Time-continuous measurement of position and momentum
of a particle
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Model of continuous measurement

We formulate a model of a quantum particle continuously monitored
by detectors measuring simultaneously its position and momentum. We
implement the postulate of wave-function collapse by assuming that upon
detection the particle is found in one of the meters’ states chosen as a
discrete subset of coherent states. The dynamics, as observed by the
meters, is thus a random sequence of jumps between coherent states.

Detectors:
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Measurement — Jump operators :
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Gorini-Kossakowski-Sudarshan-Lindblad equation

Open system formalism - In the quantum statistical description we treat
the particle as a (small) open system coupled to the “reservoir”
of detectors.
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To solve the above GKSL equation we use the Quantum Monte
Carlo Wavefunction method. It may provide a computational
advantage as well as possible additional physical insight from
studying the preaveraged single trajectories. The density
operator is obtained by averaging over many realizations of a
single wavefunction’s dynamics:

ps(t) = ¢ () (1)

Quantum Monte Carlo Wavefunction Method

Implementation:
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(i) With probability 1 — > §p, the wave function is the
one obtained from nonunitary evolution (with necessary nor-
malization),
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(11) One of the meters clicks with probability é p, /ép and
the particle jumps to the measured state
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Examples of observed dynamics of a particle

Free particle — a single trajectory

A particle with angular momentum
in a stationary state of h.o. at t=0
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Particle in a harmonic potential

A (E(t)) = 6°(t) + Eo = Dt + (85 + Eo)
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Continuously monitored dynamics as a
cassical stochastic process
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