq. 2.32 consist only Bloch wave function Ψnk, while 2.33 also includes the periodic part of the

Bloch wavefunction unk (⃗r) =nk (e−ik.⃗r) [77]. The formalism in Eq. 2.33 is more accurate in the

context of topological materials due its relation with Berry phase and Berry curvature.

This Wannier base method is very useful to calculate various properties. For example, the Berry

phase of the system can be calculated using the matrix element of the position operator in the

following way-

r̄n = 〈ωn0| r⃗ |ωn〉 = Vcell

(2π)3

∫
BZ

〈unk|i∇kunk〉d3k⃗ (2.34)

In one dimension, we have

x̄n = a
2π

∫ 2π

0
〈unk|iδkunk〉dk⃗, (2.35)

or,

x̄n = a
φn

2π
(2.36)

Here, φn is the Berry phase and a denotes the cell parameter of the one-dimensional lattice.

Therefore, the information about the Berry phase can be easily obtained by tracking the Wannier

charge centers. Other important aspects of the Wannier function based Hamiltonian are the

calculations of topological invariant, topological protected edge or surface states and calculation

of different conductivity such as Anomalous Hall conductivity (AHC) and Spin Hall conductivity

(SHC) using the wannier90 code.
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3
ARTICLES COMPOSING THE THESIS WITH SUMMARIES

3.1 A brief overview of the main results

During my last four year of my Ph.D. journey, I have been exploring different materials and

their exotic quantum phases which could be useful for quantum technologies and quantum

communication.

In our group Alexander Lau e.t al shows (in Physical Review X 11 (3), 031017) [96], the 3D flat

band could be achieve by applying strain on 3D materials n a iso-energetic nodal line semimetal.

Taking consideration of experimental perspective of Magtop and real material candidate for 3D

flat band, I have constructed a 3D superlatice of HgTe-based chalcogenides. I have constructed

the 3D supper lattice of (i) HgTe/CdTe( topological insulator/normal insulator) (ii) HgTe/HgSe

(topological insulator/topological insulator). I have observe a isoenergic nodal line semimetal in

HgTe/CdTe 3D superlattice, it is a good material platform for the 3D flat band superconductivity.

Beyond the 3D flat band super conductivity, I have observe the Weyl semi metal phase when we

have construct a 3D superlattice of two topological HgTe/MnTe. The correlation of the materials

change crystal field, which give rise to plethora of exotic topological phase in thge 3D superlattice

of HgTe-based chalcogenides.

Along with the 3D superlatice of HgTe-based materials, I have demonstrate a new quantum

phases in new 2D materials which grown in 2019 as a monolayer without knowing the counter

part of bulk. I have observe in quantum phenomena such as spin-valley effect in the 2H phase

of monolayer of MSi2Z4 (M= Mo,W and Z= N,P, As) that means the opposite valley K and K′

has opposite spin locking due to symmetries. The spin polarization vanishes at K and K′ in the

bilayer of the MSi2Z4 materials. We also discuss the tunability of these states by applying electric

field which is a crucial aspect of a valleytronic transistor. I also predicted a new phase 1T′ of
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MSi2Z4 (M= Mo,W and Z= N,P, As) are thermodynamically stable. The few of the 1T’- MSi2Z4

Materials are a large gap quantum spin Hall insulator. It shows topological to normal insulator

transition under the influence of external electric field. This materials could be a good candidate

for quantum spin Hall transistor like 1T′MoS2 as proposed by Liang Fu et.al[97].

3.2 PAPER I :Topological states in superlattices of HgTe-class
materials

New topological phases have been engineered using the superlattices. A superlattice composed of

magnetically doped transition metal dichalcogenides (TIs) and normal insulators is one of the

first generic examples of a material that can induce a WSM phase. The Zinc-blende superlattices

comprising of HgTe, HgSe, and CdTe provide a suitable material platform for the search for topo-

logical phases in other superlattices. Unlike the trivial insulator CdTe, the bulk semiconductors

HgTe and HgSe have a band inversion that may be adjusted by varying thickness, strain, and

temperature [98–100]. In systems made of these materials, topological phases like the topological

insulator (TI) phase, the Weyl semimetal (WSM) phase, and the quantum spin Hall phase may

appear.

In this work, we use ab initio calculations to show that (001) HgTe/CdTe and HgTe/HgSe super-

lattices show a wide range of topological phases, including phases with isoenergetic nodal lines

at the Fermi energy of the unstrained structures. We have constructed (3ML)HgTe/(3ML)CdTe

3D SLs along (001) direction. The band structure of CdTe/HgTe shows few meV gap along high

symmetry directions with camel-back like feature along Γ→ Z direction. I have observed a

band multiple band crossing points far from the high-symmetry direction. By constructing a

Tight-binding model, I have found multiple nodal points at the Fermi level create nodal ring.

Finally, the presence of topological surface state that connects nodes identified as a isoenergic

nodal line semimetal. The strain and hydrostatic pressure leads to a normal insulating phase in

(001) HgTe/CdTe 3D SLs. Moreover, I have studied (3ML)HgTe/(3ML)HgSe 3D SLs along (001).

It is discovered to be an ideal Weyl semimetal. It depicts eight Weyl’s points, four of which are

on the kz=+kz plane and other four Weyl points are on the kz=-kz plane. The Fermi-arc of the

material confirms the claim by connecting the opposite chirality; the Berry of the material is

consistent with the Fermi-arc results; the chirality +ve acts as a source, and the chirality -ve acts

as a shrink. This weyl phase in HgTe/HgSe 3d SLs is robust against hydrostatic pressure, but it

starts coming closer to each other with hydrostatic pressure, and at a critical pressure it merges

and form a Dirac semimetal phase and becomes a Weyls semimetal with a topological Lifshitz

transition. The weyl phase, on the other hand, is influenced by uniaxial compression or strain,

and the interaction between the crystal field effect and spin-orbit coupling results in a phase

transition from the nodal line to a topological insulator phase.
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In search of materials with three-dimensional flat band dispersions, using ab initio computations we inves-
tigate how topological phases evolve as a function of hydrostatic pressure and uniaxial strain in two types of
superlattices: HgTe/CdTe and HgTe/HgSe. In short-period HgTe/CdTe superlattices, our analysis unveils the
presence of isoenergetic nodal lines, which could host strain-induced three-dimensional flat bands at the Fermi
level without requiring doping, when fabricated, for instance, as core-shell nanowires. In contrast, HgTe/HgSe
short-period superlattices are found to harbor a rich phase diagram with a plethora of topological phases.
Notably, the unstrained superlattice realizes an ideal Weyl semimetal with Weyl points situated at the Fermi
level. A small-gap topological insulator with multiple band inversions can be obtained by tuning the volume:
under compressive uniaxial strain, the material transitions sequentially into a Dirac semimetal to a nodal-line
semimetal, and finally into a topological insulator with a single band inversion.

DOI: 10.1103/PhysRevResearch.4.023114

I. INTRODUCTION

In the past decades, tremendous effort has been made both
theoretically and experimentally to search, predict, and un-
derstand the characteristics of a wide variety of topological
phases, such as topological insulators (TIs) [1–7], topolog-
ical crystalline insulators (TCIs) [8–11], Dirac semimetals
(DSMs) [12–15], Weyl semimetals (WSMs) [16–19], and
nodal-line semimetals (NLSMs) [20–24]. TIs and TCIs are
bulk insulators whose nontrivial band topology, enabled by
band inversions, gives rise to conducting surface states and
quantized physical observables. WSMs and DSMs are three-
dimensional (3D) semimetals with linear band-crossing points
near the Fermi level, the so-called Weyl and Dirac points, re-
spectively. Weyl points are inherently stable due to a quantized
topological charge or chirality, which requires the breaking
of inversion or time-reversal symmetry, whereas the Dirac
points can only be stabilized by enforcing additional spatial

*rislam@magtop.ifpan.edu.pl
†bahadur.singh@tifr.res.in
‡autieri@magtop.ifpan.edu.pl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
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symmetries in time-reversal and inversion symmetric environ-
ments. One of their hallmarks is the presence of conducting
surface states that form open Fermi arcs connecting the bulk
nodal points on the surface of the material. In NLSMs, the
nodal points form closed loops in the bulk Brillouin zone
(BZ) giving rise to characteristic drumhead states on their
surfaces. Typically, topological semimetals, such as WSMs
and NLSMs, appear as intermediate phases between two
topologically distinct insulating phases. The breaking of the
time-reversal symmetry by introducing magnetism leads to a
new variety of topological phases like the quantum anoma-
lous Hall (QAH) phase [25–27] and the axion-insulator phase
[28–31].

Another appealing research direction concerns designing
materials with carriers residing in flat bands which can support
new correlation-driven collective phases. A comprehensive
catalog of compounds with flat bands near the Fermi energy
has recently been completed [32]. In the case of metals, the
familiar Mott-Hubbard physics is expected. In nonmetallic
compounds, a key challenge is how to introduce carriers
avoiding the Anderson-Mott metal-to-insulator transition, as
the role of localization increases when the kinetic energy of
the carriers is reduced. In 2D systems, modulation doping or
gating introduces carriers without enhancing disorder, the case
of flat bands in twisted 2D flakes [33]. Some of the present
authors have recently demonstrated theoretically that 3D flat
bands are expected in systems exhibiting isoenergetic nodal
lines under the presence of inhomogeneous strain [34]. The
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latter plays the role of a gauge potential quantizing the carrier
spectrum into Landau-like levels in the absence of an external
magnetic field. Rhombohedral graphite and the CaAgP-class
of compounds have been pushed forward as candidate mate-
rials. However, in view of the experimental realization and
study of 3D flat bands, it is paramount to find more material
systems with suitable properties, especially with the presence
of nodal lines.

Superlattices have been used to engineer new topological
phases. One of the first general examples is a superlattice
made of alternating layers of magnetically doped TIs and
normal insulators to trigger the appearance of a WSM phase
[35]. Looking for topological phases in other types of super-
lattices, a promising material platform constitutes zinc-blende
heterostructures of HgTe, HgSe, and CdTe. While CdTe is a
trivial insulator, bulk HgTe and HgSe are symmetry-enforced
zero-bandgap semiconductors with a band inversion, which
can be tuned by changing thickness, strain, and temperature
[3,36–39]. The systems made up of these materials may give
rise to several different topological phases, such as a TI phase
[40,41], a WSM phase [42], or a quantum spin Hall phase
in insulating 2D HgTe/CdTe quantum wells [2,3,43]. In the
case of magnetic Mn doping, the k dependence of the sp-d
hybridization has to be taken into account to describe ac-
curately the exchange-induced splitting of magneto-optical
spectra corresponding to electron-hole excitations in various
points of the BZ [44]. Despite the inverted band structure,
coupling between Mn spins is dominated by superexchange
[45] rather than by interband spin polarization [26]. It has
theoretically been predicted [25] that the breaking of time-
reversal symmetry by magnetic doping would lead to a QAH
phase. However, this has not yet been observed experimen-
tally in HgTe-based TIs.

In this paper, we demonstrate by ab initio computations
that (001) HgTe/CdTe and HgTe/HgSe superlattices show
a rich tapestry of topological phases including phases with
isoenergetic nodal lines residing at the Fermi energy of the
unstrained structures. The two cases investigated here are
representative of the combination of trivial/topological and
topological/topological superlattices.

The paper is structured as follows. In Sec. II, we discuss
the band structure and symmetry properties of bulk HgTe,
of bulk CdTe, of bulk HgSe, and their superlattices. The
computational details and the numerical values of the band
structure parameters are described in Appendixes A and B.
Section III, discusses the nodal-line semimetal phase obtained
in unstrained HgTe/CdTe superlattices. In Sec. IV, we con-
tinue by presenting an ideal Weyl semimetal phase in the
related HgTe/HgSe short-period superlattices, before study-
ing the effect of hydrostatic pressure and uniaxial strain on this
heterostructure in Sec. V. Notably, the latter reveals another
nodal-line semimetal phase. Finally, Sec. VI summarizes our
results and provides a brief outlook on possible research di-
rections.

II. SYMMETRIES AND STRUCTURAL PROPERTIES

A. Bulk

CdTe, HgTe, and HgSe belong to the space group F 4̄3m,
No. 216. They have Td symmetry with mirror planes along the

FIG. 1. [(a) and (b)] Crystal structure of bulk HgTe and HgSe in
the conventional unit cell. Hg, Te and Se atoms are highlighted in
red, green and blue, respectively. [(c) and (d)] Band structure within
GGA and [(e) and (f)] within the MBJGGA approach of bulk HgTe
and HgSe, respectively. Red, green, and blue lines represent the Hg,
Te, and Se band characters, respectively.

(110), (101), and (011) directions. The conventional unit cell
contains eight atoms: four cations and four anions as shown in
Figs. 1(a) and 1(b). The Rashba-Dresselhaus effect is present
in the zinc-blende structure because of the lack of inversion
symmetry [46].

The band structure of bulk HgTe and HgSe [Figs. 1(c)–
1(f)] exhibits an inverted band ordering, dictating that HgTe
and HgSe materials exhibit a nontrivial topological character
[2,47,48]. The band inversion takes place between cation-s
and anion-p bands at the Fermi level driven by two relativistic
effects: on the one hand, the mass-velocity term that lowers
significantly the energy of the s orbitals in heavy cations and,
on the other hand, spin-orbit coupling (SOC) shifting up the
anion p orbitals with total angular momentum j = 3/2 [49].

The spin-orbit interaction of the anions (Se, Te) plays
an important role in the band topology. The SOC splits the
bands near the Fermi level into fourfold-degenerate j = 3/2
and twofold-degenerate j = 1/2 bands at the � point. Ac-
cording to the symmetry of the wave function, the anion
p bands are labeled as �8 ( j = 3/2) and �7 ( j = 1/2),
while the cation s bands are labeled as �6 at the � point.
Figures 1(c) and 1(d) shows the band structure using the
generalized gradient approximation (GGA) [50]. To repro-
duce the correct experimental band ordering for both HgTe
and HgSe, we have further obtained band structure using the
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modified Becke-Johnson exchange potential together with the
correlation potential scheme (MBJGGA) (see Appendix A for
details). The results are shown in Figs. 1(e) and 1(f). This
yields the order of energy levels at � in qualitative agreement
with experiments. Notably, while the band ordering between
�6 and �7 in GGA differs from experiments, the higher-lying
p bands close to the Fermi level, which are relevant for the
topology, are correctly obtained by both functionals. We thus
resort to the GGA exchange-correlation functional to describe
the topological properties of the systems in this paper.

