Low Temperature MBE Growth and Characterization of (111) Sn_{1-x}Mn_xTe Thin Epitaxial Layers

Obtained with Additional Te Flux

V.V. Volobuev^{1,2}, A. Kazakov¹, N. Konotopska^{1,2}, M. Aleszkiewicz³, B. Turowski¹, W. Zaleszczyk¹, T. Wojciechowski¹ and T. Wojtowicz¹

International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

AND ASSESSMENT OF THE PARTY OF

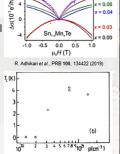
Introduction / Motivation

Topological crystalline insulators:

→ SnTe is an archetypical topological crystalline insulator

Material: Ternary Sn_{1-x}Mn_xTe:

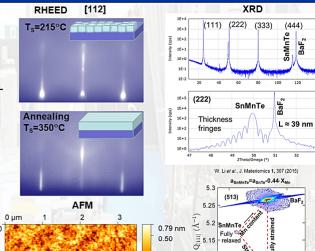
- → Transition metal Mn-doped SnTe is a ferromagnet
- → RKKY exchange interaction


Motivation

→ Predicted coexistence of topological insulator, magnetism, and ferroelectricity. Combined with superconductor can be useful in superconductor spintronics.

Goal of present work

→ Growth of thin (111) Sn_{1-x}Mn_xTe epilayrs by MBE. Study how Te excess affects structure and magnetic properties of the epilayers.



MBE growth

- Veeco GENxplor, SnTe, Mn, Te sources
- (111) BaF₂ substrates
- The initial layer with rough surface was formed by the rapid coalescence of Volmer-Weber islands to minimaze elastic strains
- Subsequent rapid annealing step at a higher temperature was used to minimise the film surface energy
- in-situ RHEED revealed evolution of pattern due to surface smoothering
- AFM confirms atomically smooth surface (RMS roughness ~ 275 pm)
- XRD, only (111) orientation, no strains detected from asymmetric RSM

Two step growth

HANNE .

Te flux influence

8.0

4.0

2.0

Te high Te low RHEED

AFM

0.20

0.00

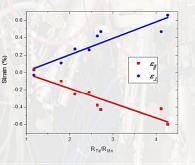
-0.20

6.85

 $R_{Te}/R_{Mn}=2.45$

RSM

(226)


Q_[110] (Å⁻¹)

6.9

6.85

 $Sn_{1-x}Mn_xTe$ films, $x_{Mn}=0 \div 0.07$, 20-50 nm thickness

- RHEED and AFM revealed drastic increase of surface roughness when $R_{Te}/R_{Mn} > 2$
- From RSMs we found that excess of Te induces a tetragonal distortion of the crystal structure, in-plane compressive strains up to -0.6 % introduced
- Systematic reduction of lattice constant with Mn doping was also

Lattice parameters, elastic strains of Sn_{1-x}Mn_xTe epilayers determined from asymmetric

RSMs and their carrier concentration as a function of Te/Mn evaporation rate ratio.											
Sample R _T	_{Ге} /R _{Mn} >	Κ _{Μη} , %	d, Å	Q _x , Å-1	Q _z , Å-1	a _∥ , Å	a⊥, Å	a ₀ , Å	ε , %	ε⊥, %	p, cm ⁻³
G061122a 1	1.17	3.5	230	2.8159258	5.1761223	6.311	6.308	6.309	0.03	-0.03	1.2e+20
G091322A	1.8	4.5	500	2.821443	6.896322	6.299	6.312	6.305	-0.10	0.11	
G073022a 2	2.12	3.5	500	2.8234415	6.880176	6.294	6.327	6.310	-0.25	0.27	2.2e+20
G073122b 2	2.45	3.5	335	2.823216	6.881234	6.295	6.326	6.310	-0.23	0.26	5.8e+20
G080522a 2	2.64	3.7	200	2.827562	6.8710605	6.285	6.335	6.309	-0.38	0.42	5.5e+20
G080322b 2	2.72	3.4	300	2.828452	6.866116	6.283	6.340	6.310	-0.43	0.47	
G110422B 4	1.12	7.2	411	2.8359126	6.88461	6.267	6.323	6.293	-0.42	0.47	
G112322A 4	1.27	6.7	400	2.8397523	6.868955	6.258	6.337	6.296	-0.60	0.66	

Transport Characterization

0.00

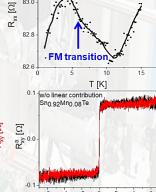
5.

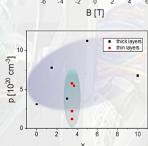
5.0

2.85

 $Q_{[110]}$ (Å⁻¹)

2.9


- Critical behavior Rxx(T) at low temperatures, close to paramagnet - ferromagnet transition
- Addition of Te increases hole concentration and decreases mobility due to presence of disorder
- AHE, negative MR, WL and hysteresis are observed in Mn-doped samples as evidence of ferromagnetism
- All the samples demonstrate low coercivity of several Oe
- High field linear slope was subtracted from Hall curve to obtain AHE contribution Sn_{0.92}Mn_{0.08}Te - 30 nm


for contacts

Sno 97Mno 03Te 30 nr n = 5.54.10²⁰ cm⁻³

℃^{81.4}

Summary of the results

- High quality thin epilayers of FM TCI $Sn_{1-x}Mn_xTe$ (x_{Mn} = 0 - 0.07) were successfully prepared on BaF2 (111) substrates by MBE.
- The films with smooth surface of 20 -100 nm thickness, were grown by a twostep method involving initial low-temperature deposition followed by hightemperature annealing.
- This strain can be tuned by varying the Te content, which potentially might affect ferroelectric properties Sn_{1-x}Mn_xTe.
- Transport investigations revealed ferromagnetism in obtained samples
- The obtained results pave the way for application this material in low temperature spintronic applications.

Acknowledgements

The research was supported by by the Foundation for Polish Science project "MagTop" no. FENG.02.01-IP.05-0028/23 co-financed by the European Union from the funds of Priority 2 of the European Funds for a Smart Economy Program 2021–2027 (FENG).

