Topological nodal line semimetal: Zirconium di-arsenide

A. S. Wadge ${ }^{1 *}$, K. Zberecki³, B. J. Kowalski² , D. Jastrzębski¹ , P. Iwanowski², R. Diduszko² , M. Rosmus ${ }^{4}$, N. Olszowska ${ }^{4}$ and A. Wiśniewski ${ }^{1,2}$

N INSTYTUT FIZYK
POLSKIEJ AKADEMII NAUK

${ }^{1}$ International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
 ${ }^{2}$ Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
 ${ }^{3}$ Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, 00-662, Poland
 ON 6.1 ${ }^{4}$ National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, PL-30392 Cracow, Poland

SOLARIS

Motivation

- The conduction and valence bands intersect along a one-dimensional path within the threedimensional Brillouin zone. Furthermore, any external influence or perturbation applied to the system maintains a specific symmetry group. This material possess the non-symmorphic symmetry along with the inversion and time reversal symmetry
- Nodal lines give rise to extremely large magnetoresistance, SdH oscailltions and symmetry enforced band crossings
- Studying the single crystals by angle-resolved photoemission spectroscopy (ARPES) with DFT support helps us understand better how various symmetries are structured and impact the topological properties.

One-step process

Distance (cm)
Two-step process

Synthesis of polycrystals

ction (inset) crystal structure
 inclusion of SOC

EDX spectrum

3D ARPES with Fermi pockets shown by arrows

Summary

1. CVT method: Needle shaped-crystals (in both the processes)
2. Orthorhombic crystal structure (Pnma 62), centrosymmetric, TRS protected
3. Stochiometry $1: 2$
4. Accidental degereacies lifted with SOC
5. 3D ARPES plot shows electron and hole pockets

References

- J. Alloys Compd. 505, 17 (2010)
- Phys. Rev. B 104, 125135 (2021)
- Phys. Rev. Materials 4, 054201 (2020)
- Phys. Rev. B 103, 155144 (2021)

