Institute of Physics PAS

May 23, 2023

Brief introduction to metal – hydrogen systems investigated with application of the high hydrogen pressure. Stanisław M. Filipek

Outline

- 1. Equipment used for high-pressure hydrogen treatment.
- 2. Hydrides of metals synthesized under high hydrogen pressure.
- 2.1. Nickel and its alloys. Palladium and "cold fusion". Other transition metals (Mn, ZrNi5 etc)
- 2.2. Aluminium
- 2.3. Amorphous alloys
- 2.4. Novel hydrides from Laves type intermetallic compounds ZrFe₂H₄, ZrCo₂H₂, ReT₂H_x (Re-rare earth: T – transition metal); unique YMn₂H₆ and ReMn₂H₆
- 3. Short comment about recent discovery of room temperature superconductivity in LuHnNy

Hydrogen and Metal-Hydrogen systems under High Pressure

P.W. Bridgman (Nobel Prize 1946) initiated challenging studies of matter under very high pressure. His innovative constructions and ideas resulted in characterization and understanding of the behavior of hundreds of substances in extreme pressure conditions. However, he did not try to compress hydrogen neither metal hydrides. P.W. Bridgman, *Physics of High Pressure* (Dover Publications Inc.; New Edition, USA, 1971).

In the same period Wigner and Huntington predicted, basing on quantum mechanical calculations, that molecular hydrogen at about 30 GPa would transform into the metallic state. Unfortunately the high pressure facilities capable to check this prediction were not available at that time. Nevertheless theoretical prediction of Wigner and Huntington together with experimental basis founded by Bridgman resulted in growing interest towards studies of hydrogen and hydrides under extended pressure conditions. **E. Wigner, H.B. Huntington, J. Chem. Phys., 3, 764 (1935).**

The next important step in this exciting challenge has been done by Baranowski who synthesized nickel hydride from elements what required hydrogen pressure of almost 1 GPa.

B. Baranowski, R. Wiśniewski, Bull. Acad. Polon. Sci., ser. sci. chem., 14, 273 (1966).

Professor Bogdan Baranowski - discoverer of the nickel hydride and pioneer of hydrides syntheses under high hydrogen pressure.

In this talk let us focus mainly on two issues:

1. The use of high hydrogen pressures for the synthesis of new hydrides.

2. Investigation of the properties of hydrides subjected to high hydrostatic pressure.

For these two topics, I will discuss mainly the results of the research done together with my colleagues.

In addition, I will briefly present the results of the most advanced research groups (unfortunately I have no part in it) obtained for an extremely difficult but very exciting and challenging problem which is the attempt to metallize hydrogen and check its possible superconductivity.

Experimental techniques

- > High hydrogen pressure equipment:
- piston cylinder system
- Bridgman anvils, belt type device, cubic press
- DAC (EOS and phase transitions)
- XRD and NPD
- Synchrotron (XRD and XANES)
- > DSC

Piston-cylinder apparatus for high hydrogen pressure experiments

 $P(H_2) \le 1.5 \text{ GPa}$

 $T \leq 150^o C$

(1) – internal tube (berylium bronze); (2) and (3) –middle and external cylinders (high strength steel); (4a) and (4b) –tungsten carbide piston and stopper; (5) and (6)- sealing rings; (8) thermometer; (9) – capilary inlet; (10) - mantyle

High Hydrogen Pressure Generating

(our design)

A: Hydrogen gas cylinder, B: Oil pump and pressure gauge, C: Pressure intensifier (to increase the pressure of hydrogen gas from gas cylinder, the intensifier can increase the pressure up to 1 bar, equals to 1000 atm), D: Oil pump and pressure meter, E: Reactor, can increase the pressure up to 1.5 GPa (15 kbar)

High Hydrogen Pressure Generating System

Belt-type high pressure apparatus

H.T. Hall, Ultra-high pressure, high temperature apparatus: The "belt", Rev. Sci. Instrum. 31 (1960) 125-131 T. Irifune *et al.* High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils, C.R. Geosciences (2019), 351 (2) 260.

guide frame (steel/duralumin)

3rd stage (NPD)

2nd stage (WC/SD)

Nano-polycrystalline diamond cubes with an edge length of 6 mm have been used as anvils for Kawai-type multianvil apparatus. The maximum pressure of 88 GPa was confirmed based on in situ X-ray diffraction measurements.

Capsules for belt-type or cubic press

Fig. 5. Ampoule for high hydrogen pressure generation to be used with a conventional quasihydrostatic high pressure apparatus. 1 -sample, 2 -electrical leads, 3 -hydrogen source, 4 -silicon oil(28).

electrical connections 2 for resistance measurements and a substance (like some metal hydrides) playing role of а hvdrogen source 3. Samples and the hydrogen source are separated from each other by a silicon oil or an organic liquid 4. After preliminary compression the gaseous hydrogen is evolved from its source (by thermal decomposition for example) and collects in the area of the sample. In this case no external source of hydrogen is needed and the higher available pressure limit is set up by the type of the quasihydrostatic device. The pressure as high as 9 GPa has been reached so far and several new metallic hydrides were obtained using this method. The similar procedure has been also reported by other groups (60-62).