Both HgTe and HgSe are symmetry-enforced zero-band-
gap semiconductors due to the interplay between the spin-
orbit splitting in the p-orbital manifold, their bulk cubic
symmetry and the mass-velocity term of Hg [49]. Indeed, at
the � point, the p orbitals split under the spin-orbit interac-
tion into �8 (fourfold degenerate) and �7 (doubly degenerate)
states. The remaining degeneracies are protected as long as
the cubic symmetry is present. The Fermi level lies at the �8

energy level producing a zero-band-gap semiconductor. The
cubic symmetry is preserved in the presence of hydrostatic
pressure but it is broken in case of anisotropic strain and
interface heterostructures. Once the cubic symmetry is bro-
ken, the fourfold degenerate state splits thereby removing the
zero-gap semiconductor state but keeping the band inversion
so that other topological phases can evolve. Additionally, the
breaking of the crystal symmetry produces also the charac-
teristic camel-back feature of the band structure. Defining the
magnitude of the band inversion as Eg = Ep − Es, we have
found that the band inversion strongly depends on the volume
through the crystal field effect: by compressing the volume,
Es increases more than Ep because the s-orbital of the Hg
atoms is isotropic and is, therefore, strongly affected by the
crystal field of the four Te (Se) atoms. As a consequence, a
compression of the volume reduces Eg thereby pushing the
system towards the trivial insulating phase.

B. Superlattice

The interface between two materials couples different de-
grees of freedom giving rise to emergent phases such as 2D
electron gases, superconductivity, proximity effects [51–53],
exotic exchange bias [54,55], anisotropic metal-insulator tran-
sitions [56], or a sign-tunable anomalous Hall effect [57]. In
particular, the interfaces between zinc-blende compounds and
their superlattices have been intensively studied to generate
new electronic and topological phases [58,59].

We study short-period HgTe/CdTe and HgTe/HgSe su-
perlattices and reveal the emergence of various topological
phases. For the sake of brevity, we only discuss the structure
and symmetry properties of HgTe/HgSe, but the same state-
ments are valid also for HgTe/CdTe. The 3D superlattice of
HgTe/HgSe represents a heterostructure composed of alter-
nating phases of two dissimilar topological semimetals. We
consider the case with the same number n of layers for both
phases. (The short-period superlattices with a small value of n
are considered because long-period superlattices are expected
to recover the properties and phases of bulk HgTe.) We further
have to distinguish between even and odd values of n in the
(HgTe)n/(HgSe)n heterostructures. For n even, the directions
(110) and (1̄10) are equivalent. On the contrary, for an odd

FIG. 2. (a) 3D HgTe/HgSe superlattice constructed along the
(001) direction. (b) Top view of the crystal structure with symme-
tries present in the heterostructure indicated. (c) Isosurface of the
charge difference in real space (top) and linear charge difference ρ(z)
(bottom). We have labeled the HgTe and HgSe regions, the dashed
vertical lines represent the interface layers between HgTe and HgSe.

number of layers the (110) and (1̄10) directions become equiv-
alent.

We expect that the interplay between the breaking of the
crystal symmetries and the full spin-orbit coupling favors a
rich topological phase diagram. To break the crystal symme-
tries, we have constructed the superlattice by alternating three
layers of HgTe and of HgSe, i.e., (HgTe)3/(HgSe)3, along the
(001) direction. The heterostructure comprises three conven-
tional zinc-blende unit cells along the c axis and, therefore, we
assume for the out-of-plane lattice constant of the supercell
cSL = 3aSL, where aSL is the in-plane lattice constant. As in
the bulk, each anion (cation) is tetrahedrally coordinated by
four nearest-neighbor cations (anions). When cutting through
the structure along the z direction, one finds subsequent layers
of one atomic thickness consisting of only anions and only
cations, respectively [see Fig. 2(a)]. The six cationic layers
are composed of Hg atoms, while there are three anionic
layers containing Te and three anionic layers containing Se
in each superlattice period. Both compounds have the same
zinc-blende space group, but in the heterostructure with an
odd number of layers the directions (110) and (1̄10) are now
inequivalent. This results in a lower symmetry which could
favor the possibility of Weyl and nodal-line phases [60].
Moreover, the interface between zinc-blende materials can be
used to manipulate the band gap and, therefore, the topologi-
cal properties of the whole heterostructure. We will show that
these 3D superlattices have electronic properties similar to the
HgTe class of materials under strain [42], since they preserve
the C2 symmetry. However, the different periodicity along the
z axis lends the superlattices a tetragonal symmetry.

Our heterostructure belongs to the space group P4̄m2
(D2d ), No. 115, which is a body-centered tetragonal crystal
structure with lattice parameters aSL and cSL. By design, the
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point-group symmetry of the heterostructure is reduced from
Td to D2d with respect to the bulk compounds. Bulk HgTe
and bulk HgSe have lattice constants aHgTe = 6.46 Å and
aHgSe = 6.09 Å, respectively. The in-plane lattice constant
of the supercell depends on the lattice constants of the con-
stituent compounds following Vegard’s law. Without strain,
we assume the in-plane lattice constant of the supercell to
be aSL = 6.27 Å, which is the rounded average between the
experimental HgTe and HgSe lattice constants and therefore
expected to be close to the experimental value for this super-
lattice.

The heterostructure has three twofold rotational symme-
tries along the x, y and z directions (C2x, C2y, and C2z), and
two mirror symmetries (Mxy and Mxȳ), as shown in Fig. 2(b).
Similar to bulk HgTe, the (HgTe)3/(HgSe)3 heterostructure
lacks inversion symmetry. Nevertheless, it preserves time-
reversal symmetry. Notably, the symmetry properties of the
heterostructure are similar to strained HgTe [42] and some
chalcopyrites [61,62]. The presence of time-reversal symme-
try together with the mirror symmetries and the C2z symmetry
give rise to doubly degenerate bands along the �-Z direction,
so-called Kramers nodal lines [63], while the band structure
has nondegenerate bands along all other directions as dis-
cussed below. This implies a constraint on the topology of
the Fermi surfaces similar to the effect of nonsymmorphic
symmetries [64].

Interfaces between two materials generally give rise to
a charge transfer between the layers. To assess this effect,
we define the linear charge density ρ(z) as the number of
electrons summed over the xy plane per unit length such
that

∫
ρ(z)dz is equal to the number of electrons. We have

performed density functional theory calculations for the entire
heterostructure and for separate slabs containing only HgTe
and only HgSe with the same geometry as the heterostructure.
Subsequently, we have considered the difference between the
respective linear charge densities:

�ρ(z) = ρHgTe/HgSe(z) − ρHgTe(z) − ρHgSe(z). (1)

The integral of this quantity is zero by construction. We find
that a negligible amount of charge on the order of 10−3 elec-
trons is accumulated near the interfaces as shown in Fig. 2(c).
These results infer that there is no significant charge transfer
between HgTe and HgSe in the 3D superlattice. This con-
firms our expectations as the two compounds have similar
electronegativities. In the HgTe/HgSe heterostructure there
is one kind of interface, namely Te/Hg/Se. However, the
heterostructure can be cut in two regions in different ways.
We cut the heterostructure in two different ways at Te/Hg
and Hg/Se. For this reason, we note that there is a slight
asymmetry between the two interfaces as seen in Fig. 2(c).
These results clearly demonstrate that there is no considerable
charge transfer at the interface.

In the following sections, we show the appearance of
a nodal-line semimetal phase in short-period superlattices
of HgTe/CdTe and of an ideal Weyl semimetal phase in
HgTe/HgSe superlattices. Moreover, we will investigate the
latter under hydrostatic and uniaxial pressure.

FIG. 3. (a) Orbital-resolved band structure of (HgTe)3/(CdTe)3

superlattice in the full Brillouin zone (BZ) and (b) enlarged view
along the S-�-Z high-symmetry path. The inset shows that the sys-
tem is gapped along the �-Z direction. (c) Schematic diagram of
the full BZ (black solid lines) with (100) and (001) BZ surface
projections (red solid lines). (d) Band structure with nodal points at
kz = 0.020 Å−1(black) and gapped at kz = 0.021 Å−1(red). These
four bands are a set of bands isolated from the rest of the band
structure.

III. NODAL-LINE SEMIMETAL IN HgTe/CdTe
SUPERLATTICES

We now discuss the band structure and the Fermi sur-
face of the unstrained (HgTe)3/(CdTe)3 superlattice. This
superlattice is feasible experimentally due to the presence
of only one type of chalcogen atoms as assessed in the ear-
lier quantum well experiments. Figure 3(a) shows the band
structure along high-symmetry lines of the full BZ. At the
� point, the s band of Hg is at −0.5 eV with respect to
the Fermi level, which is similar to bulk HgTe. The bands
close to the Fermi level are dominated by the p orbitals of
the Te atoms. An enlarged view of the band structure along
the S-�-Z high-symmetry path in Fig. 3(b) reveals a band
inversion between the | j, jz〉 = |3/2,±1/2〉 bands and the
| j, jz〉 = |3/2,±3/2〉 bands of the Te atoms. Looking at the
orbital weight of these bands, we find that |3/2,±3/2〉 are
made up only of px and py orbitals, while |3/2,±1/2〉 con-
tain one third of in-plane orbitals and two thirds of pz. We
make similar observations for the other type of superlattice
considered in this article (see below). While the band structure
is gapped along the �-Z direction, we find that the system
features two isoenergetic, circular nodal lines with the same
radius in planes parallel to the kx-ky plane at k∗

z = ±0.02 Å−1.
Figure 3(d) shows the corresponding bands along two paths
of the form �1 = (0, 0, kz ) → X1 = (0.005π

a , 0, kz ) → S1 =
(0.005π

a , 0.005π
b , kz ) → �1, one with kz = k∗

z crossing one
of the nodal lines and one with kz = 1.05 k∗

z . Remarkably, the
nodal lines are isoenergetic with lack of energy dispersion and
lie at the Fermi level.
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FIG. 4. (a) Surface band structure and (c) associated Fermi band
contours of (001) Te-terminated surface of (HgTe)3/(CdTe)3 super-
lattice. (b) Band structure of the infinite superlattice in the E − kx −
ky space at a fixed kz = 0.02 Å−1. (d) Nodal lines of the infinite
superlattice resolved at the kz = ±0.02 Å−1 planes. The units are in
Å−1 in this and in the next figures regarding the k-space.

Figure 4(a) shows the surface band structure with Te-
terminated (001) surface. The associated Fermi contours has
two circular features close to �̄, as shown in Fig. 4(c), one
of which corresponds to the projection of the bulk nodal lines
into the surface BZ. The other circular feature together with a
larger bow-tie shaped Fermi line are made up of surface states.
In Fig. 4(b), we present the superlattice band structure at fixed
kz = k∗

z = 0.02 Å−1, where the circular nodal line is visible
at the Fermi level. The Fermi surface of the superlattice is
shown in Fig. 4(d) consisting of two circular lines located
on the kz = ±k∗

z = ±0.02 Å−1 planes. The superlattice of
HgTe/CdTe thus realizes a nodal-line semimetal phase.

The presence of these nodal lines can be understood from
looking at bulk HgTe. Away from the Fermi level, bulk HgTe
features a network of bow-tie shaped nodal lines protected by
six symmetry-related mirror planes [65]. The application of
uniaxial strain along the c-axis breaks all mirror symmetries
except Mxy and Mxȳ. Consequently, all nodal lines except
the ones in the two remaining mirror planes are gapped out.
However, the latter gradually shrink to points and gap out
already for small strain. Finally, the only remaining features
are eight C2T symmetry-protected point nodes in the x-z and
y-z planes, which are located along their intersections with
the broken mirror planes. In particular, they lie on some of
the previous but no longer protected nodal lines. In our het-
erostructure, the role of the external strain is played by the
interface between the two dissimilar materials leading to a
similar picture. Remarkably, the band structure parameters
of the short-range superlattice with trivial CdTe lead to a
situation where the nodal lines containing the C2T protected
point nodes survive and move to the Fermi level. Notably,
while these nodal lines are not symmetry protected, the gap
opened at the crossings points are negligible and beyond
our computational resolution. This situation is comparable to

FIG. 5. Band structure of the slab with (100) orientation for the
(a) Hg-terminated and (b) Te-terminated surfaces.

many 3D Dirac semimetal materials. These states lie close to
the Fermi level, forming almost dispersionless flat bands as
seen in Fig. 4(d).

We note that we find a pair of nodal lines also in the
(HgTe)4/(CdTe)4 superlattice (see Appendix C) despite the
different symmetries. However, the nodal lines tend to shrink
as we increase the of the superlattice. We also note that in 2D
quantum wells there is a critical thickness for the topological
phase of HgTe. However, in the case of the superlattice we
expect this critical thickness to be shorter due to the repetition
of HgTe. Finally, we find that the considered HgTe/CdTe
superlattice becomes a trivial insulator when applying com-
pressive hydrostatic pressure.

IV. IDEAL WEYL SEMIMETAL IN HgTe/HgSe
SUPERLATTICES

We now consider the unstrained HgTe/HgSe superlattice.
We find that the details of the surface states depend on the
type of surface termination. Figures 5(a) and 5(b) show the
surface band structure of the Hg- and Te-terminated surfaces,
respectively. We observe surface states connecting the valence
and the conduction bands indicating the topological nature of
the system. For the Hg-termination, the surface Dirac point is
at 0.06 eV below the Fermi level. On the contrary, the Dirac
point is buried in the bulk bands for the Te-termination of the
slab with (100) orientation. For the sake of brevity, we con-
sider chalcogen atomic terminations to present our following
results.

Figure 6(a) displays the band structure of the infinite su-
perlattice along the high-symmetry lines S-�-Z close to the
Fermi level. It constitutes an inverted band gap of 13.1 meV
on the �-Z line. A careful exploration of states near the
band anticrossing points reveals linear band crossing typical
of Weyl semimetals along the path X1-�1-Y1, as shown in
Fig. 6(b). We define �1=(0,0,k∗

z ), X1 = (0.1π/a, 0, k∗
z ) and

Y1 = (0, 0.1π/a, k∗
z ), with k∗

z = 0.0506 Å−1. We find a total
of eight symmetry related Weyl points constrained by the
presence of C2xT and C2yT symmetries with respect to the
planes at kx=0 and ky = 0 [60]. Their positions in the BZ
are (0,±k∗

‖ ,±k∗
z ) for the four Weyl points with chirality +1

and (±k∗
‖ , 0,±k∗

z ) for the other four with chirality −1, where
we have defined k∗

‖ = 0.0077 Å−1. Interestingly, these Weyl
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FIG. 6. Band structure of the unstrained HgTe/HgSe infinite superlattice (a) along the high-symmetry lines S-�-Z . (b) Band structure in
the plane of the Weyl points at kz = k∗

z = 0.0506 Å−1. Band structure of slabs with (c) (100) surfaces and (d) (001) surfaces. Fermi surfaces
of the slabs with (e) (100) surfaces and (f) (001) surfaces. (g) Magnification of panel (f) close to �̄. (h) In-plane component of the Berry flux
at the kz = k∗

z plane containing four Weyl points. The Weyl points at (±k‖∗, 0, ±k∗
z ) have chirality −1 (yellow circle marker) while the Weyl

points at (0,±k‖∗, ±k∗
z ) have chirality +1 (green circle marker). Diamond markers indicate chirality −2 (yellow) and +2 (green).

nodes appear at the Fermi level, showing that the superlattice
structure realizes ideal Weyl semimetal phase in their pristine
state in contrast to HgTe [42].

