Time-continuous measurement of position and momentum

Model of continuous measurement

We formulate a model of a quantum particle continuously monitored by detectors measuring simultaneously its position and momentum. We implement the postulate of wave-function collapse by assuming that upon detection the particle is found in one of the meters' states chosen as a discrete subset of coherent states. The dynamics, as observed by the meters, is thus a random sequence of jumps between coherent states.

Detectors:
$\left\langle x \mid \alpha_{m n}\right\rangle=\frac{1}{\pi^{1 / 4}} e^{-\frac{\left(x-x_{m}\right)^{2}}{2}} e^{i k_{n} x} \stackrel{\text { def }}{=}|\alpha\rangle$
Measurement - Jump operators:

$$
\mathrm{C}_{\alpha}=\sqrt{\gamma}|\alpha\rangle\langle\alpha|
$$

Quantum Monte Carlo Wavefunction Method

Implementation:

$$
\phi^{(1)}(t+\delta t)=\left(1-i \delta t\left(H_{S}-\frac{i}{2} C_{\alpha}^{+} C_{\alpha}\right)\right) \phi(t)
$$

$$
\delta p_{\alpha}=\delta t\langle\phi(t)| C_{\alpha}^{+} C_{\alpha}|\phi(t)\rangle=\delta t \gamma|\langle\alpha \mid \phi(t)\rangle|^{2}
$$

(i) With probability $1-\sum_{\alpha} \delta p_{\alpha}$ the wave function is the one obtained from nonunitary evolution (with necessary normalization),

$$
|\phi(t+\delta t)\rangle=\frac{\left|\phi^{(1)}(t+\delta t)\right\rangle}{\|\left|\phi^{(1)}(t+\delta t)\right\rangle \|}
$$

(ii) One of the meters clicks with probability $\delta p_{\alpha} / \delta p$ and the particle jumps to the measured state

$$
|\phi(t+\delta t)\rangle=\frac{C_{\alpha}|\phi(t)\rangle}{\| C_{\alpha}|\phi(t)\rangle \|}=|\alpha\rangle .
$$

Particle in a harmonic potential

Dispersion of position:

$\delta^{2}(t) \approx D t+\delta_{0}^{2}$

$$
D=\gamma \sum_{j, i}(d j)^{2} e^{\frac{-d^{2}\left(j^{2}+i^{2}\right)}{2}} \approx \gamma \frac{2 \pi}{d^{2}}
$$

$\langle E(t)\rangle=\delta^{2}(t)+E_{0}=D t+\left(\delta_{0}^{2}+E_{0}\right)$

Gorini-Kossakowski-Sudarshan-Lindblad equation

Open system formalism - In the quantum statistical description we treat the particle as a (small) open system coupled to the "reservoir" of detectors.

$$
\rho_{s}=i\left[\rho_{s}, H_{s}\right]-\frac{1}{2} \sum\left(C_{\alpha}^{+} C_{\alpha} \rho_{S}+\rho_{S} C_{\alpha}^{+} C_{\alpha}\right)+\sum C_{\alpha} \rho_{S} C_{\alpha}^{+}
$$

To solve the above GKSL equation we use the Quantum Monte Carlo Wavefunction method. It may provide a computational advantage as well as possible additional physical insight from studying the preaveraged single trajectories. The density operator is obtained by averaging over many realizations of a single wavefunction's dynamics:

$$
\rho_{S}(t)=\overline{\phi^{*}(t) \phi(t)}
$$

Examples of observed dynamics of a particle
Free particle - a single trajectory A particle with angular momentum in a stationary state of h.o. at $\mathrm{t}=0$

Zeno effect

Continuously monitored dynamics as a cassical stochastic process

$$
\begin{gathered}
\frac{d}{d t} x=p+\xi_{x}(t) \\
\frac{d}{d t} p=-x+\xi_{p}(t)
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d t} x=p+\xi_{x}(t) \\
\frac{d}{d t} p=\xi_{p}(t)
\end{gathered}
$$

$$
\begin{aligned}
& \left\langle\xi_{x}(t) \xi_{x}\left(t^{\prime}\right)\right\rangle=\mathrm{D}_{\mathrm{x}} \delta\left(t-t^{\prime}\right) \\
& \left\langle\xi_{p}(t) \xi_{p}\left(t^{\prime}\right)\right\rangle=\mathrm{D}_{\mathrm{p}} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

$$
\delta_{x}^{2}(t)=\delta_{x}^{2}(0)+\frac{1}{2}\left(D_{x}+D_{p}\right) t
$$

$$
\delta_{p}^{2}(t)=\delta_{p}^{2}(0)+\frac{1}{2}\left(D_{x}+D_{p}\right) t
$$

$$
\begin{gathered}
\delta_{x}^{2}(t)=\delta_{x}^{2}(0)+\delta_{p}^{2}(0) t^{2}+D_{x} \mathrm{t}+\frac{1}{3} D_{p} t^{3} \\
\delta_{p}^{2}(t)=\delta_{p}^{2}(0)+D_{p} t
\end{gathered}
$$

F. Gampel, M. Gajda, Continuous simultaneous measurement of position and momentum of a particle, Phys Rev. A 107, 012420 (2023)
F. Gampel, M. Gajda, On Repeated Measurements of a Quantum Particle in a Harmonic Potential, Acta Phys. Pol. A 143, S131 (2023)

