Strain relation in GaN nanowires with Al₂O₃ and HfO₂ shells examined by X-ray diffraction and Raman spectroscopy techniques A. Wierzbicka^{(1)*}, R. Szymon⁽²⁾, E. Zielony⁽²⁾, A. Reszka⁽¹⁾, M. Sobanska⁽¹⁾, S. Gieraltowska⁽¹⁾, P. Sybilski⁽¹⁾, and Z. R. Zytkiewicz⁽¹⁾

⁽¹⁾Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.

⁽²⁾ Department of Quantum Technologies, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland. *Corresponding author email: wierzbicka@ifpan.edu.pl

AIM OF THE WORK

- > To check the strain relation between GaN core and oxide shells in nanowire system.
- > To study the type of strain using X-ray diffraction techniques.
- > To calculate the accurate values of lattice parameters of GaN core parts.
- > To find the in-plane (ε_{xx}) and out-of-plane (ε_{zz}) strain values of GaN.
- > To measure lattice vibration mechanisms, crystalline quality and in-plane (ε_{xx}) strain values by Raman spectroscopy.
- > To compare strain relations obtained by XRD and Raman spectroscopy techniques.

GROWTH OF SAMPLES GaN nanowires were grown catalyst-free on nitridated silicon (111) substrates by plasma-assisted molecular beam epitaxy (PAMBE) technique. On this GaN-core parts the following shell parts were grown:

SiN

EXPERIMENTAL TECHNIQUES

X-ray diffraction (XRD):

- X-ray diffraction measurements were performed using a Panalytical X'Pert Pro MRD diffractometer equipped with a lamp with CuKa1 radiation, a hybrid two-bounce Ge (220) monochromator and Soller slits in front of the Pixcel detector.
 - $> \theta/2\theta$ scans to find orientation and phase presence in GaN core oxide shell NWs.
 - > $2\theta/\omega$ scans and reciprocal space maps (RSMs) of 0002, 0004, 0006 GaN symmetrical reflections and -1-124, -1015 GaN asymmetrical reflections.

Analysis of XRD results:

- \geq simulation of symmetrical 2 θ/ω scans by utilizing dynamical theory of X-ray diffraction.
- > calculation of lattice constants and strain relation from RSMs.

Raman spectroscopy:

> SAMPLES H -HfO₂ shell parts with different thicknesses: 5 nm (**H-5**), 10 nm (H-10) and 20 nm (**H-20**) were grown by ALD technique at low Si substrate temperature.

- The micro-Raman measurements were performed at room temperature using the T64000 Horiba Jobin-Yvon spectrometer configured in a backscattering geometry.
 - As a detector a liquid nitrogen cooled multichannel silicon CCD camera was used. A 532 nm semiconductor laser was used to excite the samples (non-resonant excitation).

Sample A-5	5.1808 Å	3.1953 Å	-0.81	0.14	0.13
Sample A-10	5.1807 Å	3.1929 Å	0.48	-0.61	-0.29
Sample A-20	5.1792 Å	3.1926 Å	0.52	-0.88	-0.65
Sample H-5	5.1834 Å	3.1924 Å	-0.23	0.41	0.05
Sample H-10	5.1801 Å	3.1941 Å	0.67	-0.11	-0.001
Sample H-20	5.1851 Å	3.1886 Å	0.35	-0.56	-0.31

The values of lattice constants obtained from XRD RSMs. The ε_{zz} and ε_{xx} strain component calculated from XRD and Raman measurements of GaN/oxide NWs of various shell thickness.

Non-resonant μ -Raman spectra of GaN-core and Al₂O₃shell parts NWs (a) and GaN-core and HfO₂-shell parts NWs (c) compared to pure GaN NWs (b). The measurements were performed with excitation of 532 nm semiconductor laser.

- > GaN E_2^{high} and GaN $A_1(LO)$ phonon modes from GaN-core is observed.
- phonon modes are shifted with the oxide shell thickness.

CONCLUSIONS

- > XRD measurements show good crystallographic quality of the GaN-core, oxide-shells NWs on Si(111) substrates.
- > XRD $2\theta/\omega$ scans of 0002 GaN symmetrical reflection are shifted with the thickness of Al_2O_3 and HfO_2 shells.
- > Accurate values of lattice parameters of GaN core were calculated from GaN 0002 symmetrical and GaN -1-124 asymetrical RSMs.
- > Strain values in out-of-plane ε_{zz} and in-plane ε_{xx} direction were calculated from XRD measurements.
- μ-Raman spectra for samples with core-shell NWs were detected and compared with spectra for pure GaN NWs.
- > Strain values in in-plane ε_{xx} direction were calculated from μ -Raman spectroscopy measurements.
- > The values of in-plane direction ε_{xx} strain are similar from XRD and Raman spectroscopy and changes in the same way.

- strain values in in-plane direction from GaN-core part of NWs changes in the same way from Raman spectroscopy and XRD techniques,
- For the sample with the thinnest oxide shell the strain value change the sign. > The thicker oxide shell the higher strain in in-plane and out-of-plane direction is observed.

parameters of unstrained GaN NW.

 $\varepsilon_{\chi\chi}\cdot 10^{-3}$

 $\varepsilon_{zz} \cdot 10^{-3}$

Strain values from Raman spectroscopy:

where $\Delta \omega$ – is the difference between the position of the GaN-like E2 (high) Raman mode in the studied samples and pure GaN NWs, *a* and *b*- phonon deformation potential parameters, c_{13}, c_{33} - elastic constants of hexagonal GaN.

ACKNOWLEDGEMENTS: The work was partially supported by the Polish NCN grants 2021/43/D/ST7/01936 and 2022/45/B/ST5/02876. Project was partially founded by the Minister of Education and Science within the Program "Pearl of Science". The project number PN/01/0123/2022.