A serious disadvantage of these devices (28,58,59,60-62) is the direct contact between hydrogen and the medium separating the samples from the hydrogen source. This means that the thermodynamic activity of hydrogen may be quite different from that corresponding to pure hydrogen at the given ١n other pressure. words all these devices (28,58,59,60-62) are not appropriate

 $\rm FiG.$ 2. Cross section of the high-pressure assembly for the cubic anvil apparatus. The synthesizing capsule is placed in the sample space.

out based on the NBS scale of 1971.⁵ The atomic ratios (H/ M) of synthesized hydride and decomposed hydride were determined by analyzing the gases from thermally decomposed hydrides. The analysis was carried out using the Hitachi 163 gas chromatograph directly connected to a vacuum line. The pressure of carrier gas was maintained at about 1 Torr in the exit port. The gas analyzing system consisted of a vacuum furnace, a Tepler pump, and a reduced pressure gas chromatograph. The error of atomic ratio determination depended on the amount of gas generated in a vacuum furnace. When the gas volume was between 20 and 100 μ mol, the standard error of H/M was less than 0.05.

IL RESULTS AND DISCUSSION

Figure 3 shows the relations between the atomic ratios and the temperatures of hydrides obtained at 3.0 and 4.0 GPa. The time duration for synthesis was between 30 min and 2 h. Samarium hydrides were obtained in the atomic ratio from 0.7 to 2.95 under these conditions. SmH_{2.95} (Ref. 6) was synthesized under 3.0 GPa for 1 h at 250 °C and under 4.0 GPa for 1.5 h at 200 °C by using MgH₂ as a solid source of hydrogen. On the other hand, by the use of AlH₃, SmH_{2.95} was obtained under 4.0 GPa for 30 min at 300 °C. Synthe-

FIG. 3. Relation between atomic ratio and the synthesizing temperatures in obtaining samarium hydrides at 3.0 and 4.0 GPa.

sized hydride pellets with high hydrogen content could be parted easily from the palladium disks. They had a thickness of 0.1–0.3 mm and a diameter of 4 mm. Hydrides having hydrogen content higher than 2.9 had a shiny blue and gray appearance and a high metallic luster.

A phase transformation of MgH₂ with a rutile structure under normal condition into β -MgH₂ with hexagonal structure and γ -MgH₂ with orthorhombic structure under high pressures up to 8.0 GPa at high temperature was reported.⁷ Some parts of MgH₂ used for the synthesis of the hydrides were confirmed to transform into β -MgH₂ and γ -MgH₂ under the high pressure up to 4.0 GPa at 2000–300 °C by x-ray analysis. Contrary to the case of MgH₂, AlH₃ was completely decomposed to Al metal under the same condition.

Though MgH₂ is an intermediate hydride, the properties resemble those of a covalent hydride. The heats of formation for MgH₂ and AlH₃ are -11 and -18 kcal/mol at room temperature, respectively.⁸ These materials were expected to decompose and to generate high-pressure hydrogen gas in the capsule. AlH₃ was found to be an excellent solid source of hydrogen. However, it is difficult to estimate partial pressure of hydrogen in a capsule. E. G. Ponatovsky et al.⁹ used MgH₂, NiH, and others as solid hydrogen sources to investigate the electrical properties of some transition metal-hydrogen systems under high pressures. The capsule method developed by the present authors is simple compared to theirs. By this method, it is possible to prepare a massive rare-earth hydride with a high hydrogen content.

ACKNOWLEDGMENTS

The authors are very much indebted to Professor B. Baranowski of the Polish Academy of Sciences, Professor K. Kondo of the Tokyo Institute of Technology, and Dr. T. Hirata of the National Research Institute of Metals for their useful discussions. The assistance of S. Usuba and T. Norma in this study is gratefully acknowledged. The authors thank the Japan Society for the Promotion of Sciences for the financial support of this international cooperative study.

G. G. Libowitz and J. C. Pack, "The growth and some properties of cerium hydride single crystals," in *Proceedings of the International Conference on Crystal Growth*, Boston, 1966.

²O. Greis, P. Knappe, and H. Müller, J. Solid State Chem. 39, 49 (1981).
 ³B. Baranowski, Z. Phys. Neue Folge 114, 59 (1979).

⁴T. Akashi, A. Sawaoka, and S. Saito, Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology, No. 3, 1978, p. 69. ⁵E. C. Lloyd (editor), Accurate characterization of the high pressure environment, NBS Special Publication No. 326, 1971, p. 313.

 $^{\circ}$ SmH_{0.2} and SmH_{1.33} were obtained under 3.0 GPa for 30 min and for 2 h at 250 $^{\circ}$ C, respectively. In addition, under 4.0 GPa for 1 h at 300 $^{\circ}$ C. SmH_{0.7} was obtained, too.

