Towards Transport Measurements of Topological Crystalline Insulator Core/Shell GaAs/Pb_{1-x}Sn_xTe Nanowires

Sania Dad¹, Rapheal Rosset², Piotr. Dziawa¹, Maciej Wojcik¹, Moira Hocevar², Krzysztof Dybko¹, Wiktoria Zajkowska-Pietrzak¹, Slawomir Kret¹, Janusz Sadowski^{1,3,4}

¹ Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland ² Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, F-38000 Grenoble, France ³Ensemble3 Centre of Excellence, Wólczyńska 133, Warsaw, Poland ⁴Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

Fabrication of NW devices and I-V characteristics

Conclusions

- Pb_{1-x}Sn_xTe can be grown as full and half shells
 of III-V (GaAs) nanowires in a full composition
 range
- IV-VI shells are constituted from {100} or
 {110} surfaces (with topological protection)
- Possibility to control the topological transition by strain

•

- The ohmic contacts to individual NWs have been fabricated by e-beam lithography and Au deposition.
- The best samples exhibit low resistivities

Future plans

- To obtain completely smooth and unbroken Pb_{1-x}Sn_xTe shells on GaAs NWs
- Magnetotransport measurements of individual NW devices
- To grow a second half shell on the chosen sidewalls of NWs
 A way to study TCI hinge states as well as (110) surface
 - A way to study TCI hinge states as well as (110 states of TCI

•

Please scan me for more details ⓒ

The authors acknowledge funding from the National Science Centre Poland, through projects No: 2019/35/B/ST3/03381, 2019/35/B/ST5/03434, 2017/27/B/ST3/02470 and one month research visit grant from NAWA

Acknowledgements