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Abstract

A chain of magnetic impurities deposited on the surface of a super-

conductor can form a topological Shiba band that supports Majorana

zero modes and hold a promise for topological quantum computing.

Yet, most experiments scrutinizing these zero modes rely on trans-

port measurements, which only capture local properties. Here we

propose to leverage the intrinsic dynamics of the magnetic impu-

rities to access their non-local character. We use linear response

theory to determine the dynamics of the uniform magnonic mode

in the presence of external ac magnetic fields and the coupling to

the Shiba electrons. We demonstrate that this mode, which spreads

over the entire chain of atoms, becomes imprinted with the parity

of the ground state and, moreover, can discriminate between Ma-

jorana zero mode and trivial zero mode located at the ends of the

chain. Our approach offers a non-invasive alternative to the scan-

ning tunnelling microscopy techniques used to probe Majorana zero

modes. Conversely, the magnons could facilitate the manipulation

of Majorana zero modes in topological Shiba chains.

Model of ferromagnetic Yu-Shiba-Rusinov chain

Achain of ferromagnetically coupled adatoms on a 2D s-wave super-
conductor harboring Majorana zero modes. The uniform magnonic

mode interacts with the Majorana zero modes, altering its dynamics.

s-wave superconductor with spin-orbital couplings

γL
γR

Magnon

The Hamiltonian describing a chain of N classical spins coupled to

an s-wave superconductor can be written as,

Htot = 1
2

∫
drΨ̂†(r)(Hel + Hel−m)Ψ̂(r) +Hm ,

Hel =

(
p2

2m
− µ + λR(pxσy − pyσx)

)
τz + ∆τx ,

Hel−m = −J
N∑
j=1

(
Sj · σ

)
δ(r − rj) ,

Hm =
∑
〈i,j〉

JexSi · Sj −
N∑
j=1

(
Kz

2
(Szj )2 − γHSzj

)
.

Here, τ = (τx, τy, τz) [σ = (σx, σy, σz)] are Pauli matrices acting in

the Nambu (spin) space, and Ψ̂(r) = [ψ̂↑(r), ψ̂↓(r), ψ̂†
↓(r),−ψ̂†

↑(r)]T is

the electronic field operator at position r. In addition, J , Jex, Kz, γ,
and H are the coupling between the spins and the condensate, the

(direct) Heisenberg exchange between the spins, the local easy-axis

anisotropy, the gyromagnetic ratio, and the applied magnetic field.

Motivations

The origin of zero-bias peaks is still under heavy debate.

Harness the collective spin dynamics of magnetic impurities.

Use spin susceptibility to reveal the signature of Majorana zero

mode, and differentiate it from the trivial zero mode.

Investigate the effect of disorders in the exchange couplings.

Phase diagram and Majorana zero modes

For a general state ψ(r), the BdG equation (Hel + Hel−m)ψ(r) =
Eψ(r) can be reduced into a closed set of equations for the spinor

at the impurity positions,

[Si · σ + JE(0)]ψ(ri) = −
∑
j 6=i

JE(rij)ψ(rj) .

When the chain is in the deep-dilute limit, we can project it onto the

Yu-Shiba-Rusinov states and obtain a 2N×2N effective tight-binding

Hamiltonian Heff . The Hamiltonian Heff belongs to the Altland-

Zirnbauer symmetry class D and is characterized by a Z2 topological
invariant. By tuning kFa and ε0, the system can enter a supercon-

ducting topological phase supporting Majorana zero modes,
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The dotted lines in the left panel indicate the boundary between

topological (gray shaded) and non-topological (white) phases. The

magnitude of the gap can be inferred from the shaded degree.

The right panel is a line cut at kFa/π = 5.9. The blue (green) dashed
line corresponds to the blue (green) dot in the left panel and lies in a

topological (normal) phase. The curved arrow depicts the interaction

between the Majorana zero mode and the uniform magnonic exci-

tation εm. The parameters are N = 30, ξ0 = 10a and λR = 0.05vF .

Ferromagnetic lattice dynamics

We can establish the dispersion of the magnetic fluctuations by em-

ploying a Holstein-Primakoff transformation. In the limit of large S,
the transformation reads,

S+
j =

√
2Saj , S−

j =
√

2Sa†
j , Szj = S − a

†
jaj ,

with aj (a
†
j) being the magnonic annihilation (creation) operator sat-

isfying [aj, a
†
j′] = δjj′. In this work we are interested in triggering the

dynamics of the uniform magnonic mode,

a0 = 1√
N

N∑
j=1

aj with energy εm = KzS − γH ,

because the following motivations,

1. it represents the lowest energy magnon;

2. it exhibits a constant amplitude along the wire.

