

Effect of Si substitution on the local magnetic properties of the $Mn_5(Ge_{1-x}Si_x)_3$ /Ge(111) epitaxial films

E. Jędryka¹, M. Wójcik¹, R. Kalvig¹, S. Kang², L. Michez², M. Petit²

(1) Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland

... line

Si does not change significantly the anisotropy of Hyperfine Field

Orbital moment : $\Delta \mu^{\perp} = (\mu^{\perp})_{\parallel} - (\mu^{\perp})_{\perp}$ No significant effect of Si on the Mn orbital m

Mn₅(Ge_{0.5}Si_{0.4})₃ v =216.37-10.25 *B_{0.1}

In-plane magnetic saturation ≈ 0.5T - very close to that in Mn5Ge3

0.5 1.0 1.5 2.0 2.5 3.0 3

B_{est} > 1T – monotonous frequency downshift of all NMR lines, including Mn_{ilnew} magnetic moments are parallel and ferromagnetically counted

, line reveals a new magnetion ant in some of the 6(g) sites

- The onset of the low-moment Mn_{t/new} environments at the expense The offset of the semiclicity many memory methods and the opposite of pristine Mn_n is reflected in a progressive drop of the average saturation magnetic moment with increasing SI concentration and can be attributed to a mixing of the 3d electron states of Mn with the 3p electron states of SI atoms.
- Coexistence of Mn_{II} and Mn_{IIncov} environments in the mixed concentration region, indicates that a transition from the FM order for x = 0 to AF1 structure for x = 1 represents a first order phase transition