The orbital-resolved band structure further reveals that the
p-bands of Se and Te dominate near the Fermi level. In ad-
dition to the band inversion present in bulk HgTe and HgSe,
also in this superlattice we find a new band inversion between
|3/2,±3/2〉-Se and |3/2,±1/2〉-Te orbitals at the � point,
which is essential for the creation of the Weyl phase. The
system thus has multiple band inversions at the � point. The
symmetry is reduced to D2d due to the interface. In general,
the symmetry reduction creates a camel-back-shaped band
in the valence bands and an inverse camel-back structure in
the conduction bands along the �-Z high-symmetry line. The
same camel-back feature has been found for bulk HgTe in
the presence of doping or strain, which also breaks the bulk
symmetry.

A material with inversion and time-reversal symmetry
would have doubly degenerate bands due to Kramers’s de-
generacies. The splitting between the spin-orbit split bands
gives a measure of the bulk inversion asymmetry (BIA) [60].
To create Weyl points in HgTe materials class, both BIA and
symmetry reduction to D2d are needed. The parameter α gov-
erning the first-order term in k of the BIA has been estimated
to be small in HgTe (α = 0.208 Å eV) [60]. Due to the small
value of k‖∗, the third-order term in k can be neglected. For the
considered superlattice, the spin-orbit split bands reported in

Fig. 6(b) cross each other in the conduction band. Curiously,
at this crossing point, the BIA is accidentally zero. Later, this
observation will serve useful in understanding the progression
of topological phases under applied external strain.

One of the hallmarks of WSMs is the presence of topo-
logically protected Fermi arcs on the surface of the material.
To confirm the topological nature of the 3D superlattices, we
have calculated the surface electronic states and Fermi arcs
for the (100) and (001) surface orientations, using the surface
notation of the conventional unit cell as shown in Fig. 2(a).
The (010) surface is equivalent to the (100) surface.

The band structure of the slab for the (100) surface orien-
tation along high-symmetry lines is shown in Fig. 6(c). We
find surface states connecting the valence and the conduction
bands confirming the topological nature of the system. More-
over, we observe a gapless point at the coordinates (0, k∗

z )
corresponding to Weyl points projected into the 2D BZ of the
slab. The Fermi surface for the slab with surface orientation
(100) is shown in Fig. 6(e). It has six gapless points, four
points with projected coordinates (±k‖∗,±k∗

z ) and monopole
charge +1 and two points with coordinates (0,±k∗

z ) and
monopole charge −2. The latter is the result of two Weyl
points of charge −1 being projected onto the same point in
the surface BZ. We observe two large Fermi arcs connecting
each one of the −2 monopole charges with one of the −1
monopole charges. The other two short Fermi arcs, which are
expected to be present between the monopole charges with
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−2 and the remaining two monopole charges with −1, are not
clearly resolved due to the small distances between the Weyl
points for this surface orientation.

The band structure for the slab with (001) surface orienta-
tion along high-symmetry lines is shown in Fig. 6(d) featuring
two gapless points. We also present the corresponding Fermi
surface and its magnification around the Weyl-point projec-
tions in Figs. 6(f) and 6(g), respectively. The Weyl points
with monopole charge +1 are pairwise projected to the points
(0,±k‖∗), while the Weyl points with monopole charge of −1
are pairwise projected to (±k‖∗, 0). The resulting four nodal
points have an effective monopole charge of ±2 giving rise
to two Fermi lines emanating from each of them. In this way,
they form four open Fermi arcs between them giving rise to
two separate intraconnected pairs of Weyl nodes. We also
observe one large closed Fermi line encompassing the surface
projections of the Weyl points around �̄. Notably, this Fermi
line is disconnected from the Weyl points and originates from
the vicinity to a topological insulator phase that would form
after pairwise annihilation of the Weyl points. The remnant
surface Dirac cone can be viewed as coming from the bulk
band inversion, while the band-inversion generated by the p
orbitals produces the Weyl points. The resulting coexistence
of Dirac cone and Weyl points has been described in the liter-
ature [66]. Furthermore, we have calculated the Berry flux in
the kz = k∗

z planes containing the Weyl points. The projections
of the Berry flux into the x-y plane are visualized in Fig. 6(h).
We see how the Weyl points with chirality +1 act as sources of
Berry flux while the Weyl points with chirality −1 act as sinks.
The Weyl points of opposite chirality are well separated by an
in-plane distance of 1.5% of the reciprocal lattice constant.
Since there are no trivial states at the Weyl nodes’ energy,
the Weyl phase in this 3D multilayer superlattice could be
unambiguously detected experimentally.

V. HYDROSTATIC PRESSURE AND UNIAXIAL STRAIN IN
HgTe/HgSe SUPERLATTICES

A. Topological properties as a function of hydrostatic pressure

We present the computational results on the evolution
of topological phases in the HgTe/HgSe superlattices with
applied hydrostatic pressure. In particular, we have per-
formed calculations for different volumes, labeled Vi, i =
1, 2, 3, and 4 as shown in Fig. 7, where volume V3 with
aSL = 6.27 Å corresponds to the unstrained superlattice dis-
cussed in the previous section. For volumes V1 and V2, we have
used the lattice constants aSL = 5.60 and 5.82 Å, respectively,
whereas volume V4 has a lattice constant of aSL = 6.60 Å.

For volume V4, we obtain a Weyl phase similar to the one
reported for volume V3 above (see Appendix C). We denote
the Weyl phase found for volumes V3 and V4 as WSM1.
Comparing V3 and V4, we find that with increasing pressure k∗

‖
is reduced while k∗

z remains almost constant. The Weyl points
move closer to the points (0,0,±k∗

z ) where they eventually
annihilate each other as we show in the next subsection. We
highlight that the considered heterostructures allow to obtain
the Weyl phase even in absence of strain, which is an advan-
tage over the bulk phases of HgTe and HgSe.

FIG. 7. Overview of topological phases in the HgTe/HgSe su-
perlattices as a function of the lattice constants a and c: blue dots
show the considered configurations of lattice constants. We denote
different volumes resulting from hydrostatic pressure as Vi, where
V3 corresponds to the unstrained superlattice. In the case of uniaxial
strain, we denote the compressed c-axis values with fixed in-plane
lattice constant as ci. The experimental values of bulk HgTe and
HgSe are indicated by green squares. We have further indicated the
associated topological phases for each point.

For the volume V1, we observe a different WSM phase
which we denote WSM2. The WSM phases WSM1 and
WSM2 are separated by a small-gap topological insulator,
which we denote TI1. In the following, we discuss the phases
TI1 and WSM2 in more detail.

1. Small-gap topological insulator phase at volume V2

Figure 8 shows the electronic properties for the compressed
superlattice with volume V2. Along the high-symmetry lines
S-�-Z , the infinite superlattice band structure has a minimum
band gap of 3 meV at (0, 0, 0.0360 Å−1) as shown in Fig. 8(a).
The existence of a finite energy gap is further confirmed in
the a very denser grid using our Wannier model. We have
performed calculations along the path X1-�1-Y1 with kz com-
ponents shifted to kz = k∗

z = 0.0360 Å−1, which is presented
in Fig. 8(b). Moreover, the points where the BIA splitting
between the bands accidentally vanishes have now moved to
the Fermi level and are now closer to the � point coinciding
with the position of the minima of the bulk energy gap. This
means that the BIA is tunable by the hydrostatic pressure and
vanishes approximately at the Fermi level for the volume V2.
Coming from the Weyl phase, the Weyl points merge and
gap out at the two points (0, 0,±k∗

z ) leading to a small-gap
topological insulator that we denote TI1. This small-gap TI
phase can also be viewed as an approximate Dirac semimetal
with Dirac points at (0, 0,±k∗

z ) since it is in proximity of a
DSM phase. This DSM phase is not topologically protected.
Due to the presence of multiple band inversions, the gapped
phase emerging here is a topological insulator phase. The
recombination of Weyl points at k = (0, 0,±k∗

z ) due to the
accidental vanishing of the BIA is unique to the superlattices
considered here. In strained HgTe, on the contrary, the merg-
ing of Weyl points happens at the � point.
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FIG. 8. Band structure of the HgTe/HgSe superlattice at the volume V2 (a) along the high-symmetry lines S-�-Z . (b) Band structure in the
kx-ky plane at kz = k∗

z = 0.0360 Å−1. Band structure of slabs with (c) (100) and (d) (001) surfaces. Fermi surfaces of the slabs with (e) (100)
surfaces and (f) (001) surfaces. (g) Magnification of panel (f). (h) In-plane component of the Berry flux at the kz = 0 plane.

We have further studied the electronic surface states of
slabs of the compressed superlattice to confirm the nontrivial
topological nature of the system. The band structures for the
surface orientations (100) and (001) are presented in Figs. 8(c)
and 8(d), respectively. These look similar to the corresponding
band structures for the unstrained superlattice (compare to
Fig. 6), except that the pair of linear band crossings in the
bulk continuum has now merged to a single point in Fig. 8(d).
This is in agreement with the recombination of Weyl points
to a single Dirac point. Furthermore, we still observe topo-
logical surface states connecting the conduction and valence
bands indicative of the topological nature of the compressed
superlattice. A deeper insight into the structure of the surface
states is gained from the corresponding Fermi surfaces for the
(100) and (001) surface orientations of the slabs, as presented
in Figs. 8(e)–8(g) Again comparing to Fig. 6 for the (100)
termination in Fig. 8(e) we see that the previously open Fermi
arcs now form a closed Fermi line of surface states pinned to
the surface projections of the infinite superlattice Dirac points
at (0,±k∗

z ). This Fermi line belongs to a single surface Dirac
cone characteristic of a topological insulator. For the (001)
termination in Figs. 8(f) and 8(g), we find a large closed Fermi
line and two small Fermi circles centered at the �̄. The inner
Fermi circles originate from the fusion of the Weyl points.

2. Weyl semimetal at volume V1

Reducing the volume further to the value V1, we find
another WSM phase that we denote as WSM1. The corre-
sponding Weyl points re-emerge from the critical Dirac points

found for the volume V2. This is due to the BIA increasing
again, which accidentally vanished close to V2. From the
point of view of a model Hamiltonian, this can be understood
considering that changes in the volume modify the ratio be-
tween the hopping parameters and the on-site energies, and
therefore the BIA. Figure 9(a) shows the infinite superlattice
band structure at the volume V1 along the high-symmetry
lines S-�-Z. Along these high-symmetry lines the minimum
band gap is 12.3 meV. We have also calculated the band
structure along the shifted path X1-�1-Y1 with kz components
kz = k∗

z = 0.0353 Å−1, as shown in Fig. 9(b). Along this path,
we find linear dispersions with gap closing points. There are
a total of eight Weyl points. Their chiralities and relative
arrangement in the BZ are similar to WSM2: The positions
are (0,±k∗

‖ ,±k∗
z ) for the four Weyl points with chirality +1

and (±k∗
‖ , 0,±k∗

z ) for the other four with chirality −1, where
we have k∗

z = 0.0353 Å−1 and k∗
‖ = 0.0038 Å−1. Differently

from the Weyl semimetal phase WSM2 for the volumes V3

and V4, the spin-orbit split bands cross now also in the valence
band. As a consequence, from V3 to V1 we have a surface Lif-
shitz transition in the topological regime. Such a topological
Lifshitz transition has already been observed in other Weyl
semimetal compounds [67,68].

Another difference between the Weyl phases concerns the
structure of surface states. The band structures of the slabs
for the surface orientations (100) and (001) are reported in
Figs. 9(c) and 9(d), respectively. The corresponding Fermi
surfaces for the surface orientation (100) and (001) are shown
in Figs. 9(e)–9(f), respectively. Figure 9(g) shows the magni-
fication of the (001) Fermi surface close to �̄.
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FIG. 9. Band structure of the HgTe/HgSe superlattice at the volume V1 (a) along the high-symmetry lines S-�-Z . (b) Band structure in the
plane containing the Weyl points at kz = k∗

z = 0.0353 Å−1. Band structure of slabs with (c) (100) surfaces and with (d) (001) surfaces. Fermi
surfaces of the slabs with (e) (100) surfaces and with (f) (001) surfaces. (g) Magnification of panel (f) to visualize the Weyl points and their
connectivity. (h) In-plane component of the Berry flux at the kz = k‖∗ plane including four Weyl points. The Weyl points at (±k‖∗, 0, ±k∗

z )
have chirality −1 (yellow diamond marker), while the Weyl points at (0,±k‖∗, ±k∗

z ) have chirality +1 (green circle marker). Diamond markers
indicate chirality −2 (yellow) and +2 (green).

We observe that, with respect to WSM2 (compare to
Fig. 6), there is a difference in the number of Fermi lines
and in the connectivity of the Weyl points. For the (100)
slab, we now observe two additional large circular Fermi
rings encompassing the Weyl points and their Fermi arcs,
whereas WSM2 showed only Fermi arcs. The (001) slab has
one additional Fermi ring and the connectivity of the Weyl
points has changed: instead of two separate pairs of Weyl
node projections intraconnected by two Fermi arcs, the Fermi
arcs now connect all the Weyl-node projections in a chain-
like fashion. Consequently, for both terminations the number
of crossings along a given line through half of the surface
BZ is the same as for WSM2 modulo 2. Hence, the infinite
superlattice topology of the two WSM phases WSM1 and
WSM2 is indeed the same [66]. Also the Berry flux reported in
Fig. 9(h) is similar to the one for the volumes V3 and V4, con-
firming that the two WSM phases have the same topological
properties.

Shrinking the volume further, we observe the �6 band
coming closer to the Fermi level. For the volume V1, there is
still a multiple band inversion between the p-orbitals and the
�6 band, as well as a band inversion involving |3/2,±3/2〉-Se
and |3/2,±1/2〉-Te orbitals close to the Fermi level. A further
reduction of the volume to unrealistic values pushes the �6

level above the Fermi level creating a trivial insulator. This
transition is favored if layers of trivial insulators, such as
CdTe, are inserted into the heterostructure.

B. Topological properties as a function of uniaxial strain

To illustrate the effect of the strain, we first discuss the
order of the energetic levels at the � point for the volume V2.
While the energetic levels can be labeled by their parities in
the presence of inversion symmetry [69], this is not possible
here. We start from the bulk HgTe and bulk HgSe energy lev-
els �8, �7, and �6 as shown in the outer parts of the top panel
in Fig. 10(a). HgSe is more electronegative, so the energetic
levels of HgSe are lower. Assuming the electrons can rear-
range along the c-axis as it happens in the case of an interface,
the effect of the strain on the energy levels |3/2,±3/2〉 and
|3/2,±1/2〉 coming from the change of the lattice constant
aSL is different for HgTe and HgSe. Finally, considering the
hybridization between the two components of the superlattice,
i.e., HgSe and HgTe, we obtain the final order of the energetic
levels, which is shown in the center of Fig. 10(a). In terms of
orbital weights, we note that the states with s-orbital charac-
ter are much more delocalized than the states with p-orbital
character in zinc-blende superlattices [70]. Moreover, at the �

point, the states with s-orbital character are decoupled from
the states with p-orbital character. We further note that the
final superlattice states with p-orbital character are mixtures
of Te and Se orbitals, while Fig. 10(a) indicates only the main
character (Te or Se) of the energetic levels.

