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Model of continuous measurement   
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Quantum Monte Carlo Wavefunction Method 

Continuously monitored  dynamics as a 
cassical stochastic process 
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Examples of observed dynamics of a particle 
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Particle in a harmonic potential  
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Detectors: 

Dispersion of position: 

        We formulate a model of a quantum particle continuously monitored 
by detectors measuring simultaneously  its position and momentum. We 
implement the postulate of wave-function collapse by assuming that upon 
detection the particle is found in one of the meters’ states chosen as a 
discrete subset of coherent states. The dynamics, as observed by the 
meters, is thus a random sequence of jumps between coherent states.  

Implementation: 

Measurement – Jump operators : 

Open system formalism - In the quantum statistical description we treat  
the particle as a (small) open system coupled to the “reservoir”  
of detectors.  

To solve the above GKSL equation we use the Quantum Monte 
Carlo Wavefunction  method. It may provide a computational 
advantage as well as possible additional physical insight from 
studying the preaveraged single trajectories. The density 
operator is obtained by averaging over many realizations of a 
single wavefunction’s dynamics: 
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A particle with angular momentum 
in a stationary  state of h.o. at t=0 

Zeno effect 

Free particle – a single trajectory 
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