Magnetic properties of diluted magnetic semiconductor $Ge_{1-x-y}(Si_xMn_y)$ Te crystals

Sana Zakar^a, V.E. Slynko^b, Lukasz Kilanski

^aInstitute of Physics of the Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland

^bInstitute of Materials Science Problems, Ukrainian Academy of Sciences, Wilde Str., 58001 Chernivtsi, Ukraine

Correspondence to: sanaz@ifpan.edu.pl

Abstract

IV-VI materials doped with magnetic impurities hold potential for spintronic applications particularly by integrating the memory component within the semiconducting matrix. This works intends to investigate the carrier mediated magnetic interactions in GeTe lattice alloyed with Mn ions. We present $\text{Ge}_{1-x-y}\text{Si}_x\text{Mn}_y\text{Te}$ bulk crystals by altering their ch emical composition in the range $0.056 \le x \le 0.10$ and $0.0036 \le y \le 0.046$. The magnetic phase transition temperature rises from $T_c = 25$ K to about 160 K for the highest impuri ty level. The analysis of inverse of susceptibility with modified Curie-Weiss law finds ferromagnetic-like interaction in the alloys. The magnetically glassy samples were interp reted with frequency dependent susceptibility. This identified scaling parameter, R = 0.2 - 0.6 which indicate the formation of clusters in the glassy samples. Finally, the high fi eld magnetization data has been used to calculate the number of active magnetic ions in semiconductor matrix.

Conclusion

In conclusion, we have investigated the magnetic properties of a bulk $Ge_{1-x-y}Si_xMn_yTe$ crystal with a different chemical composition of Mn and Si. The crystal has been examine d by temperature dependent magnetic susceptibility and magnetization measurements. Obtained results reveal the transition from paramagnet to ferromagnetic like ordering. The modified Curie-Weiss fitting done in paramagnetic region for analyzing the magnetic ordering and calculate Curie constant and Curie-Weiss temperature. The transition state ha s further been analyzed by frequency dependent susceptibility measurements. Also, the M(H) curves having low coercive field attributes the existence of ferromagnetic state and magnetization saturation was estimated by fitting the phenomenological scaling approach law. The results shows that magnetic saturation Ms values are greatly influenced by cha nging/increasing the magnetic ion Mn concentration.