Bulk HgTe realizes a type-I WSM phase at large uniaxial
tensile strain and a TI phase at large uniaxial compressive
strain, where the strain is with respect to the c axis. In
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FIG. 10. (a) Schematic of energy levels in the superlattice with
additional band inversion: the outer boxes show the energetic levels
�6, �7, and �8 in bulk HgTe and HgSe. Strain as an effect of
changing the lattice constant of the superlattice (aSL) splits the energy
levels, while the interface hybridization (center) rearranges them.
(b) Schematic of the energetic levels of s-Hg, |3/2, ±1/2〉-Te and
|3/2, ±3/2〉-Se states as a function of the c lattice constant. The
colors indicate the different topological phases DSM, NLSM, and
TI. Note that the energy difference between |3/2, ±1/2〉 Te and
|3/2, ±3/2〉 Se is not the crystal field, since the orbitals belong to
different chalcogenide atoms. The colors red, green, and blue denote
the main orbital character of the energetic levels, namely, Hg, Te, and
Se, respectively.

between, the material is a type-II WSM [36,60,71]. Note that
our strain notation is different from Ref. [60].

In this section, we investigate the evolution of the topo-
logical phases in the HgTe/HgSe superlattice as a function
of uniaxial strain along the c axis. We start from the su-
perlattice at the compressed volume V2. We note, however,
that we obtain the same progression of topological phases
starting from the unstrained volume V3. At the volume V2, the
heterostructure realizes a small-gap TI, which can be viewed
as an approximate Dirac semimetal. We have performed cal-
culations for compressed c axes corresponding to strain up to
7%. For small strain, we find that the energy gap closes at the
Dirac points and the system remains a Dirac semimetal for an
extended range of strain values. Subsequently, the superlattice
realizes a nodal-line semimetal phase at around 5% of com-
pression. Increasing the compressive uniaxial strain further,
the HgTe/HgSe superlattice evolves into another TI phase

with a sizable energy gap. The TI phase of the HgTe/HgSe
superlattice is similar to the one observed in strained HgTe.
However, the path to arrive at the topological insulator phase
is different as we will show below. A schematic diagram of
the different phases is shown in Fig. 10(b). In the following,
we analyze the arising phases in more detail.

1. Nodal-line semimetal at 5% compression

At 5% of compression, the minimal gap along the high-
symmetry lines moves from the Z-� direction to the �-S
direction as shown in Fig. 11(a). The reason is that, at the �

point, the |3/2,±3/2〉-Se orbital goes below the |3/2,±1/2〉-
Te orbital thereby undoing the band inversion between the
associated bands. As a consequence, the bands lose their
camel-back shape along the �-Z line to obtain a large Rashba
band along the �-S line. The upper Rashba bands of the
valence bands intersect the lower Rashba bands of the conduc-
tion band producing the features of the NLSM phase. Indeed,
we find four nodal loops with a linear dispersion rendering
this phase a NLSM. A path cutting through the nodal loops is
shown in Fig. 11(b), where the nodal points are highlighted by
red dots. The band structure in the kz = 0 plane is illustrated
in Fig. 11(h). The four nodal lines are located in the kx = ±ky

planes. A visualization of the four nodal lines in the full BZ
is provided in Fig. 11(g). These nodal lines are close to the
Fermi level but are not isoenergetic. This is similar to the
situation in bulk HgTe under tensile strain along the (111)
axis [72], but the nodal lines in our heterostructure have a
different structure. Furthermore, the nodal lines are protected
by the Mxy and Mxȳ mirror symmetries. The band structure for
slabs with (100) and (001) surface are reported in Figs. 11(c)
and 11(d), respectively. The corresponding Fermi surfaces are
shown in Figs. 11(e) and 11(f).

2. Topological insulator at 7% compression

At 7% of compression, the gap along the �-S direction
increases as shown in Fig. 12(a). The nodal lines have shrunk
to points and gapped out, as can be seen in Fig. 12(b) when
compared with Fig. 11(b). The superlattice now realizes a
topological insulator with a sizable gap and a single band
inversion, which we denote TI2. This phase has properties
similar to strained bulk HgTe [60] with a direct band gap
of 10 meV and strong topological invariants (ν0; ν1ν2ν3) =
(1;000). The band structure in the kz = 0 plane is shown in
Fig. 12(h). The electronic surface states for the (100) and
(001) surface orientations are shown in Figs. 12(c) and 12(d)
and the associated Fermi surfaces are displayed in Figs. 12(e)–
12(g). For the (100) termination, we observe a Fermi ring
centered at �̄ associated with a single Dirac cone. Further-
more, there are additional trivial surface states. The (001)
surface shows an odd number of Fermi rings centered at �̄.
However, only the central ring is associated with a Dirac cone,
whereas the others are trivial surface states, as can be seen
from comparing with Fig. 12(d).

VI. CONCLUSION AND OUTLOOK

We have investigated the evolution of topological phases in
short-period HgTe/CdTe and HgTe/HgSe superlattices. The
HgTe/CdTe superlattice realizes a nodal-line semimetal with
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FIG. 11. Band structure of the HgTe/HgSe superlattice with 5% compressive strain (a) along the high-symmetry lines S-�-Z . (b) Wannier
band structure in the plane at kz = 0 plane where S1 = (0.085 π

a , 0.085 π

b , 0) and S2 = (−0.085 π

a , −0.085 π

b , 0). The nodal points are high-
lighted by red dots. Band structure of slabs with (c) (100) surfaces and (d) (001) surfaces. Fermi surfaces of the slabs with (e) (100) surfaces
and with (f) (001) surfaces. (g) Nodal lines in the full BZ. (h) Band structure at the kz = 0 plane.

FIG. 12. Band structure of the HgTe/HgSe superlattice with 7% compressive strain (a) along the high-symmetry lines S-�-Z . (b) Wannier
band structure at kz = 0 where S1 = (0.085 π

a , 0.085 π

b , 0) and S2 = (−0.085 π

a , −0.085 π

b , 0). Band structure of slabs with (c) (100) surface
and (d) (001) surface. Fermi surfaces of the slabs with (e) (100) surfaces and with (f) (001) surfaces. (g) Magnification of (f). (h) Band structure
in the kz = 0 plane.
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two isoenergetic, circular nodal lines at the Fermi level. Under
compressive hydrostatic pressure, the superlattice becomes
a trivial insulator. The HgTe/HgSe superlattice, in contrast,
hosts a richer phase diagram and supports a plethora of topo-
logical phases with a Rashba-Dresselhaus spin-orbit splitting
close to the Fermi level. The unstrained superlattice is an ideal
Weyl semimetal with eight symmetry-related Weyl points at
the Fermi level. It is a promising candidate for the realiza-
tion of the 3D quantum Hall effect [73]. Under compression
through hydrostatic pressure, the system becomes a small-gap
topological insulator close to a Dirac phase as a consequence
of an accidental reduction of the bulk inversion asymmetry.
Further compression of the volume leads to another Weyl
semimetal phase with the same bulk topological properties
as the unstrained superlattice but with different Fermi-arc
connectivities on the surface. Applying compressive uniaxial
strain to the Dirac semimetal phase, the heterostructure goes
through a nodal-line semimetal phase and a topological insu-
lating phase with a single band inversion.

The nodal-line phases found in this work are relevant to
the search for materials with carriers residing in flat energy
bands which can support new correlation-driven collective
phases [32], as recently proposed by some of the present
authors [34]. The nodal-line phases in the HgTe/CdTe su-
perlattices as well as the uniaxially strained HgTe/HgSe
superlattices are promising candidates for the realization and
study of three-dimensional flat bands, which could give rise
to exotic, strongly correlated phases due to an enhancement
of electronic interactions. Motivated by recent experimental
progress in the growth of II-VI strained nanostructures by
molecular beam epitaxy [74,75] and high electron mobility
systems [76,77], the synthesis of core-shell nanowires of the
HgTe-based superlattices is a possible way to create the re-
quired bend to obtain the flat bands. In fact, nanowires of
II-IV semiconductors have recently been fabricated [78,79].
Moreover, the superconductivity induced by the flat bands in
a band-inverted nanowire could be a platform to host topolog-
ical superconductivity and Majorana zero modes.

As another promising research direction, 2D quantum
wells of HgTe/HgSe with a thickness larger than the criti-
cal thickness and sandwiched between CdTe could generate
a topological insulator with multiple band inversions and
host new exotic phases beyond the quantum spin Hall effect.
Experimentally, a challenge will be the fabrication of a suf-
ficiently sharp interface between HgTe and HgSe, since the
system will tend to create a digital alloy. Nonetheless, we
expect a nearly ideal Weyl semimetal phase, which is topo-
logically protected and appears at zero strain, to be achievable
even in the case of a digital alloy.

The data shown in the figures are available at Ref. [80].
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APPENDIX A: COMPUTATIONAL DETAILS

Electronic structure calculations were performed within
the framework of the first-principles density functional theory
based on a plane wave basis set and the projector augmented
wave method using VASP [81] package. The calculation is
fully relativistic by considering spin-orbit coupling (SOC).
A plane-wave energy cutoff of 250 eV has been used. As
an exchange-correlation functional, the generalised gradient
approximation (GGA) of Perdrew, Burke, and Ernzerhof has
been adopted [50]. We have performed the calculations using
6 × 6 × 4 k points centered at � with 144 k points in the BZ
for the superlattice with 24 atoms shown in Fig. 2(a).

The band order and band gap of the bulk have been val-
idated with a meta-GGA approach, which is the modified
Becke-Johnson exchange potential together with local density
approximation for the correlation potential scheme [82]. We
have performed the calculation using MBJGGA with the pa-
rameter CMBJ = 1.11 in order to get the experimental band
ordering for both HgTe and HgSe. The GGA band ordering of
HgSe is �8, �7, and �6 in agreement with the experimental
band ordering. However, the GGA band ordering of the HgTe
is �8, �7, and �6 while the experimental band ordering is
�8, �6, and �7. The electronic properties of the HgTe/HgSe
superlattice are not affected by the use of the GGA since the
bands near the Fermi level of the superlattice are dominated
by the bands associated with �8 which remains unchanged in
both functionals.

The electronic structure calculation of the heterostruc-
ture was performed using both GGA and meta-GGA for the
volume V3 discussed in the main text. Within GGA and meta-
GGA, we obtain the same qualitative results for the volume
V3. Therefore, we considered the GGA exchange-correlation
functional throughout this paper. We study the systems with-
out structural relaxation not to add further degrees of freedom
and complexity to the topological phase diagram.

We extracted the real space tight-binding Hamiltonian with
atom-centred Wannier functions with s-like cation and p-like
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TABLE I. Values of band inversion strength Eg, spin-orbit
constant �SOC and lattice constant a of bulk zinc blende struc-
tures for two different exchange-correlation functionals (GGA and
MBJGGA).

EXC Material Eg (meV) �SOC (meV) a (Å)

GGA HgTe −976 743 6.46
HgSe −1028 219 6.08
HgS −429 117 5.85
CdTe +1119 821 6.60

MBJGGA HgTe −315 708 6.46
HgSe −235 183 6.08
HgS +429 290 5.85
CdTe +1267 801 6.60

anion orbital projections using the VASP2WANNIER90 inter-
face [83]. The topological properties are studied using the
WANNIERTOOLS package [84]. The surface states are obtained
within the iterative Green’s function approach [85]. We used a
denser k-point grid 16 × 16 × 4 to generate the model Hamil-
tonian with the Wannier basis. Since both the (100) and the
(001) surface are polar, the anion and cation terminations
differ from a quantitative point of view including small dif-
ferences in the Fermi level and different number of surface
states. In the main text, we present results for the terminations
that show the best visualizations for our purposes.

APPENDIX B: TOPOLOGICAL BULK PROPERTIES

The bulk properties were analyzed using the experimental
lattice constants of HgX (i.e., X = Te, Se, S) materials with
zinc blende crystal structure. We have calculated the band gap
(Eg), the band order and the spin-orbit coupling (�SOC). The
values are tabulated in Table I. The band inversion between
Hg-s orbital and X -p orbital occurs at the � point which
indicates a topological insulator (T I ) phase in this class of
materials. According to the symmetry of the wave function,
the Hg-s or Cd-s bands are labeled as �6 and the Te-p, Se-p,
or S-p bands split into �8( j = 3

2 ) and �7( 1
2 ) bands with SOC.

We define the following quantities:

�SOC = �8 − �7, (B1)

Eg = �6 − �8, (B2)

which we report in Table I.
In the case of a trivial insulator, the cation s type of bands

lies above the anion p type of bands while the scenario is
opposite for the topological insulating phase. HgTe and HgSe
are topological zero-gap semimetals with positive spin-orbit
gap. However, HgS has a negative spin-orbit gap and it is a
trivial insulator in agreement with experimental results.

The volume can tune the effective spin-orbit gap via the
hopping between d electrons of Hg and p electrons of the
chalchogen atoms. The bare SOC of S is positive, but becomes
negative due to the p-d hopping. However, the spin-orbit
couplings of Te and Se are one order of magnitude larger than
the variation that can be induced by these effects. Therefore
these are not relevant effects in this case.

FIG. 13. (a) Surface band structure of the (001) Te-terminated
surface of the (HgTe)4/(CdTe)4 superlattice. (b) Band structure of
the infinite superlattice in the E -kx-ky space at fixed kz = 0.029 Å−1.
(c) Band structure with nodal points at kz=0.029 Å−1(black) and
gapped at kz = 0.030 Å−1 (red). These four bands are a set of bands
isolated from the rest of the band structure. (d) Nodal lines of the
infinite superlattice at the kz = ±0.029 Å−1 planes.

Another way to tune the effective spin-orbit coupling is
uniaxial pressure, which changes the crystal field energy dif-
ference εx,y-εz, but also in this case, the effect is too small to
change significantly the SOC of Te and Se.

APPENDIX C: NODAL LINE FOR (HgTe)4/(CdTe)4

SUPERCELL

Here we discuss the isoenergetic nodal line present in the
(HgTe)4/(CdTe)4 superlattice. The results are qualitatively
similar to the (HgTe)3/(CdTe)3 results provided in Fig. 4 of
the main text. The band structure projected on the (001) sur-
face shows topological surface states connecting valence and
conduction bands as reported in Fig. 13(a). The band structure
has two isoenergetic circular nodal lines with the same radius
in the planes k∗

z =±0.029 Å−1 as shown in Fig. 13(b) at fixed
kz and in Fig. 13(c) along specific lines through the Brillouin
zone. The nodal-line radius is smaller than in the case of
(HgTe)3/(CdTe)3, as can be seen in Fig. 13(d). Therefore we
expect it to further shrink with increasing number of layers
until it disappears.

