

unipress

Influence of strain on the excitonic bandgap of AIN epitaxial layers grown on Si and sapphire substrates

¹ Institute of Physics, Polish Academy of Sciences, AI. Lotników 32/46, PL-02668 Warsaw, Poland ² Faculty of Mathematics and Natural Sciences. School of Exact Sciences, Cardinal Stefan Wyszynski University, Dewajtis 5, PL-01815 Warsaw, Poland ³ Institute of High Pressure Physics 'Unipress', Polish Academy of Sciences, Sokołowska 29/37, PL-01142 Warsaw, Poland

Motivation

- Studies of the near band-edge optical properties of AIN layers have been restricted due to technical \checkmark difficulties involved with optical measurements in the deep UV range.
- Synchrotron radiation gives a great possibility to obtain unique experimental data shedding new light on the important properties of the compound that is intensively explored recently.

Aim of the work

The study of defect-related photoluminescence (PL) and photoluminescence excitation spectra (PLE) of the series of AIN layers with different dislocation densities, grown on sapphire or silicon substrates.

ttps://www.lunduniversity.lu.se/article max-iv-facility-handed-over-lund-university

Samples Type 2 Type 1 **AIN** layer **AIN layer** (100-160 nm) **(1 μm) AIN buffer AIN** buffer Silicon Sapphire Grown by PA MBE: 1) on c-plane sapphire 2) on silicon substrate

\checkmark <u>Our goal:</u>

> to to determine experimentally an impact of the substrate type and dislocation densities on the AIN bandgap and its emission properties,

(b)

Exemplary reciprocal space maps of symmetrical 0002 AIN reflection for (a) AIN/sapphire and (b) AIN/silicon

T = 10 K

Ab initio calculations

- Ab initio calculations were performed for the Sa-2 and Si-1 samples using the VASP package.
- The a lattice parameter was set equal to that determined by HRXRD measurements; it was fixed, and the structure was allowed to relax freely along the **c** lattice parameter to minimize the elastic energy.
- > The calculated values of the bandgap energies are equal to 6.33 eV, and 6.16 eV for the AIN/sapphire (Sa-2) and AIN/silicon (Si-1), respectively.
- Additionally, energy gaps for layers on different substrates were calculated according to "model-solid theory": it was assumed that wurtzite AIN thin films grown along the **c**-direction on sapphire or silicon substrates are subjected to biaxial stress induced by the substrate.
- > Under such stress, the wurtzite system exhibits biaxial strain in the **c** plane accompanied by the out-of-plane strain along the **c** axis:

$$\varepsilon_{zz} = -2\frac{C_{13}}{C_{33}}\varepsilon_{xx}$$

 \triangleright Using the elastic constants C_{13} and C_{33} obtained by DFT calculations performed by I. Vurgaftman et al.¹ bandgap energies were evaluated according to the model presented by Q. Yan et al.²: for AIN/sapphire, it was **6.28 eV**, whilst for AIN/silicon, it was **6.13 eV**.

> ¹ I. Vurgaftman and J. R. Meyer, J. Appl. Phys. **94**, 3675 (2003). ² Q. Yan, P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. B 90, 125118 (2014).

Temperature dependence of optical properties of AIN layers

(a)

Optical properties of AIN layers @ 10 K

Deep defect-related low-temperature PL spectra of AIN/AI₂O₃ and AIN/Si samples, excited by the synchrotron radiation with the energy of around 6.35 eV or 6.10 eV, respectively.

PLE spectra of the AIN layers (a) Sa-2 and (b) Si-1, monitored at defect-related emission energy of around 4 eV (upper red line) and 3 eV (lower blue line). The Fabry-Pérot oscillations are associated with interference effects.

The two broad PL bands of deep defect-related transitions in the AIN are connected the most probably with the presence of AI vacancies (V_{AI}):

- > the band around 3 eV was ascribed by Harris et al.³ to $(V_{AI}-O_N)^{2-}$ or $(V_{AI}-Si_{AI})^{1-}$ complex through DFT calculations,
- > the band around 4 eV was identified by Sedhain et al.⁴ as a donor-acceptor-pair type transition involving a shallow donor and $(V_{AI}-O_N)^{2-/1-}$ or $(V_{AI}-Si_{AI})^{2-/1-}$ complex.

¹J. S. Harris et al., Appl. Phys. Lett. **112**, 152101 (2018). ² A. Sedhain, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 100, 221107 (2012).

Temperature dependence of the PLE spectra of the AIN layers (a) Sa-2 and (b) Si-1, monitored at defect-related emission energy of around 4 eV.

> Fitting parameters of the Bose-Einstein expression for the variation of the excitonic bandgap with temperature

Sample	E ₀ (eV)	α (meV)	Θ (K)
Sa-2	6.270±0.001	123±21	448±39
Si-1	6.077±0.001	112±30	532±66

Temperature dependence of A excitonic peak energies in AIN/sapphire (Sa-2) and AIN/silicon (Si-1,). Solid lines are the fits using the expression given by Viña et.al.⁵.

 $E(T) = E_0 - \frac{1}{\exp(\Theta/T) - 1}$

⁵ L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).

Considering the AIN exciton binding energy of 58 meV \Rightarrow the determined bandgap energies of the AIN samples are equal to 6.328 eV for AIN/sapphire (Sa-2), and 6.135 eV for AIN/silicon (Si-1).

Acknowledgements

The authors acknowledge the financial support from the Polish National Science Center under grant 2021/43/D/ST7/01936 and the MAX IV Laboratory for time on Beamline FinEstBeAMS under Proposal 20180493. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish **Research Council under contract** 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496. We would like to thank the FinEstBeAMS beamline staff for expert assistance during the experiments.

*e-mail: agata.kaminska@uksw.edu.pl

Summary

- We demonstrated the possibility of using synchrotron radiation and defect-related PL and PLE measurements to study the excitonic bandgap of AIN epitaxial layers \Rightarrow these measurements allow determination of the bandgaps of the investigated AIN samples and their temperature dependencies, and to compare them with the results obtained so far by other techniques.
- > The structural analysis revealed significant dependence of the dislocation densities and strain directions in the AIN layer on the substrate used for the growth.
- > The optical results revealed that AIN bandgap energies are dependent on the substrate type, and independent of the dislocation density.
- > The bandgap energies obtained by *ab initio* calculations are in very good agreement with experimental data.
- > The obtained results indicate that the dependence of bandgap energy of AIN layers on a substrate is induced by the tetragonal strain related to the lattice mismatch between the substrate and the AIN layer ⁶. This effect has a strong influence on the spectral positions of the intrinsic excitons, and consequently on the bandgap of AIN layers.
 - ⁶A. Kaminska, K. Koronski, P. Strak, A. Wierzbicka, M. Sobanska, K. Klosek, D. V. Nechaev, V. Pankratov, K. Chernenko, S. Krukowski, Z. R. Zytkiewicz, Appl. Phys. Lett. **117**, 232101-1-6 (2020).