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Summary 

•The addition of Mn and Se to CdTe increased the hardness of both investigated compounds.  

•Using the etching technique, no subgrain structure was observed in any of the compounds. (Cd,Mn)Te sample has the lowest etch pit density – it has the best quality, which was 

also confirmed by X-ray diffraction studies. 

•In both compounds, two donor-acceptor pair transitions (DAP) exist. Shallow (s) and deep (d) DAP transitions are about 70 meV and 200 meV below exciton lines, respectively. 

•The annealing process in Cd vapors eliminates or reduces the intensity of the DAPd and DAPs PL lines in (Cd,Mn)Te, whereas in (Cd,Mn)(Te,Se) even double annealing does not 

affect these lines. The Cd-annealing was aimed at reducing the concentrations of Cd vacancies, which are acceptors. 

•We investigate both compounds as X- and gamma-ray detectors using a Co-57 source. Only (Cd,Mn)Te detectors can distinguish the 122 keV peak – they are the best. 
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Motivation 

(Cd,Mn)Te single crystal samples. 

Detector response at 300 K 

Photoluminescence spectra at 5 K 

Spectroscopic performance from each pixel of a (Cd,Mn)Te 5 × 5 detector (25 pixels) made 
at 300 K using a Co-57 source. 
The peak in each spectrum is related to 122 keV. The cathode was biased with −700 V. 

CdTe (Cd,Mn)Te 
Etching time: 90 s 
EPD density ~105 cm−2 

Etching time: 180 s 
EPD density ~104 cm−2 

Subgrains examination – etching samples with Inoue solution, which consists of K2Cr2O7, AgNO3, HNO3, H2O. 
Etch Pits form on the sample surface in the region of beginning of the dislocation. 

There are less harmful subgrains in harder materials [1]. 

Crystal quality examination – Rocking-curve (RC) max. resolution: 21 arcsec. 
Triple axis geometry (TA) max. resolution: 9 arcsec. 
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Introduction 

•CdTe-based crystals are investigated for use in room-temperature X-ray and gamma-ray detectors.  

•In this application, high resistivity crystals with high mobility-lifetime product are neccessary. To fulfill above requirements, we need single crystals with minimized number of 

defects. 

•The harder compound, the lower density of defects [1]. We add manganese and selenium to CdTe to increase the hardness of the material and obtain better crystal properties. We 

check whether this approach gives satisfactory results. 

•We study Cd0.95Mn0.05Te and Cd0.95Mn0.05Te0.98Se0.02 crystals grown using the low-pressure Bridgman method. The crystals are 2 or 3 inches in diameter. 
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