APPENDIX D: WEYL SEMIMETAL PHASE IN HgTe/HgSe
AT THE VOLUME V4

Figure 14(a) shows the band structure for the volume V4

along the high-symmetry lines S-�-Z . Considering just the
high-symmetry lines in the k space, the minimum band gap
is 13.2 meV along the �Z direction. A linear dispersion with
gap closing typical of Weyl points is found along the X1-�1-Y1

direction as shown in Fig. 14(b), where �1=(0,0,k∗
z ), X1 =

(0.2π/a, 0, k∗
z ) and Y1 = (0, 0.2π/a, k∗

z ). For the volume V4,
we found that k∗

z = 0.0536 Å−1. The crossing point between
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FIG. 14. Band structure of the HgTe/HgSe infinite superlattice at the volume V4 (a) along the S-�-Z high-symmetry lines. (b) Band
structure in the plane of the Weyl points at kz = k∗

z = 0.0536 Å−1. Band structure projected onto the (c) (100) surface and (d) (001) surface
orientations. Fermi surface of the slab for the (e) (100) surface (f) of the (001) surface orientations. Red means presence of electronic
states while blue means absence of electronic states. (g) Magnification of the previous panel where we can clearly see the Weyl points
and their connectivity. (h) In-plane component of the Berry flux at the kz = k∗

z plane including four Weyl points. The Weyl points located at
(±k‖∗, 0, ±k∗

z ) have chirality −1 (yellow diamond marker), while the Weyl points located at (0, ±k‖∗, ±k∗
z ) have chirality +1 (green circle

marker).

the bands at the Fermi level determines the position of the
Weyl points.

The presence of a topologically protected Fermi arc is a
hallmark of the Weyl semimetal phase. To confirm the topo-
logical nature of the 3D superlattice, we have calculated the
surface electronic states and Fermi arcs for the (100) and (001)
surface orientations considering the notation of the conven-
tional unit cell as shown in Fig. 2(a). The (010) surface is
equivalent to the (100) surface. The band structure of the slab
for the surface orientation (100) with chalcogenides termi-
nation is shown in Fig. 14(c). The topological surface states
connecting the valence and the conduction bands confirm the
topological nature of the system, moreover we have a gapless
point at the coordinates (0, k∗

z ) projected on the 2D BZ of the
slab. The Fermi surface for the slab with surface orientation
(100) is shown in Fig. 14(e). It has six gapless points, four
points with projected coordinates (±k‖∗,±k∗

z ) and monopole
charge +1 and two points with coordinates (0,±k∗

z ) and
monopole charge −2, where k‖∗ = 0.0105 Å−1. Open Fermi
arcs are observed. A clear connectivity between the monopole
charge −2 and one of the monopole charges +1 is visible.
However, the other connectivity is not clearly visible due to
the short distance between the Weyl points for this surface
orientation.

The band structure for the slab with (001) surface orien-
tation is shown in Fig. 14(d). Two gapless points are present

at (k‖∗, 0) and (0, k‖∗). The Fermi surface of the slab with
orientation (001) is shown in Fig. 14(f) and its magnification
is in Fig. 14(g). We can see one closed Fermi surface due to the
bulk topology and the Weyl points around �̄. The Weyl points
with monopole charge +2 are projected at (0,±k‖∗), while
the Weyl points with monopole charge of −2 are projected at
(±k‖∗, 0) with a clear connection between them.

Furthermore, we have calculated the Berry curvature in
the kx − ky plane, at fixed k∗

z = 0.0536 Å−1 around the Weyl
points shown in Fig. 14(h). Looking at the Berry curvature, the
Weyl points with chirality +1 behave as a source, while Weyl
points with chirality −1 as a sink. Due to the absence of trivial
Fermi surfaces, the Weyl phase in multilayer 3D superlattice
could be experimentally detected. It is also noticeable that
the Weyl points are well separated by an in-plane distance
between opposite chiralities of 2.2% of the reciprocal lattice
constant.

APPENDIX E: DIRAC SEMIMETAL OF HgTe/HgSe AT 3%
COMPRESSION

Applying compressive strain along the c axis starting from
superlattice volume V2, the phase is gapless at 3% of strain.
We find a Dirac-like dispersion with a fourfold degeneracy
as we can see in Fig. 15(a). The linear dispersion is clearly
visible along the path X1-�1-Y1 as shown in Fig. 15(b), where
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FIG. 15. Band structure of the HgTe/HgSe superlattice with 3% compressive strain (a) along the high-symmetry lines S-�-Z and (b) in the
plane of the Dirac points at kz = k∗

z = 0.021 Å−1. Band structure for slabs with (c) (100) and (d) (001) surfaces. Fermi surfaces of the slabs
with (e) (100) and (f) (001) surfaces. (g) Magnification of (f). (h) Band structure in the k∗

z =0.021 Å−1 plane.

we have defined �1 = (0, 0, k∗
z ), X1 = (0.1π/a, 0, k∗

z ) and
Y1 = (0, 0.1π/a, k∗

z ) with k∗
z = 0.021 Å−1. The two Dirac

points are located at (0, 0,±k∗
z ).

The electronic states of the slab with (100) surface orien-
tation are shown in Fig. 15(c), while the results for the (001)
surface orientation are presented in Fig. 15(d). The respective
Fermi surfaces are shown in Figs. 15(e) and 15(f). For the
(100) termination, as compared to the volume V2 (see Fig. 8),
we observe that the Fermi circle associated with the surface
Dirac cone is now interrupted by the surface projections of
the infinite superlattice Dirac points at (0,±k∗

z ). This leads to
closed Fermi-arc features characteristic of Dirac semimetals.
For the (001) termination, we find three Fermi rings around
�̄, which is similar to what we see for the volume V2. Notably,
the innermost Fermi ring now has a larger radius revealing the
projections of the Dirac points at �̄. In Fig. 15(g), the band
structure at kz = k∗

z shows the Dirac point.

APPENDIX F: SEMIMETAL WITH PARABOLIC
DISPERSION OF HgTe/HgSe AT 4% COMPRESSION

At 4% compressive strain, the gap along �-Z direction
vanishes and our system becomes metallic as we can see in
Fig. 16(a). The band structure with parabolic behavior along
X1-�-Y1 in Fig. 16(b) confirms the metallicity. Figures 16(c)
and 16(d) show the band structure projected in the (100) and
(001) surface orientations, respectively. The associated Fermi

surface are represented in Figs. 16(e) and 16(f). Figure 16(g)
represents a magnification of the (001) Fermi surface around
the � point. The 3D band structure with parabolic dispersion
is shown in Fig. 16(h) for kz = k∗

z = 0.010 Å−1.
The system shows a coexistence of topological surface

states and metallic states. At this lattice constant, the system
is turning from the DSM phase to a NLSM phase.

APPENDIX G: TOPOLOGICAL INSULATOR PHASE OF
HgTe/HgSe AT 6% COMPRESSION

At 6% of compression, the band inversion between
|3/2,±3/2〉 Se and |3/2,±1/2〉 Te has disappeared as well
as the nodal line. We can still observe a strong Rashba effect
in the valence band which is now at the Fermi level, the
Rashba in the valence band is unusual but was observed in
the literature [86]. Therefore we are left with an insulator
with a single band inversion between the s orbital and the
p orbital as in bulk HgTe with a band gap of 3 meV. As a
consequence, the band crossing is lifted along �S as shown in
Figs. 17(a) and 17(b): the superlattice becomes a TI. This TI
phase is equivalent to the TI phase discussed in the context
of strained HgTe [60]. The surface states of the (100) and
(001) terminations are shown in Figs. 17(c) and 17(d), and the
associated Fermi surfaces are shown in Figs. 17(e) and 17(f).
The 3D band structure is shown in Fig. 17(g).
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FIG. 16. Band structure of HgTe/HgSe superlattice with 4% compressive strain (a) along the high-symmetry lines S-�-Z . (b) and in the
plane of the Dirac points at kz = k∗

z = 0.010 Å−1. Projected surface bands onto the (c) (100) surface and (d) (001) surface orientations. Fermi
surface of the slab for the (e) (100) surface (f) of the (001) surface orientation. (g) Band structure at the kz = k∗

z = 0.010 Å−1 plane.

FIG. 17. Band structure of HgTe/HgSe superlattice with 6% compressive strain (a) along the high-symmetry lines S-�-Z . (b) Wannier
band structure at kz = 0. Projected surface bands onto the (c) (100) surface and (d) (001) surface orientation. Fermi surface of the slab for the
(e) (100) surface (f) of the (001) surface orientation. (g) band structure at the kz = 0 plane.
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CHAPTER 3. ARTICLES COMPOSING THE THESIS WITH SUMMARIES

3.3 PAPER II : Tunable spin polarization and electronic
structure of bottom-up synthesized MoSi2N4 materials

The exciting topic of 2D materials, with extraordinarily rich physics and unique technology appli-

cations, has been made possible by the discovery of graphene and other atomic-thick crystalline

materials[101–108]. Recent reports have described the first chemical vapour deposition synthesis

of a 2D synthetic vdW material, MoSi2N4 [109–111]. This new way of making thin films from the

bottom up is a important step forward in making 2D materials.

In this work, I explore spin-dependent electronic structures of ultra-thin films of recently intro-

duced 2D synthetic materials MSi2Z4 (M = Mo or W and Z = N or As) in 2H phase, first-principles

modeling of layer-dependent stability and valleytronic properties of MoSi2N4 2D materials. The

MSi2N4 monolayers are indirect bandgap semiconductors with a large spin-split state at K

and K′. The monolayer lacks inversion symmetry, so it shows a 100% spin-polarization at K

and K′ and the bands with opposite spin orientation are locked at K and K′ respectively, due

to the presence of time reversal symmetry. In contrast of the K-points the bands at Γ & M are

double degenerate. Once we consider a bilayer, the inversion symmetry is preserved, and as a

consequence, the bands are double degenerate and the net spin polarization of the materials is

zero. The applied electric field has the potential to tune the spin polarization; the presence of the

electric field creates a charge imbalance that breaks local inversion symmetry, pushing the bands

of the second layer downward if the electric field is positive and upward if the electric field is

negative. The separation between spin up and spin down of same layer is known as ∆intra, which

is almost constant under the influence of external electric field. The ∆intra is the splitting same

as the spin-orbit coupling of the materials. Whereas the ∆inter, which represents the separation

of spin up and spin down between the layers, increases linearly. Furthermore, I demonstrate

that the bulk of 2H-MoSi2N4, like the monolayer and bilayer, is thermodynamically stable. It is

possible to grow a 3D counterpart of 2H-MoSi2Z4 compound using bottom-up synthesis methods.

The bandgap decreases as the number of layers increases, and they reach the bulk gap after 8

monolayers, but the nature of the bandgap remains the same (i.e., indirect bandgap). Similarly,

the spin polarization starts decreasing exponentially with an increasing odd number of layers; it

is zero for an even number of layers as it restores the inversion symmetry. Finally, it is noticed

that the nature of bandgap changed from indirect to direct, changing Z: N to As. The monolayer,

bilayer and bulk of MSi2Z4 materials are thermodynamically stable. We have demonstrated the

MSi2Z4 materials are a fantastic materials platform for the valleytronics, optoelectronics, and

Qunatum technology.
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Manipulation of spin-polarized electronic states of two-dimensional (2D) materials under ambient conditions
is necessary for developing new quantum devices with small physical dimensions. Here, we explore spin-
dependent electronic structures of ultra-thin films of recently introduced 2D synthetic materials MSi2Z4 (M =
Mo or W and Z = N or As) using first-principles modeling. Stacking of MSi2Z4 monolayers is found to generate
dynamically stable bilayer and bulk materials with thickness-dependent properties. When spin-orbit coupling
(SOC) is included in the computations, MSi2N4 monolayers display indirect band gaps and large spin-split states
at the K and K ′ symmetry points at the corners of the Brillouin zone with nearly 100% spin polarization. The
spins are locked in opposite directions along an out-of-the-plane direction at K and K ′, leading to spin-valley
coupling effects. As expected, spin polarization is absent in the pristine bilayers due to the presence of inversion
symmetry, but it can be induced via an external out-of-plane electric field much like the case of Mo(W)S2

bilayers. A transition from an indirect to a direct band gap can be driven by replacing N by As in MSi2(N, As)4

monolayers. Our study indicates that the MSi2Z4 materials can provide a viable alternative to the MoS2 class of
2D materials for valleytronics and optoelectronics applications.

DOI: 10.1103/PhysRevB.104.L201112

Introduction. Since the isolation of two-dimensional (2D)
graphene from its parent graphite in 2004 [1–3], a variety
of atomically thin materials have been exfoliated from bulk
layered compounds with electronic states that encompass in-
sulators to semiconductors to semimetals/metals. Prominent
examples include hexagonal boron nitride [4], 2D transition-
metal dichalcogenides (TMDs) [5–12], phosphorene [13,14],
and MXenes [15], among other materials [16]. These 2D
materials offer exciting opportunities for exploring novel elec-
tronic, excitonic, correlated, and topological states under 2D
charge confinement for spintronics, valleytronics, and opto-
electronics applications and developing materials platforms
for high-density devices with minimal physical dimensions.
Stacking, twisting, and straining of such 2D layers to form
moiré superlattices and heterostructures brings unprecedented
possibilities for tailoring properties [16–23]. A common
approach for obtaining 2D materials is exfoliation from appro-
priate 3D layered materials using a top-to-bottom approach.
Finding new 2D materials without parental analogs would
provide a new paradigm for engineering states with diverse
functionalities and offer new pathways for designing synthetic
materials with desirable properties [16–23].

Among the methods of growing materials in a bottom-
up approach is the use of a substrate with strong adatom

*These authors contributed equally to this work.
†bahadur.singh@tifr.res.in

adhesion. This method has shown success in synthesizing
atomically thin films such as silicene [24], germanene [25],
bismuthene [26], and borophene [27]. The stability and mor-
phology of such materials are, however, strongly dependent
on growth conditions due to the presence of dangling bonds
of adatoms that either reorganize to generate complicated
surface morphologies or get oxidized when exposed to air
[28]. An alternate route proposed recently involves passiva-
tion of the high-energy surfaces of materials with elements
that can generate synthetic layered 2D materials [29,30]. By
passivating nonlayered molybdenum nitride with elemental
silicon during chemical vapor deposition growth, large area
(15 mm×15 mm) layered 2D MoSi2N4 materials were syn-
thesized. Importantly, MoSi2N4 shows remarkable properties
such as stability under ambient conditions, a semiconducting
behavior, and high mobility of 270/1200 cm2V−1s−1, which
is better than that of the widely used MoS2 class of 2D
materials [29–32]. MoSi2N4 and its derivative monolayers
host gapped states in a pair of valleys located at the corners
of the hexagonal Brillouin zone (BZ) [33–35]. Due to the
breaking of the spatial inversion symmetry, the spin states in
these monolayers become separated in energy and give rise to
unique spin-valley couplings in the vicinity of the Fermi level
and valley-contrasting Berry curvatures and orbital magnetic
moments, which could potentially enable wide-ranging val-
leytronics and optoelectronics applications [36–42]. Despite
the excellent stability of synthetic MoSi2N4 monolayers under
ambient conditions, it is not clear how their properties evolve
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RAJIBUL ISLAM et al. PHYSICAL REVIEW B 104, L201112 (2021)

in the multilayer and bulk of these bottom-up grown 2D van
der Waals (vdW) materials.

