Structural changes in wurtzite (Ga,Mn)As nanowire shell during in-situ annealing in a transmission electron microscope A. Kaleta ^{(1)*}, S. Kret ⁽¹⁾, S. Kryvyi ⁽¹⁾, A. Kumar⁽²⁾, X. Chen⁽²⁾, M. Xu², A. Penn⁽²⁾, J.M. LeBeau⁽²⁾, B. Kurowska⁽¹⁾, M. Bilska⁽¹⁾ K. Gas ⁽¹⁾, M. Sawicki ⁽¹⁾, J. Sadowski ^(1,3)

⁽¹⁾ Institute of Physics, Polish Academy of Science, Warsaw, Poland

⁽²⁾ Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA

⁽³⁾ Ensemble3 Centre of Excellence for Nanophotonics, Advanced Materials and Novel Crystal Growth-Based Technologies, Warsaw, Poland

Introduction

Zinc-blende (ZB) (Ga, Mn)As is a canonical dilute ferromagnetic semiconductor (DFS) with the highest (up to 200 K) Curie Temperature (T_c) among all DFS materials, although still too low for room temperature spintronic applications. However, when (Ga,Mn)As is thermally decomposed, ferromagnetic α -MnAs nanocrystals (NCs) with hexagonal crystal structure are formed within ZB-GaAs (cubic) matrix.

On the other hand, wurtzite (WZ) (Ga,Mn)As, sharing similar symmetry with hexagonal α -MnAs, can be obtained if (Ga,Mn)As is grown as shells on WZ-GaAs nanowire (NW) cores using molecular beam epitaxy (MBE) [1]. We have shown that annealing of the WZ-(Ga,Mn)As results in tensely strained α -MnAs NCs embedded semi-coherently in the WZ-GaAs matrix and stabilizes ferromagnetic α -MnAs phase to above 127 °C [2], in contrast to the bulk α -MnAs with Curie temperature (T_c) = 40 °C.

Nanowires Growth – MBE recipe

VLS Axial growth		Epitaxial Radial growth							
CORE		SHELL 1			SHELL 2			SHELL 3	
(Ga,In)As		(Ga,Al)As			(Ga,Mn)As			GaAs	
%In	T [°C]	%Al	d [nm]	T [°C]	%Mn	d [nm]	T [°C]	d [nm]	T [°C]
22	490	50	30	440	6	30	200	4	200
gold-catalyzed									

GalnAs

GaAlAs

GaMnAs

LT-GaAs

Using scanning transmission electron microscopy (STEM) with in-situ TEM system, the α -MnAs NCs formation can be observed via collecting images at subsequent stages during annealing. Mn atoms start to segregate at temperatures around 300 °C, followed by a phase transition to the MnAs NCs at 350 – 400 °C. At higher temperatures, larger MnAs NCs with visible Moiré patterns are observed.

[1] J. Sadowski, et. al, Nanoscale **9**, 2129 (2017). A. Kaleta, et. al, Nano Lett. **19**, 7324 (2019). [2]

Acknowledgments

POLSKIEJ AKADEMII NAUK

Conclusions

- WZ-GaAs matrix exerts tensile strain and stabilizes α -MnAs ferromagnetic phase above ~400K
- According to the in-situ experiment analysis, clustering of Mn can be divided into three stages: **Nucleation** (~300°C) & growth of WZ-Mn(Ga)As NCLs, coherent & highly-strained with respect to WZ-GaAs. **ii.** Phase transformation (~350°C) WZ-MnAs to α-MnAs (semi-coherent with WZ-GaAs matrix), tensily strained. iii. Growth via coarsening (~450°C), i.e. small NCs merging into bigger (coarser) ones.
- Migration of Mn atoms/NCLs/NCs can be additionally **controlled by NW architecture**:
 - radially by (Ga,AI)As shells acting like diffusion barriers for Mn atoms
 - ii. axially by **ZB-GaAs segments (stacking faults)** perpendicular to nanowire growth axis (WZ c-axis).

