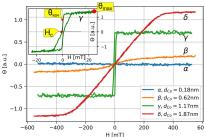


Magnetic properties of Pt/Co/Pt trilayers with W insert layer

W. Dobrogowski¹, R. Gieniusz¹, U. Guzowska¹, Z. Kurant¹, I. Sveklo¹, A. Pietruczik², A. Maziewski¹, A. Wawro² 🔕 1 Department of Physics of Magnetism, Faculty of Physics, University of Białystok, 1L Ciołkowskiego St., 15-245 Białystok, Poland, 🔣 ²Institute of Physics Polish Academy of Sciences,al. Lotników 32/46, 02-668 Warsaw, Poland

are the thicknesses of W and Co layers, were epitaxially grown on sapphire substrate. Methodology The influences of d_{co} and d_{W} on magnetization parameters were studied using polar magnetooptical Kerr effect (PMOKE) and Brillouin light scattering (BLS) methods. The dependence of PMOKE magnetization on applied in-plane field was used to determine uniaxial anisotropy field H_{A1} ; $H_{A1}>0$, $H_{A1}<0$

Data points


 d_0

defining perpendicular and in-plane magnetization configurations, respectively. H_{A1}(d_{Co}, d_W)=0 corresponds to spin reorientation transition (SRT) Co layer thicknesses. The dead layer thickness do was determined from the dependency of maximal PMOKE rotation $\theta_{max}(d_{Co})$ as interception of its linear approximation with horizontal axis (Fig 3) [3]. The strength of interfacial Dzyaloshinskii-Moriya interaction (iDMI) and spin wave (SW) damping for selected d_{co} thicknesses as a function of d_{W} were determined from the dynamic characteristics measured by BLS in Damon-Eshbach mode. The inclination of the dependency of frequency shift between magnon Stokes and anti-Stokes peaks Δf on magnon wavevector q allows us to determine iDMI constant D_c as:

 $D_S = \frac{\pi M_S}{2\gamma} \frac{\Delta f}{q} d_{co}$ where: M_s is magnetization saturation, and γ - gyromagnetic ratio.

Results & Discussions

Fig.1. PMOKE remanence images of: a) sapphire/Pt/W/Co/Pt and b) sapphire/Pt/Co/W/Pt samples. Colour intensity is proportional to $\theta_{\rm REM}$, defined in the Fig.2 inset. The regions with perpendicular magnetic anisotropy (PMA) are visible as light grey areas while the black regions illustrate either in-plane magnetization (thick d_{co}) or nonmagnetic or superparamagnetic states (very thin d_{co}). The blue and red dotted lines describe SRT positions of d_{SRT} and the thickness of dead layer d_0 as a function of d_{W} . The anisotropy fields in Fig. 5 were determined along dashed horizontal lines (Fig.1a).

Exemplary PMOKE Fig.2. hysteresis loops recorded in the Pt/W/Co/Pt sample at the points α , β , γ and δ along the green vertical line (d_w =6.1nm, Fig. 1a). PMOKE rotation angle θ is proportional to the local out-of-plane magnetization. a) $d_{CO}=0.18$ nm - non-magnetic area; β) d_{co}=0.62 nm - nonhysteresis (super)paramagnetic area; γ) d_{co} =1.17 nm "rectangular" shape loop typical for the PMA; δ) $d_{co}=1.87$ nm - non-hysteresis loop typical for magnetization in-plane. The definitions of θ_{max} θ_{REM} , and H_c values, used in further calculations, are indicated by the red dots in the inset.

1,2 1,0 0.8 (a.u.) 0.6 0.4 0.2 0,0

W

Fig.3. An exemplary dependence of $\theta_{max}(d_{Co})$ for d_W =7.9 nm (sample Pt/W/Co/Pt). The intersection of linear approximation (blue line) with θ_{max} =0 corresponds to the magnetic dead layer thickness do.

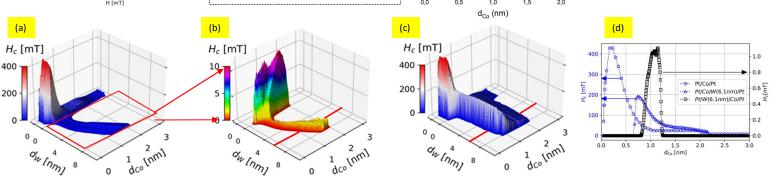
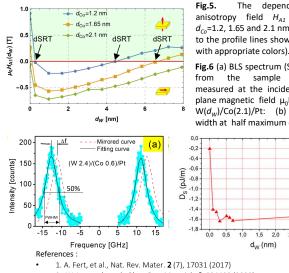
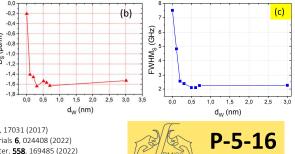



Fig.4 3D maps of coercive fields H_c(d_w, d_{co}) in PMA regions. Figs (a) and (c) show the full ranges of H_c in Pt/W/Co/Pt and Pt/Co/W/Pt samples, respectively. High coercivity regions (red capped) are recorded in the reference Pt/Co/Pt regions. Fig (b) presents magnified part of (a). Fig (d) shows H_c a profile in the reference region and for a W buffer/cover layer thickness of d_w=6.1 nm.



2. W. Legrand, et al., Phys. Rev. Materials 6, 024408 (2022)

3. Z. Kurant, et al., J. Magn. Magn. Mater. 558, 169485 (2022)

The dependences of anisotropy field H_{A1} (d_W) for **Conclusions:** d_{co}=1.2, 1.65 and 2.1 nm (according to the profile lines shown in Fig.1A

Fig.6 (a) BLS spectrum (Stokes f_s (left) and anti-Stokes f_{as} (right) peaks) the sample Pt/W(2.4)/Co(0.6)/Pt (thicknesses in nm) measured at the incidence angle of θ = 40° (q = 15.2 μ m⁻¹) and inplane magnetic field $\mu_0 H_{||}=0.47$ T (light blue points). Sample Pt/ W(d_w)/Co(2.1)/Pt: (b) The dependence of D_s on d_w . (c) Full width at half maximum of Stokes peak (FWHM_s) as function of d_w

Abrupt changes (induced by sub-/few W atomic monolayer) of :

- magnetic anisotropy field H_{A1}
- coercivity field H_c (two orders or two time decrease in the case of W buffer and overlayer, respectively)
- decrease in iDMI constant Ds and width of Stokes peaks (FWHMs)

The difference in the W buffer and overlayer influence on magnetic properties can be explained by modifications of both Co interfaces and crystallographic structure.

W layer-tuned properties are important for designing more complicated nanostructures (synthetic ferromagnets and antiferromagnets with iDMI) which could be perspective for further applications, e.g. magnonic structures.

Acknowledgements:

This work is supported by the National Science Center in Poland under the project OPUS-19 (2020/37/B/ST5/02299).