Motivated by the new opportunities offered by a bottom-up
approach, here we report layer-dependent stability and val-
leytronic properties of MSi2Z4 (M = Mo or W, and Z = N
or As) materials. Using density-functional-theory based first-
principles modeling, we show that the MoSi2N4 materials are
dynamically stable up to the bulk limit. The monolayers are
found to exhibit large spin-split states at the BZ corners K and
K ′ with nearly 100% spin polarization, similar to the MoS2

materials class. As expected, the spin splitting is zero in the
bilayer films as the inversion symmetry is restored. However,
spin-splitting can be switched on and manipulated in the bilay-
ers via an out-of-plane electric field. An indirect to direct band
gap transition in MSi2Z4 is driven by the replacement of N by
As. In addition to highlighting the unique thickness-dependent
properties of MSi2Z4, our study demonstrates the value of a
bottom-up approach for synthesizing viable 3D bulk materials
based on synthetic 2D vdW materials.

Methods. Electronic structure calculations were performed
within the density functional theory (DFT) framework using
the Vienna Ab initio Simulation Package (VASP) [43,44]. The
projector augmented wave (PAW) pseudopotentials were used
with the generalized-gradient approximation (GGA) [45] for
treating exchange-correlation effects. A plane-wave cutoff of
500 eV was used in all calculations. Surface BZ integra-
tions were performed using a 10×10×1 Monkhorst-pack k
grid. Effects of spin-orbit coupling (SOC) were included self-
consistently. The structural parameters were optimized until
the residual forces on each atom became less than 10−4 eV/Å,
and these optimized parameters were used in the calculations.
An energy tolerance of 10−8 eV was used. The thin-film
calculations were performed using a slab geometry with a
vacuum layer of 20 Å to eliminate spurious interactions be-
tween the periodically repeated 2D layers. Phonon dispersion
curves were obtained within the density functional perturba-
tion theory (DFPT) framework using PHONOPY code [46] with
a 4×4×1 supercell. The robustness of our GGA-based results
was assessed using the optPBE-vdW correlation functional
[47–51] as well as the more advanced HSE hybrid functional
[52], see Supplemental Material (SM) [53] for details. PYP-
ROCAR [54] and PYMATGEN [55] packages were used for band
structure illustrations.

Crystal structure and dynamical stability of MoSi2N4.
Monolayer MoSi2N4 crystallizes in the hexagonal lattice
with space group D1

3h (P6̄m2, No. 187). It involves strongly
bonded, seven-layer stacking in the order N-Si-N-Mo-N-Si-N
that can be viewed as a sandwich involving an MoN2

layer and two Si-N bilayers [Figs. 1(a)–1(e)]. This struc-
ture preserves trigonal C3v and Mz(z → −z) mirror-plane
symmetries but breaks the inversion symmetry. The mono-
layers can be stacked in the -A-B-A- order to realize a
2H bilayer structure similar to that of MoS2. Unlike the
monolayer, bilayer MoSi2N4 realizes the higher-symmetry
group D4

6h (P63/mmc, No. 194) [29,56], restoring the spa-
tial center of inversion, which is marked by the red dot
in Fig. 1(b). The equilibrium interlayer distance (d0) be-
tween the Mo1 and Mo2 sublayers in the bilayer is found
to be 10.65 Å. Notably, the 2H-bilayer structure can be
repeated to realize the bulk MoSi2N4 materials like the

FIG. 1. Atomic arrangement of (a) four and (b) two layers of
MoSi2N4 with AB stacking. The dashed box identifies the bulk unit
cell of 2H-MoSi2N4. The red dot in the middle of the van der Waals
gap in (b) marks the spatial center of inversion, which is absent in the
monolayer. (c) Top view of monolayer MoSi2N4. (d) Mo-N trigonal
and (e) Si-N tetrahedral local coordination structures in MoSi2N4

monolayers. The calculated phonon dispersion of (f) monolayer
(1ML), (g) bilayer (2ML), and (h) bulk MoSi2N4.

transition metal dichalcogenides. The optimized structural
parameters and Wyckoff positions for bulk MSi2Z4 are listed
in Table I.

In order to showcase the stability of the monolayer and
multilayer MoSi2N4 films, we present the associated phonon
dispersions in Figs. 1(f)–1(h). The absence of imaginary
phonon frequencies in the entire hexagonal BZ confirms the
dynamical stability of these structures. Notably, the bulk
phonon spectrum also lacks imaginary phonon frequencies.
Our computations in which van der Waals interactions beyond
the GGA are included yield similar results and affirm the
robustness of our conclusions concerning the stability in all
cases [53]. We thus infer that stable 3D bulk of MoSi2N4 can
be realized experimentally [57].

Spin-resolved electronic structure of monolayer MoSi2N4.
The orbitally resolved band structure of monolayer MoSi2N4

TABLE I. Calculated lattice parameters for 2H-bulk MoSi2N4,
MoSi2As4, WSi2N4, and WSi2As4 using the GGA and optPBE-
VDW density functionals. a and c are the hexagonal lattice constants
and uSi, uN/As, and vN/As are the internal parameters associated with
Wyckoff positions 4e (0, 0, uSi ), 4 f ( 1

3 , 2
3 , uN/As), and 4e (0, 0, vN/As),

respectively. The subscripts identify the atoms.

a (Å) c (Å) uSi uN/As vN/As Eg (eV)

MoSi2N4 GGA 2.910 21.311 0.1095 0.1915 0.0859 1.655
vdW 2.932 20.772 0.1045 0.1889 0.0804 1.665

MoSi2As4 GGA 3.622 27.617 0.1106 0.1960 0.0703 0.508
vdW 3.681 27.408 0.1079 0.1950 0.0670 0.447

WSi2N4 GGA 2.914 21.439 0.1099 0.1914 0.0865 1.970
vdW 2.935 20.763 0.1043 0.1888 0.0805 1.985

WSi2As4 GGA 3.628 27.940 0.1121 0.1967 0.0723 0.207
vdW 3.685 27.397 0.1079 0.1952 0.0672 0.208
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FIG. 2. Orbitally resolved band structure of monolayer MoSi2N4

(a) without and (b) with spin-orbit coupling (SOC). Spin-resolved
bands around K along the �-K direction for (c) Ez = 0 eV/Å and (d)
Ez = 0.03 eV/Å with SOC. The color bar in (d) denotes the degree
(in percent) of spin polarization. (e) Spin-polarization decay profile
of the states at the top of the valence band around the K point. Large
spin polarization (>99.9%) persists over a wide momentum range
along the �-K direction. (f) Schematic representation of spin-valley
locking in monolayer MoSi2N4. Red (blue) color represents spin
pointing out of (into) the plane.

without SOC is presented in Fig. 2(a). An indirect band gap
of 1.778 eV is obtained between the valence band maximum
(VBM) and conduction band minimum (CBM), which are
located at the � and K/K ′ points, respectively. The energy
difference, ��K , between the top of the valence bands at
the � and K/K ′ points is 322 meV, and it can be tuned by
strain to realize a direct band gap at the K/K ′ point [33].
The Bloch wave functions at the VBM and CBM edges are
composed of dz2 states of the Mo atoms. All states remain
twofold spin degenerate without the SOC as seen in Fig. 2(a).
When SOC is included, the top of the valence bands displays
a large spin-splitting of 129 meV at K due to the broken
spatial inversion symmetry. [Since K is not a time-reversal
invariant momentum (TRIM) point, the spin-split states at K
are not twofold degenerate.] In contrast, the bands at the � and
M points remain twofold spin degenerate as they are TRIM
points [see Figs. 2(b) and 2(c)]. The indirect nature of the
monolayer band gap, however, remains preserved with a value
of 1.775 eV (2.342 eV) with GGA (HSE).

Our analysis reveals that the two spin-split states at K have
nearly 100% out-of-plane (Sz) spin polarization. This can be
attributed to the presence of the horizontal mirror plane Mz in
monolayer MoSi2N4 that ensures that the Sx and Sy compo-
nents of spin are zero. The spin-split states at K and K ′ are
oppositely polarized since they form a Kramers pair obeying
the time-reversal symmetry constraint E (�k,↑) = E (−�k,↓).
Figure 2(d) shows the evolution of the degree of spin-
polarization of states at the top of the valence band as we go
away from the K point. Spin polarization decreases slightly to
99.9% for the change a momentum �k = 0.553 Å−1 (∼38%
of the �-K distance), demonstrating its robustness. The spin
texture of the state at the top of the valence band in the hexag-
onal BZ is shown schematically in Fig. 2(f). The preceding

FIG. 3. (a) Band structure of bilayer MoSi2N4 in the absence
of external electric field (Ez = 0). (b) Same as (a) but for Ez =
0.03 eV/Å. Spin splitting in the band structure is evident. (c) Evolu-
tion of the top four valence bands around the K point with varying
external electric field strength. The color scale gives the degree (in
percent) of spin-polarization of the bands. Markings 1 and 2 identify
the doublets associated with the first and second layers of the bilayer.
(d) Degree of spin-splitting at the K point as a function of Ez. Blue
(red) markers show the intralayer (interlayer) �intra (�inter) compo-
nents of the spin splitting. (e) A schematic of the electric-field effect
on the bilayer band structure.

spin behavior is indicative of spin-valley locking in MoSi2N4

monolayers, which is similar to that observed previously in
the TMDs [11].

We emphasize that the Zeeman-type out-of-plane spin
polarization in the vicinity of K points in the MoSi2N4 mono-
layer is tied to the crystal structure of the film, and therefore
it cannot be destroyed or manipulated with an out-of-plane
electric field Ez. We have verified this property by calculat-
ing the spin-resolved band structure in the presence of an
external electric field applied perpendicular to the monolayer.
Figure 2(d) shows the results for Ez = 0.03 eV/Å. Both the
spin-splitting and spin-polarization features are seen to be
retained.

Tuning spin-structure of bilayer MoSi2N4 via an external
electric field. Figure 3(a) shows the band structure of bilayer
MoSi2N4. Similar to the monolayer case, the bilayer is an
indirect band gap semiconductor with the VBM and CBM
edges located at the � and K/K ′ points, respectively. How-
ever, in contrast to the monolayer, the inversion symmetry
is now restored and, as a result, all bands become twofold
spin degenerate. A small splitting at the � point is driven by
the interlayer interactions between the two MoSi2N4 layers,
whereas the splitting at the K/K ′ points is due to the SOC. The
inversion symmetry of the bilayer, however, can be broken
by an out-of-plane external electric field Ez, which lifts the
spin degeneracy at the non-TRIM K/K ′ points, allowing the
manipulation of spin-split states at the top of the valence
bands.

Figure 3(b) shows the spin-resolved bilayer band structure
for Ez = 0.03 eV/Å. The spin-split states are now seen to
be resolved at the K and K ′ points with opposite spin po-
larizations for the top bands. There are four spin-polarized
valence bands near the Fermi level, two of which originate
from the first layer whereas the other two come from the
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second layer of the bilayer. Evolution of these four bands
with Ez is shown in Fig. 3(c). To quantify the spin split-
ting, we introduce the quantities �intra and �inter. Here, �intra
is defined as the energy difference between first (second)
layer spin-up and first (second) layer spin-down states, while
�inter is the energy difference between the first-layer spin-up
and second-layer spin-down states. �intra thus captures the
effect of the SOC on spin splitting, whereas �inter codes
the effect of the potential difference between the two lay-
ers caused by the external field. When Ez = 0.01 eV/Å, the
spin-split doublet from the second layer lies at an energy
that is slightly lower than that for the first-layer doublet, so
that �inter is smaller than �intra. The two topmost valence
states are thus composed of states belonging to two differ-
ent layers of the bilayer. When Ez exceeds a critical value,
�inter becomes larger than �intra and the two topmost va-
lence states arise from the same layer. �intra and �inter are
shown as a function of Ez in Fig. 3(d). �inter varies linearly
with Ez while �intra shows negligible field dependence. A
crossover between �intra and �inter is observed around Ez =
0.012 eV/Å. Notably, the spin polarization of the topmost
valence states at the K/K ′ points remains nearly 100% in the
presence Ez.

We find that the applied electric field changes the splitting
(�inter) between the states coming from different layers in the
bilayer. In contrast, as we would expect, the effect of the field
on the spin-splitting as well as the degree of spin-polarization
of the states coming from the same layer is negligible. Sign
of the spin-polarization of states at K/K ′ points is electric-
field-direction dependent. Evolution of the states at the K
point under positive and negative field directions is shown
schematically in Fig. 3(e). These results provide a clear path-
way for manipulating the spin states in bilayer MoSi2N4.
Electric-field-dependent evolution of the bilayer states for all
the MSi2Z4 materials we investigated falls along the preced-
ing lines. Notably, the values of the electric field required to
manipulate the states here are much lower than in MoS2 [11].

Layer-dependent states and spin polarization. We now turn
to discuss the evolution of the band gap and spin-polarization
of multilayer MoSi2N4. Figure 4(a) shows the calculated
bulk band structure using our optimized lattice parameters
(Table I). It has an indirect bandgap of 1.655 eV (2.221 eV)
within the GGA (HSE). The wave functions at the CBM
edge at K and the VBM edge at � consist of Mo dz2 states
similar to the monolayer and bilayer cases. The bands along
the �-A direction remain weakly dispersive as a result of weak
interlayer coupling. However, the SOC-split states can be seen
at the K and H points. Evolution of the band gap as a function
of the layer thickness is shown in Fig. 4(b). The band gap
decreases slightly with increasing number of MoSi2N4 layers
and converges to the bulk value for the eight-layer film. This
insensitivity of the bandgap to layer thickness indicates that
the weak van der Waal’s coupling dominates the interlayer
interactions in MoSi2N4.

Figure 4(c) shows the evolution of spin-polarization of
valence state as a function of the number of layers. Since the
films with an even number of MoSi2N4 layers are inversion
symmetric, these films display zero spin-polarization. Spin-
polarization in films with an odd number of layers varies as
1/N , where N is the number of layers.

FIG. 4. (a) Orbitally resolved band structure of bulk MoSi2N4 in
the bulk hexagonal Brillouin zone. (b) Band gap and (c) average spin-
polarization of the top layer as a function of the number of layers.

Band structure of MSi2Z4 materials. We now discuss the
dynamical stabilities and band structures of other MSi2Z4 thin
films. Figures 5(a)–5(c) show the phonon spectra of mono-
layer, bilayer, and bulk MoSi2As4. No imaginary branches
in the BZ are found, indicating stability of these films.
Band structures of MoSi2As4 films and bulk are presented
in Figs. 5(d)–5(f). In contrast to MoSi2N4, the monolayer
MoSi2As4 is a direct band gap semiconductor with a band gap
of 0.508 eV (0.707 eV) within the GGA (HSE) at the K/K ′
point. The band gap is found to remain direct as the thick-
ness increases from monolayer to bulk [58]. The interlayer

FIG. 5. Calculated phonon spectrum of (a) monolayer (1ML),
(b) bilayer (2ML), and (c) bulk MoSi2As4. Orbitally decomposed
band structure of (d) monolayer, (e) bilayer, and (f) bulk MoSi2As4.
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coupling strength in MoSi2As4 is larger than in MoSi2N4, and
the location of the direct band gap changes from the K to
the H point in going to the bulk limit [Fig. 5(f)]. MoSi2As4

monolayers also host nearly 100% spin-polarized states.
The phonon spectra and orbitally resolved band structures

of WSi2N4 and WSi2As4 are presented in the SM [53]. These
systems are also stable up to the bulk limit and support highly
spin-polarized states similar to the cases of MoSi2N4 and
MoSi2As4. However, the W atoms with their stronger SOC
yield increased spin splittings at the K/K ′ points in these
materials.

