
E. Aybar², A. Niezgoda^{2,3}, S. Mirkhalaf¹, M. W. Mitchell³, D. Benedicto Orenes³, E. Witkowska¹

¹ Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

² Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland

Abstract: In this work [1], we study temperature sensing with finite-sized strongly correlated systems exhibiting quantum phase transitions. We use the quantum Fisher information (QFI) approach to quantify the sensitivity in the temperature estimation, and apply a finite-size scaling framework to link this sensitivity to critical exponents of the system around critical points. We numerically calculate the QFI around the critical points for two experimentally-realizable systems: the spin-1 Bose-Einstein condensate and the spin-chain Heisenberg XX model in the presence of an external magnetic field. Our results confirm finite-size scaling properties of the QFI. Furthermore, we discuss experimentally-accessible observables that (nearly) saturate the QFI at the critical points for these two systems.

[1] Enes Aybar, Artur Niezgoda, Safoura S. Mirkhalaf, Morgan W. Mitchell, Daniel Benedicto Orenes, Emilia Witkowska, Quantum 6, 808 (2022)

Criticality

In the thermodynamic limit $(N \!\! \to \!\! \infty, Ld \!\! \to \!\! \infty, NLd \!\! = \!\! \text{const.})$ the QPT is characterized by a diverging power law behavior of a physical quantity $A \!\! \sim \!\! \epsilon^a$ given by a critical exponent a quantifying how rapidly A changes at λ_c . If the size of the system (L and N) is finite then the change of A is an analytic function of ϵ and a regular function f_a such that $A \!\! \sim \!\! L^{a \! / \! v} f_a(L^{1/v})$ with the constraint $f_a(0) \! \neq \! 0$.

Finite-size scaling of QFI

When the temperature T is low, i.e, $T < \Delta_g$, the main contribution to the QFI comes from the terms containing T/Δ_g while the contribution of $T/\Delta_g > 1$ is assumed to be negligible, then

$$F_Q = \Delta_g^{-2} \left(\frac{\Delta_g}{T}\right)^4 \frac{1}{4\cosh^2 \left[\frac{\Delta_g}{2T}\right]} \sim N^{2z/d}$$

for fixed $\varepsilon N^{1/(\nu d)}$ and T/Δ_g and non-degenerate systems

 $F_Q^{\rm max} \approx 4.53 \Delta_g^{-2} \text{ for } T/\Delta_g \approx 0.24$

Finite-size scaling of SNR

The relative estimation precision (shot-noise ratio SNR) is dimensionless itself and it can be related to the QFI, and hence

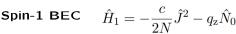
$$\frac{T}{\sqrt{\delta^2 T}} = \left(\frac{\Delta_g}{T}\right) \frac{1}{4\cosh\left[\frac{\Delta_g}{2T}\right]}$$

unlike the QFI, the SNR does not exhibit the scaling with the total number of particles for fixed values of $\varepsilon N^{1/(vd)}$ and T/Δ_g and non-degenerate systems

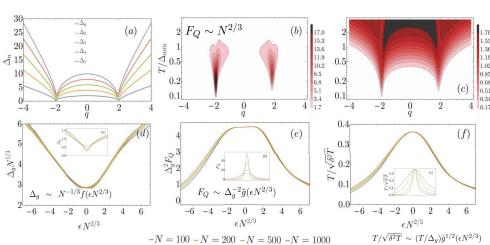
Local Quantum Thermometry

Purpose: estimation of temperature T of systems that exhibit continuous quantum phase transition (QPT).

In the finite-size system having the total number of particles N and described by a parametrized Hamiltonian $H(\lambda)$, the behaviour of physical quantities are regular at critical points and can be described by analytic functions that are subject to a universal finite-size scaling. At small but finite temperatures, Gibbs states


$$\hat{\rho}(T,\lambda) = \sum_{n=0}^{N} \frac{e^{-\Delta_n(\lambda)/T}}{Z} |\psi_n\rangle \langle \psi_n|$$

where $\hat{H}(\lambda)|\psi_n\rangle$ = $E_n(\lambda)|\psi_n\rangle$ $\Delta_n(\lambda)=E_n(\lambda)-E_0(\lambda)$


can inherit signatures of quantum critical behavior that, as in the zero-temperature case, enhance sensitivity in parameter estimation around the QPT. The resulting fluctuations of temperature in terms of the mean squared error of the corresponding estimator $\delta^2 T \equiv \langle (T_{\rm est} - T)^2 \rangle$ is subject to the Cramér-Rao lower bound

$$F_Q(T,\lambda) = \frac{\Delta^2 \hat{H}(T,\lambda)}{T^4}$$

where $F_{\mathcal{Q}}(T)$ is the quantum Fisher indformation (QFI)

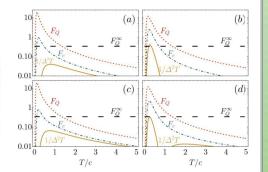
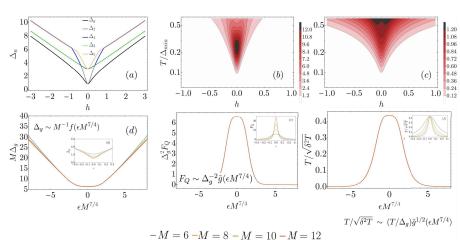



Figure 3: Numerical results showing the temperature dependence of c^2F_Q (red dashed line), c^2F_c (green dot-dashed) and c^2/Δ^2T (orange solid) for \hat{J}_{\perp}^2 (a) and (b), and \hat{N}_0 (c) and (d) with N=200 at the critical point $q_z/c=-1.869$ (a),(c), and a near critical point $q_z/c=-1.8$ (b),(d). The black-dashed lines indicate $\max_T F_q^*(q_z,T)$ to give a reference level.

Spin-1/2 XX system

$$\hat{H}_{1/2} = -4J \sum_{j=1}^{M} \left(\hat{s}_{j}^{x} \hat{s}_{j+1}^{x} + \hat{s}_{j}^{y} \hat{s}_{j+1}^{y} \right) + 2h_{x} \sum_{j=1}^{M} \hat{s}_{j}^{x}$$

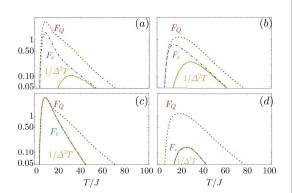


Figure 4: Numerical results showing J^2F_Q (red dashed line), J^2F_c (green dot-dashed) and J^2/Δ^2T (orange solid) with M=4 as a function of T/J for $h_x/J=0$ (a),(c), and $h_x/J=0.5$ (b),(d) when $\hat{A}=\hat{S}_x^2$ (a),(b), and $\hat{A}=\hat{S}_z^2$ (c),(d).