A new composite material consisting of MnTe matrix with embedded $MnBi_2Te_4$ quantum dots

P. Skupiński¹, K. Sobczak², K. Grasza¹, A. Mycielski¹, A. Reszka¹, K. P. Kluczyk³,

B. Szymański³, K. Gas^{1,4}, M. A. Borysiewicz⁵, J. Z. Domagala¹, M. Sawicki^{1,6}, M. Gryglas-Borysiewicz³, A. Wołoś³

¹ Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland.

² Faculty of Chemistry, CNBCh, University of Warsaw, Zwirki i Wigury 101, Warsaw, Poland.

³ Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, Poland.

⁴ Center for Science and Innovation in Spintronics, Tohoku University, Sendai 980-8577, Japan

⁵ Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, PL-02668 Warsaw, Polan

⁶ Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

T (K) p= $7 \cdot 10^{19}$ cm⁻³, $\mu_{\rm h}$ = 70 cm²/(V·s) The transport properties are dominated by the MnBi₂Te₄ phase.

T(**K**)

no, J

no.

150

200

Conclusions

8,5E-4

8,0E-4

-12

3.4T

B(**T**)

in $MnBi_{2}Te_{4}$ thin film

grown by MBE.

SK. Bac, K. Koller, F. Lux, et al. npj

Quantum Mater. 7, 46 2022.

12

- The mechanism of formation of $MnBi_2Te_3$ dots in the MnTe matrix involves the replacement of manganese layers with layers of bismuth atoms.
- The crystallographic structure of the $MnBi_2Te_3$ dots is strongly distorted by the surrounding MnTe matrix.
- In this new material, there are two antiferromagnetic orders with the Neel vectors perpendicular to each other.
- In measurements of the dependence of remnant magnetization on temperature, four transitions are visible, related to:
- for $T_c = 13$ K ferromagnetic transition in an insulated single $MnBi_2Te_3$ layer →
- for $T_N = 25.6-26.5$ K antiferromagnetic transition resulting from the interaction between MnBi₂Te₃ layers →
- for $T_N = 86.5$ K antiferromagnetic transition in MnTe₂ →
- for $T_N = 307$ K antiferromagnetic transition in MnTe. →
- The dominant carriers of electric current are holes with concentration of 10^{19} cm⁻³ and mobility about 70 cm²/(V·s).
- The transport properties are dominated by the $MnBi_2Te_4$ phase.
- A spin-flop transition characteristic of antiferromagnetic $MnBi_2Te_4$ was observed at 3.4T.