Conclusion. Using first-principles modeling, we have car-
ried out a systematic thickness-dependent investigation of
the dynamical stabilities and electronic and spin-polarization
properties of the MSi2Z4 (M = Mo or W and Z = N or As)
compounds. These materials are found to be dynamically
stable from the monolayer to the bulk limit, indicating that
multilayer films and bulk of such bottom-up synthesized 2D
vdW materials should be possible to realize experimentally.
Our analysis reveals that the monolayers host two nearly
100% out-of-the-plane spin-polarized states at the K points
in the BZ with Zeeman-type spin splittings. The spin po-
larization is reversed at the K ′ points while the high degree
of spin polarization remains preserved. The spin polariza-
tion of the states in the bilayers, which is zero due to the
restoration of the inversion symmetry in the pristine bilay-
ers, can be switched on and manipulated using an external
electric field. MoSi2N4 and WSi2N4 exhibit a robust indirect
bandgap from the monolayer to the bulk limit. In contrast,

MoSi2As4 and WSi2As4 monolayers display a direct band
gap at the K/K ′ point, which is preserved from the mono-
layer to the bulk. Our study provides insight into the band
gap, spin-polarization, and spin-valley locking of electronic
states in MSi2Z4 materials class, and indicates that these
materials could provide a viable materials platform as an
alternative to the MoS2 materials that are currently in com-
mon use for spintronics, valleytronics, and optoelectronics
applications.
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With the discovery of graphene, the field of condensed matter physics has entered the era of

2D materials. Since then, 2D materials have received considerable research interest due to the

exotic and versatile electronic characteristics and rich physics they exhibit. The quantum spin

Hall (QSH) phase is one such example; it appears in topologically non-trivial 2D insulators and

protects helical edge states from counter-propagation due to time reversal symmetry. Spintronic

devices and other energy-conserving transport applications can be improved using this electronic

property of QSH insulators.

I predicted 1T′-MSi2Z4, a new thermodynamically stable phase of MSiZ4 (M = Mo, W, and Z = P,

and As) materials, in this work. In contrast to the trigonal prism of the 2H phase, the M atoms

in 1T′-MSi2Z4 materials form an octahedron with six Z atoms. This disordered phase leads to a

different M-M length, which forms the zigzag along the y-axis if periodic doubling of the cell is

along the x-axis. Absence of the negative phonon mode in the phononic-bandstructure indicates

it is thermodynamically stable phase,furthermore, the molecular-dynamics calculation at 300K

shows an insignificant change in the free energy, which also confirms no spontaneous bond

breaking of the system. The electronic bandstructure of the monolayer 1T′-MSi2Z4 phase reveals

that it is a large-gap quantum spin Hall insulator; band inversion occurs near the Gamma

point between M d-orbitals and Z p-orbitals; and the topological invariant is Z2 = 1. One of the

important signatures of the QSH insulator is the topologically protected helical edge states, which

connect the conduction and the valence bands. Using green function method implemented in

wanniertools[112] code, we have calculated the edge state, and the surface projected on (010)

surface shows a symmetry protected Dirac cone at the Γ point. Also, since the spin Berry curvature

is mostly localized near the spin-orbit induced hybridization gap, the spin-hall conductivity of

the material is high near the gap. The spin-Hall conductivity is not perfectly quantized due

to the conservation of the z component of the spin (sz) .Finally, we show how the electric field

influences the topological phase transition: the bandgap start decreases with increasing electric

field, becomes zero at a critical electric field, and increases with further electric field increases.

This is a key aspect of the quantum spin Hall transistor. The synthetic MSi2Z4 can reduce the

exofoliation related defected of other materials also it has large gap then other TMDs, Therefore,

the monolayer of 1T′-MSi2Z4 could be a viable material platform for quantum information and

quantum technologies.
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Quantum spin Hall (QSH) insulators exhibit spin-polarized conducting edge states that are topologically pro-
tected from backscattering and offer unique opportunities to address fundamental science questions and device
applications. Finding viable materials that host such topological states, however, remains a continuing challenge.
Here, by using in-depth first-principles theoretical modeling, we predict large band gap QSH insulators in the
recently synthesized bottom-up two-dimensional MSi2Z4 (M = Mo or W and Z = P or As) material family
with 1T ′ structure. A structural distortion in the 2H phase drives a band inversion between the metal (Mo/W)
d and p states of P/As to realize spinless Dirac states without spin-orbit coupling. When spin-orbit coupling is
included, a hybridization gap as large as ∼204 meV opens up at the band-crossing points, realizing spin-polarized
conducting edge states with nearly quantized spin Hall conductivity. We also show that the inverted band gap
can be tuned with a vertical electric field, which drives a topological phase transition from the QSH to a trivial
insulator with Rashba-like edge states. Our study identifies the two-dimensional MSi2Z4 material family in the
1T ′ structure as large band gap, tunable QSH insulators with protected spin-polarized edge states and large spin
Hall conductivity.

DOI: 10.1103/PhysRevB.106.245149

I. INTRODUCTION

Following the early studies of two-dimensional (2D) ma-
terials [1–4], Kane and Mele demonstrated the existence of a
quantum spin Hall (QSH) state in graphene in the presence
of symmetry-allowed spin-orbit coupling (SOC) [5,6]. The
QSH state features one-dimensional (1D) conducting helical
edge modes in insulating bulk due to the nontrivial wind-
ing of their electronic states [5–13]. The helical edge modes
carry symmetry-protected spin-polarized electronic states that
hold immense potential for designing high-efficiency quantum
electronic devices with low dissipation [14–16]. The QSH
state has been theoretically predicted in a variety of 2D mate-
rials and quantum well structures. However, its experimental
realization has so far been demonstrated only in HgTe/CdTe
and InAs/GaSb quantum wells and thin films of 1T ′-WTe2,
HgPt2Se3, and Bi4Br4 at ultralow temperatures [17–23]. A
common approach to realize the QSH state is to reduce the
thickness of three-dimensional (3D) Z2 topological insulators
to drive a 3D to 2D crossover and a band inversion in the
surface states. This method has successfully predicted the
QSH state in thin films of Z2 topological insulators [12,13,24–
27]. The process of fine tuning quantum well structures or

*rislam@magtop.ifpan.edu.pl
†autieri@magtop.ifpan.edu.pl
‡bahadur.singh@tifr.res.in

manipulating film thickness to generate an inverted hybridiza-
tion gap in the surface spectrum [12,13,24–31], however, can
modify material properties, leading to complicated electronic
structures and quenching of the quantized spin Hall conduc-
tance. It is important, therefore, to look for new strategies for
designing 2D materials with large inverted band gaps in which
the QSH state can survive at room temperature.

Here, we present an in-depth first-principles analysis with
optimized crystal structures to demonstrate the presence of
the QSH state in recently introduced 2D materials that can be
realized via a bottom-up approach without parental analogs
[32–34]. These synthetic 2D materials provide an emerg-
ing paradigm for engineering designer states with diverse
functionalities. Specifically, 2D MoSi2N4 materials were syn-
thesized by passivating high-energy surfaces of nonlayered
nitrides with Si with remarkable stability under ambient con-
ditions [34]. They show semiconducting behavior with high
carrier mobility and feature spin-valley locking, gating and
thickness-tunable spin polarization, and 2D magnetism and
a correlation-driven quantum anomalous Hall state, among
other properties depending on their compositions [35–38].
Theoretically predicted properties of these materials are re-
ported to be superior to those of the widely used 2D transition
metal dichalcogenides (TMDs) [34,35,39,40]. It is not clear,
however, if these materials can form polytypic structures and
realize a QSH state similar to the 2D TMDs. Here, based on
our molecular dynamics simulations and phonon calculations,
we predict that the 1T ′ phase of MSi2Z4 (M = Mo or W

2469-9950/2022/106(24)/245149(8) 245149-1 ©2022 American Physical Society
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and Z = P or As) is stable and realizes a QSH state via a
structural distortion from the 2H to 1T ′ phase. Our calculated
inverted band gap (∼204 meV) and spin Hall conductivity
(SHC; ∼1.3e2/h) are higher than the top-to-bottom grown 2D
TMDs. We also show that the QSH state of MSi2Z4 can be
switched off by driving a topological phase transition via an
applied (vertical) electric field. Our study indicates the robust
presence of a switchable QSH state in a polytypic structure of
bottom-up grown 2D materials with excellent topological and
spintronics properties.

II. METHODOLOGY

Electronic structure calculations were performed within
the framework of the density functional theory based on the
projector augmented wave method using the VASP [41,42]
code. The self-consistent relativistic calculations were per-
formed with a plane wave cutoff energy of 500 eV and
a �-centered 6 × 12 × 1 k mesh for Brillouin zone (BZ)
sampling. We used the generalized gradient approximation
(GGA) to include exchange-correlation effects [43]. The
structural parameters were fully optimized until the residual
forces on each atom were less than 0.001 eV/Å and the
total energy was converged to 10−8 eV. For a more accurate
treatment of electronic correlations, we also employed the
Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with 25%
exact Hartree-Fock exchange [44]. Phonon dispersions were
calculated with the density functional perturbation theory us-
ing the PHONOPY code [45] with a 2 × 4 × 1 supercell. The ab
initio molecular dynamics simulations were performed with a
Nosé-Hoover thermostat at a constant temperature of 300 K
with a time step of 2 fs [46]. We generated material-specific
tight-binding Hamiltonians with M d , Si s and p, and Z p
orbitals using the VASP2WANNIER interface [47], which was
also used to elucidate topological properties using the WAN-
NIERTOOLS package [48,49].

III. RESULTS AND DISCUSSION

A. Structural properties

The pristine phase of monolayer MSi2Z4 belongs to the
1H crystal structure family of 2D materials with space group
D1

3h (P6̄m2, No. 187) [34,35]. Figure 1(a) shows the crystal
lattice of MoSi2P4 as an exemplar system. The structure is
layered along the hexagonal c axis and consists of MoP2

layers sandwiched between two SiP layers. The Mo atoms are
located at the center of the trigonal prismatic building block
with six P atoms and the MoP2 layer bonded vertically with
the SiP layer [34]. In the 1T ′ phase of MoSi2P4 [Fig. 1(b)], the
three atomic layers are locked in such a way that the position
of Mo atoms is at the center of a 60◦ twisted trigonal prismatic
building block with six P atoms. This creates the octahedral
local coordination of Mo atoms with the six P atoms in the
MoP2 layer but with different Mo-Mo bond lengths to form
zigzag atomic chains along the y axis and period doubling
along the x axis. This structural distortion lowers the hexag-
onal 1H symmetry to 1T ′ monoclinic symmetry with space
group P21/m (No. 11) and forms a rectangular primitive unit
cell, as shown in Fig. 1(b). Importantly, the 1T ′ structure
possesses the inversion symmetry I , in contrast to the 1H

FIG. 1. Crystal structure of a MoSi2P4 monolayer in the (a) 1H
and (b) 1T ′ phases. The unit cell of the 1H phase is indicated by
the red rhombus in (a), and that of the 1T ′ phase is shown as a
blue rectangle in (b). The Mo atoms are distorted from their original
hexagonal positions to form 1D zigzag chains along the y axis in the
1T ′ phase, shown by dashed black lines in (b). (c) The associated
2D Brillouin zones (BZs) with high-symmetry points marked. The K
points of the hexagonal BZ (red) fold onto the �-Y line of the 1T ′

rectangular BZ (blue). (d) Phonon dispersion in 1T ′-MoSi2P4. (e)
Total free energy of monolayer 1T ′-MoSi2P4 as a function of time
step during the molecular dynamics simulation at T = 300 K.

phase. Figure 1(c) illustrates the BZs associated with both the
1H and 1T ′ phases, where high-symmetry points are marked
in both the pristine hexagonal and reduced rectangular BZs.

To determine the stability of polytypic structures, we
present the calculated phonon dispersion of monolayer 1T ′-
MoSi2P4 in Fig. 1(d). The absence of imaginary frequency
modes throughout the BZ indicates the dynamical stability of
the 1T ′ phase. The structural stability is further substantiated
by performing ab initio molecular dynamics simulations at
300 K. Variation of the free energy as a function of the simula-
tion time is presented in Fig. 1(e). The energy oscillates near a
mean value of 6.40 eV/atom. However, the monolayer struc-
ture remains intact at the end of the simulations without any
new reconstruction of the lattice, indicating thermal stability
of the monolayer. We have also checked the thermodynamic
stability of other members of the 1T ′-MSi2Z4 family and
found them to be stable (see the Supplemental Material [50]).
Like the experimentally realized 1T ′ TMDs, these results
indicate that 1T ′-MSi2Z4 is stable and it should be possible
to synthesize it experimentally under appropriate chemical,
thermal, or mechanical conditions [51,52]. On comparing the
total energies of the 1T ′, 1H , and 1T phases of MSi2Z4, we
find that the 1H phase is the most stable, followed by the
1T ′ phase. The 1T phase is unstable and relaxes to the 1T ′
phase. The calculated energy difference between the 1H and
1T ′ phases is 55, 24, 47, and 11 meV/atom for MoSi2P4,
MoSi2As4, WSi2P4, and WSi2As4, respectively. These results
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FIG. 2. Band structure of 1T ′-MoSi2P4 (a) without and (b) with spin-orbit coupling using the HSE hybrid functional. The horizontal
dashed line marks the Fermi level. Orbital compositions of bands are shown using different colors. Insets show close-ups of bands near the �

point at the Fermi level. The inverted band gap δ and global band gap Eg are marked. (c) Close-ups of bands obtained with HSE and GGA
functionals along the Y -�-Y line. (d) Location of valence and conduction band crossings at the Fermi level without spin-orbit coupling in the
2D Brillouin zone. (e) E -kx-ky space rendition of spin-orbit-coupling-driven electronic structure crossover in monolayer 1T ′-MoSi2P4 with the
HSE functional.

indicate that the 1T ′ phase can be realized under selective
growth conditions, as has been done, for example, for the
realization of the 1T ′ phase of MoS2 [51,52].

B. Bulk electronic structure and band inversion

We now discuss the orbital-resolved electronic structures
computed with GGA and HSE functionals to delineate the
topological states of various 1T ′-MSi2Z4 compounds. Fig-
ures 2(a) and 2(b) show representative HSE band structures
of 1T ′-MSi2Z4, taking MoSi2P4 as an example. The band
structure is semimetallic with isolated spinless Dirac-type
crossings in the �-Y directions without SOC [Fig. 2(a)].
Adding relativistic effects opens a hybridization gap at these
band crossings, thereby realizing a semiconducting state
with a global band gap EHSE

g of 86 meV. The valence
and conduction band extrema are located away from time-
reversal-invariant momentum (TRIM) points at � = ±0.103
Å−1 [red dots in Fig. 2(d)] on the �-Y line, forming a
camelback-like band structure near the � point [53,54]. Such
a band structure generally points to a nontrivial topology. We
find that the p states of P lie below the Mo d states with
a clear band inversion at the � point, strong hybridization
between the P and Mo states notwithstanding. This unusual
orbital ordering is driven by a structural transition from 1H
to 1T ′, which lowers the energy of the transition metal states
and results in a large inverted band gap δHSE of 842 meV at
the � point that is larger than the existing 1T ′ QSH materials.