Projecting magnetic Hamiltonian onto the uniform mode a0, we find:

H0
el−m ≈ J

N

[
n0Σz −

√
2NS(a†

0Σ+ + a0Σ−)
]
,

where Σν is the total spin operator along the ν = x, y, z axis, Σ± =
(Σx ± iΣy)/2, and n0 = a

†
0a0. Using the expression for normalization

factor N of the Yu-Shiba-Rusinov wavefunction,

1
N

= ∆
JS

2α2

(1 + α2)2
,

effectively entails to substituting, J → ∆/S and Σν → 2Nα2(1 +
α2)−2Σν ≡ Σ̃ν . The amplitude of a0 in the frequency space becomes:

a0(ω) = ih0

ω −
[
εm + ∆

NS
〈Σ̃z〉 + 2∆2

NS
Π+−(εm)

]
+ iκm

,

Π+−(ω) = −i
∫ ∞

−∞
dteiωtθ(t)〈[Σ̃+(t), Σ̃−(0)]〉 ,

where Π+− is the transverse susceptibility associated with the oper-

ator Σ̃±. Therefore, the magnon resonance frequency and its decay,

are respectively shifted by,

δεm = ∆
NS

(
〈Σ̃z〉 + 2∆ Re Π+−(εm)

)
, δκm = −2∆2

NS
Im Π+−(εm) ,

which represents one of our main results. The magnitude of these

changes is determined by the superconductor gap ∆ reduced by the

total number of spins in the chain NS.
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We show 〈Σ̃z〉/N for the two parities of Majorana zero modes in

the left panel. While each parity exhibit different values of 〈Σ̃z〉/N
when N is small, they become exponentially indiscernible forNa �
ξ0. However, for a fine-tine trivial zero mode, we see that 〈Σ̃z〉 is

different for the two parities even for a large number of impurities.

Spin-susceptibility

When ∆eff < ω < 2∆eff , the susceptibility is dominated by,

Π+−(ω,P) = −
∑
En>0

(−1)POP+
0n OP−

n0
ω − En − (−1)PE0 + iη

,

OP±
nm =

N∑
j=1

[
Φ†
n(rj)δP1 + Φ†

n(rj)δP0
]
σ±Φm(rj) ,

where OP±
nm is the parity-dependent matrix element, Φn(r) is the

wavefunction pertaining to the Bogoliubon with energy En. We

show Π+−(ω,P) for Majorana zero modes and trivial zero modes.

While both exhibit a peak structure because of the resonances at

ω = En − E0, their distinction is encoded in their amplitudes.
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To quantify it, we define the visibility of the spin susceptibility asso-

ciated with the two parities as follows:

V(ω) ≡ Im Π+−(ω, 0) − Im Π+−(ω, 1)
Im Π+−(ω, 0) + Im Π+−(ω, 1)

,

which is shown in the bottom panel for two distinct zero modes.

Inversion symmetry and quantized visibility

We see that V(ω) oscillates between −1 and 1 in the topological

regime, while it does not in the trivial regime. This significant differ-

ence can be traced back to the symmetry of the pristine system: the

effective HamiltonianHeff is invariant under the symmetry operation

S = τz ⊗ I ,
where I is the inversion operator that maps site j into N + 1 −
j. Hence, the nth single-particle eigenstate is either symmetric or

anti-symmetric under S , corresponding to the eigenvalues Sn = 1
and Sn = −1, respectively. This reflects onto the transitions matrix

elements which satisfy,

OP±
0n = (−1)PS0SnOP±

0n .

Therefore, OP±
0n 6= 0 only when (−1)PS0Sn = 1, which means one of

the parities always gives a vanishing contribution for any transition.

The amplitude of the visibility at the resonances ωn ≡ En − E0 in

the limit η → 0 becomes,

V(ωn) = S0Sn ≡ ±1 .
On the other hand, an accidental zero-energy mode located at one

edge in the trivial regime severely breaks the inversion symmetry,

rendering the visibility arbitrary. This behaviour is also intimately

related to the non-locality of the Majorana zero modes, as opposed

to the locality of the trivial zero modes.

Robustness against disorders

To test how deviations from the pristine inversion symmetry alters

the visibility V(ω), we have added random disorder in the individual

Shiba energy ε0 along the chain.
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We see that the oscillation of the visibility remains intact for the

Majorana zero modes, albeit with a reduced amplitude. The trivial

zero modes visibility, on the other hand, is practically unaffected by

disorder because they are local and therefore insensitive to the in-

terference pattern of the bulk modes.

Conclusions and outlook

We have studied the interaction between the Majorana zero

modes and magnons in ferromagnetically aligned magnetic impu-

rities coupled to a spin-orbit coupling s-wave superconductor.

Unravelled the non-local Majorana zero modes imprints onto

the uniform magnonic mode.

Demonstrated their intimate connection with the spatial

symmetry of the chain.

Discriminated the effect of Majorana zero modes and trivial

zero modes from the magnonic response.

Showed the robustness of the response against moderate

onsite disorder.

There are several possible future directions:

Interface magnons with chiral Majorana modes in 2D

Yu-Shiba-Rusinov impurity lattice.

Use the magnonic mode actively for processing quantum

information with Majorana zero modes.

Extend current machine learning techniques to detect

topological structures based on the data of spin susceptibility.
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