(The inverted band gap δ refers to the energy gap between
the highest occupied P p and the lowest unoccupied Mo d
states at the � point; see Fig. 2.) The calculated electronic
and structural parameters for our investigated 1T ′-MSi2Z4

materials are listed in Table I, with band structures shown
in the Supplemental Material. Since monolayer 1T ′-MSi2Z4

respects inversion symmetry, we calculated the Z2 invariant
from the parity eigenvalues of the occupied states at the TRIM
points and found Z2 = 1 (nontrivial) in all investigated materi-
als. We thus predict the 2D 1T ′-MSi2Z4 monolayers are QSH
insulators.

We present the band structures obtained using HSE06 (red
curves) and GGA (blue curves) along the Y -�-Y directions in
Fig. 2(c) to estimate the band gap corrections in 1T ′-MSi2Z4

monolayers. The hybrid functionals are generally considered
to be more accurate in estimating band bending, band order,
and band gap in comparison to the GGA. While the HSE06
is seen to correct the inverted band gap at the � point in
comparison to the GGA, the overall band structures obtained
with the two functionals are topologically equivalent to a band
inversion at the � point. Figure 2(e) considers the formation
of the QSH state in 1T ′-MSi2Z4 monolayers by switching off
the SOC. Specifically, the gapless band crossings are found at
finite momenta along the Y -�-Y line at the � points. Switch-
ing on the SOC hybridizes these band crossings to generate
the QSH state. These results imply that the band inversion in
2D 1T ′-MSi2Z4 emerges via the structural transition, while
the SOC is responsible for forming the QSH state.
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TABLE I. Calculated structural and electronic parameters of 2D 1T ′-MSi2Z4 (M = Mo or W and Z = P or As). The structural parameters
include in-plane lattice constants a and b and the interatomic separations d1 and d2 in the transition-metal zigzag chain. The electronic
parameters presented are the global band gaps obtained with GGA (EGGA

g ) and HSE (EHSE
g ) and the inverted band gaps at the � point calculated

with GGA (δGGA) and HSE (δHSE). The topological state is indicated: QSH denotes the quantum spin Hall state. See text for details.

TopologicalBand gap (meV) Inverted gap (meV)
invariant Topological

Material a (Å) b (Å) d1 (Å) d2 (Å) EGGA
g EHSE

g δGGA δHSE Z2 state

MoSi2P4 6.141 3.430 2.945 4.194 −10.4 86.2 398 842 1 QSH
MoSi2As4 6.388 3.579 3.012 4.362 −39.5 109.2 391 800 1 QSH
WSi2P4 6.129 3.441 2.939 4.133 −23.2 198.5 712 1079 1 QSH
WSi2As4 6.364 3.589 2.993 4.368 −0.07 204.3 675 1058 1 QSH

C. Edge states and spin Hall conductivity

The appearance of spin-polarized edge states protected by
the time-reversal symmetry is the hallmark of the QSH state.
To highlight these states, we plot the calculated edge-state
spectrum and the associated spin texture of MoSi2P4 in Fig. 3.
Figure 3(a) depicts the terminated left and right edges along
the y axis with schematics of the nontrivial states of our xy
monolayer (x remains the periodic direction). Since the two

FIG. 3. (a) Lattice structure of semi-infinite one-dimensional
edges of 1T ′-MoSi2P4. Spin-polarized edge states are shown
schematically on the left and right edges. (b) Electronic spectrum
of the (010) edge. Nontrivial edge states can be seen in the 2D
bulk band gap. (c) Calculated left edge state’s spin texture in 2D
1T ′-MoSi2P4. Red (blue) indicates up (down) spin polarization.
(d) and (e) Schematic representations of the various nontrivial edge
states (red lines) connecting the bulk valence and conduction bands
(light blue shading) between the two time-reversal-invariant points �

and X .

edges are related by inversion symmetry, we display states for
the left edge in Figs. 3(b) and 3(c). A pair of counterpropagat-
ing states with opposite spin polarization are seen in the band
gap with a Dirac point at �. The nontrivial edge states span the
whole �-X line to connect the bulk valence and conduction
bands, as shown schematically in Fig. 3(e). Similar results are
found for other 1T ′-MSi2Z4 materials.

Having established the QSH state in 1T ′-MSi2Z4 mono-
layers, we turn to discuss their intrinsic SHCs. We obtain the
SHC σ z

xy using the Kubo formula [55–59]:

σ z
xy = −e2

h̄

1

A

∑

k

�z
xy(k), (1)

where

�z
xy(k) =

∑

n

fn(k)�z
n,xy(k) (2)

is the k-resolved spin Berry curvature and

�z
n,xy(k) = h̄2

∑

m �=n

−2Im〈nk|Ĵ z
x |mk〉〈mk|v̂y|nk〉

(Enk − Emk )2
(3)

is the band-resolved spin Berry curvature.
In Eqs. (1)–(3), A is the area of the 2D unit cell, and |nk〉

denotes the Bloch state with energy Enk and occupation fn(k).
The spin current operator Ĵ z

x = 1
2 {σ̂z, v̂x}, with σ̂z being the

spin operator and v̂x being the velocity operator. The SHC σ z
x,y

represents the spin current along the x direction generated by
the electric field along the y direction, where the spin current
is polarized along the z direction. We used a dense grid of
106 k points in conjunction with maximally localized Wannier
functions to evaluate the spin Berry curvature and SHC. Fig-
ure 4(a) presents the calculated SHC as a function of the Fermi
energy. The SHC is maximum near the band-crossing points
(marked by the dashed line), reaching a value of ∼1.3 e2

h ,
which is much larger than the 1T ′ TMDs with the QSH
state. The amplitude of the SHC decreases quickly away from
the band-crossing points. This can be further seen from our
band- and k-resolved spin Berry curvature in Fig. 4(b). The
spin Berry curvature is largely concentrated near the valence
and conduction band-crossing points along the �-Y direc-
tion, which have a SOC-driven hybridization gap. Notably,
the perfect quantization of the SHC requires an Sz-conserved
Hamiltonian. However, realistic material parameters depend
on the constraints of point-group symmetries, coupling of
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FIG. 4. (a) Intrinsic spin Hall conductivity (SHC) σ z
xy as a function of Fermi energy in monolayer 1T ′-MoSi2P4. SHC is given in units of

e2

h . The value of the SHC is maximum at the Fermi level. (b) Band-resolved (top) and k-resolved (bottom) spin Berry curvature of monolayer
MoSi2P4 along the high-symmetry directions in the 2D Brillouin zone. LBC stands for the logarithm of �z

xy(k) [Eq. (2)], and the color bar
refers to the logarithm of �z

n,xy(k) [Eq. (3)].

various bands, and the local atomic geometries, among other
factors, which lead to nonconserved-Sz Hamiltonians [60].
As the local atomic geometry and spin-orbit interactions in
MSi2Z4 are different from the 1T ′ TMDs, differences in their
SHC values are naturally expected [61]. An optimal setup to
exploit the large SHC in MoSi2P4 would be in the clean limit
with the Fermi level lying between the band-crossing points.

D. Electric field switching of the quantum spin Hall state

We now demonstrate the tunability of the QSH state and
the switching of the topological state under a vertical elec-
tric field. Topologically inverted bands between the transition
metal d and pnictogen’s p orbitals lie in well-separated 2D
planes in the 1T ′ monolayer. This distinct spatial location of
bands provides a natural basis for their tunability via an out-
of-plane (vertical) electric field Ez. Figure 5 shows the HSE
band structure for various electric field values. The electric
field induces Rashba spin splittings in the states by breaking
the inversion equivalence on the top and bottom sides of the
monolayers. This is evident from spin-split states shown with
distinct colors in the top panels of Figs. 5(b) and 5(c). As the
electric field increases, the band gap decreases to zero at the
critical electric field value of Ec = 0.187 eV/Å, where the
spin-up and spin-down bands cross at opposite � points. With
a further increase in the electric field, the band gap reopens.
An analysis based on the Z2 invariants and edge-state disper-
sions (Fig. 5) shows that this band gap closing drives a change
in the topology to a trivial state with Z2 = 0. This topological
phase transition destroys the topological edge states, thereby
switching off the QSH state in 1T ′-MoSi2P4. A change in
the polarity of the electric field shows a similar topological
phase transition to a trivial state. The evolution of the QSH
and trivial insulator states as a function of the applied electric
field is displayed in Fig. 6.

The preceding results indicate an electric field on-off con-
trol of the spin-polarized edge currents in 1T ′-MSi2Z4 similar
to the case of 1T ′ TMDs [14]. Since the crystal symmetries
of both these material families are the same, various device
ideas conceived for 1T ′ TMDs can be applied to the MSi2Z4

family with the added advantage of a large, inverted band
gap and large SHC. For example, monolayer MSi2Z4 could
be interfaced with a large band gap 2D insulator to protect
the helical edge channels from being gapped by interlayer
hybridization to realize a topological transistor [14]. When
the Fermi level is placed in the nontrivial band gap, a nearly
quantized SHC would be realized in this device under zero
or small electric fields. An electric field beyond the critical
value of ± 0.187 eV/Å can switch off the quantized spin Hall
conductance, driving it into a trivial insulating state.

FIG. 5. Band structure of the 1T ′-MoSi2P4 monolayer for var-
ious values of the vertical electric field Ez: (a) 0, (b) 0.187, and
(c) 0.250 eV/Å. The top, middle, and bottom rows show the 2D band
structure, the (010) edge spectrum, and the edge-state spin texture,
respectively. Red (blue) identifies the up (down) spin state.
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FIG. 6. Topological phase diagram of 1T ′-MoSi2P4 as a function
of the vertical electric field Ez. Critical electric field strengths for
the topological phase transition from the Z2 = 1 to Z2 = 0 state are
marked by vertical dashed lines.

IV. SUMMARY

We have demonstrated the existence of a tunable QSH state
with a large band gap in a polytypic structure of the recently
introduced bottom-up synthesized MSi2Z4 family of 2D ma-
terials. Our analysis based on phonon spectra and molecular
dynamics simulations showed that these materials realize a
thermodynamically stable 1T ′ phase in addition to the pu-
tative 1H phase. Our in-depth electronic structure modeling
revealed that a structural distortion in the 1H phase leads to
the 1T ′ structure and induces a topological band inversion.
A hybridization gap as large as 204 meV was found for the
MSi2Z4 family that is even larger than the one in the existing
1T ′ TMDs that host a QSH ground state. Our calculated SHC
shows a large value of ∼1.3 e2

h in MoSi2P4 that arises from the
large spin Berry curvature induced by spin-orbit-split bands
at the band inversion points. We also showed that the QSH

state is tunable with a vertical electric field, which provides
an external control for switching or turning on and off the
QSH state. Our study thus not only introduces a polytypic
structure of the recently introduced 2D MSi2Z4 materials,
which support a large band gap QSH state, but also suggests
that this material family will potentially provide a promising
platform for realizing nontrivial states with large spin Hall
conductance.
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Researchers have been captivated by quantum materials over the past ten years because of a

variety of fascinating physical phenomena, including, quantized Hall conductivity in QH insu-

lators, counter propagation of dissipationless current in QSH insulators, chiral edge current

in QAH insulators, and Axion electrodynamics in Axion insulators. Semimetallic quantum ma-

terials exhibit interesting high energy phenomena in the area of condensed matter physics in

addition to the insulating phase. The Dirac and Weyl quasiparticles exhibit special transport

features in the materials, including the inherent anomalous Hall effect, chiral anomaly, and neg-

ative magnetoresistance. Because of its wide array of applications in quantum information and

quantum electronics, the prediction of new material candidates and engineering materials that

exhibit exotic physical phenomena has attracted research in the field of condensed matter physics.

The promising candidate for the realization and study of three-dimensional flat bands,

which could give rise to exotic, strongly correlated phases as a result of an enhancement of

electronic interactions, are the isoenergetic nodal-line phases in HgTe/CdTe superlattices and the

uniaxially strained HgTe/HgSe superlattices. A possible method to create the necessary bend to

obtain the flat bands is the synthesis of core-shell nanowires of the HgTe-based superlattices,

which has been prompted by recent experimental progress in the growth of II-VI strained

nanostructures by molecular beam epitaxy and high electron mobility systems [66, 113–115]

.The II-IV semiconductor nanowires have been recently produced [116, 117]. Additionally, the

flat band superconductivity in a band-inverted nanowire may provide a framework for hosting

topological superconductivity and Majorana zero modes. Another potential area of study is the

possibility of creating a topological insulator with multiple band inversions and hosting new

exotic phases beyond the quantum spin Hall effect in 2D quantum wells of HgTe/HgSe with a

thickness greater than the critical thickness and sandwiched between CdTe. The system has a
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tendency to generate a digital alloy, therefore it will be difficult to fabricate a perfect interface

between HgTe and HgSe in an experiment. Even in the case of a digital alloy, we anticipate the

realization of a nearly ideal Weyl semimetal phase, which is topologically protected and arises at

zero strain.

The axion insulators are promising material candidates to host the dark axion-like weakly

interacting quasiparticles. It is a promising material candidate for the long-sought detection

of dark matter. In the 3D SLs of the HgTe/MnTe could host Axion insulator phase evolve in

the presence antiferromagnetic ordering. Recent experimental studies indicate that the axion

insulator phase only evolves in three dimensions, it disappears in two dimensions by reducing the

dimensionality(d)[118]. The topological states in Axion Insulator Phase are d-2 states in 3D, which

are similar to Higher Order Topological Insulators (HOTI). The possibility of 2D HgTe/MnTe

quantum wells preserving the Axion insulator phase or magnetic topological insulator with a

(d-2) zero mode topological state is an interesting area for future research. Furthermore, by

reducing the dimension to 2D, the HgTe/MnTe with ferromagnetism could leads to the Chern

insulator phase with quantized anomalous Hall conductivity.

The successful experimental realization of the predicted bilayer-2H MSi2Z4 and 1T′-phase of

MSi2Z4 is expected to be a tremendous success for applications in the real world. In addition to

the experimental realization of the QSH effect in the 1T′ MSi2Z4 materials class, the magnetism

in this 2D QSHI material could show an interesting magnetoelectric response. It is possible

to observe a large-gap quantum anomalous Hall (QAH) insulating phase by constructing a

heterostructure with a 2D vdW magnetic insulator. In contrast to the lattice mismatch, we

anticipate that a heterostructure of
p

3×1) CoBr2 and (1x1) MoSi2As4 will be suitable as the

QAH Insulator. Another direction will be the sandwich of CoBr2/MSi2Z4/CoBr2, which will

create the possibility of understanding the interplay between different magnetisms (such as

ferromagnetic or antiferromagnetic) and different interfacial phenomena. This will be an exciting

new direction. These materials could be used to study a wide range of interesting physical

phenomena and applications, from spintronics and quantum communication to dark matter

detection.

Finally, we believe the investigation of quantum materials to be fascinating, finding a new

material candidate is essential for the development of devices that operate at room temperature.
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