⁷J. P. Bastide, B. Bonnetot, J. M. Léteffé, and P. Clandy, Mater. Res. Bull. 15, 1215 (1980).

⁸W. M. Mueller, J. P. Blackledge, and G. G. Libowitz, *Metal Hydrides* (Academic, New York, 1968), pp. 553-579.

⁹E. G. Ponatovsky, V. E. Antov, and I. T. Belash, "High pressure phases in the metal-hydrogen systems," in *Proceedings of the 8th AIRAPT Conference on High Pressure in Research and Industry*, Uppsala, 1981.

⁴¹Present address: Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland.

DAC aparatus (H. Sugiura, Yokohama, Japan)

Powder samples were pressurized by using DAC apparatus with alcohol medium. Pressure was estimated according the ruby scale. Xray diffraction pattern was measured by energy dispersive type X-ray diffraction system with pure Ge detector. X-ray source was a W tube operated at 47.5kV and 27.5mA. Energy axis of energy spectrum and slit angle in diffraction were calibrated by using fluorescence lines and diffraction lines in cubic InAs patterns.

W.J. Nellis, Metallization of hydrogen

(a) In the first stage of the gas gun (blue shading), hot-burning gases from gunpowder drive a piston, which in turn compresses hydrogen gas. (b) In the second stage (pink shading), the high-pressure gas eventually ruptures a second-stage valve, accelerating the impactor down the barrel toward its target.

W.J. Nellis, Two stage gas-gun

Electrical pins on the target measure the velocity of the shock front as it passes through the target material. Velocity is determined by dividing the difference in pin position by the difference in shock arrival time.

Nellis, W.J., Metallic liquid hydrogen and likely Al2O3 metallic glass, European Physics Journal (2011)

Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ~300 GPa. –

Recent papers on metallization of hydrogen

- 1. M. I. Eremets, I. A. Troyan, A. P. Drozdov, Low temperature phase diagram of hydrogen at pressures up to 380 GPa. A possible metallic phase at 360 GPa and 200 K. arXiv:1601.04479, (2016).
- Dias, R. P.; Silvera, I. F. (2017). "Observation of the Wigner-Huntington transition to metallic hydrogen". <u>Science</u>. 355 (6326): 715–718. <u>Metallization of hydrogen at 495 GPa</u>
- 1. M. I. Eremets, A. P. Drozdov, P. P. Kong, H. Wang, Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys. 15, 1246 (2019).
- 2. M. I. Eremets, P. P. Kong, A. P. Drozdov, Metallization of hydrogen. (2021).
- 3. P. Loubeyre, F. Occelli, P. Dumas, Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631 (2020).
- 4. A. P. Drozdov *et al.*, Superconductivity at 250 K in lanthanum hydride under high pressures Nature 569, 528 (2019)
- 5. Gregoryanz, E. *et al.* Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes 5, (2020) 038101
- 6. G. Gao *et al.*, Superconducting Binary Hydrides: Theoretical Predictions and Experimental Progresses, Materials Today Physics, 21 (2021) 100546.
- 7. L. Monacelli, M. Casula, K.Nakano, F. Mauri, S. Sorella, Quantum phase diagram of high-pressure hydrogen, Nature Physics, March 2023.

Fuji 富士山 3776 m

Ishizuchi 石鎚山 1982 m

Taisetsuzan 大雪山 2290 m

Searching (probably the first) for pressure induced phase transition in metal hydrides

Purely hydrostatic pressure (where pressure transmitting media is chemically inert) can substantially influence properties of materials. The hydrides are not exception. Very likely the first data related to this topic were presented by us during Japanese National High Pressure Conference in Sapporo in 1976. Further development of diamond anvil cell technique and its application for studies of metalhydrogen systems revealed phase transformations in alkaline metal hydrides, in manganese hydride, phase separation in palladium hydride and revealed parameters of EOS (Equation of State), also for other hydrides.

第17回

高圧討論会講演要旨集

1976年10月1~2日

札 幌

共 催

日本化学会・同北海道支部・日本材料学会・同高圧力部門委員会 日本高圧力技術協会・日本鉄鋼協会・化学工学協会・日本機械学会 窯業協会・同東北北海道支部・応用物理学会・日本鉱物学会 日本金属学会・炭素材料学会・電気化学協会・高分子学会 日本学術振興会第117委員会・同136委員会・同138委員会 Influence of high hydrostatic pressure on electrical properties of metal hydrides S.M. Filipek, A. Sawaoka, K. Wakamori and S. Saito Materials from the High Pressure Symposium, Sapporo, 1976

1814 水素化物の電気的性質にちょぼす圧力効果

東京工業大学 工業材料研究所 「EM.スリペク·若森宏志 澤岡 昭· 斎藤道六

水毒化物介種類は非常に多く、これらの物質の物理的、化学的性質は変小にとんている。 アルカリ金属、アルカリ土類金属の水素化物と、アルカリ金属、アルカリ土、海金属の水素 化ホウ素類は化学量論相成をもっ場類である。希土類金属の水素化物は、非化学量論的な 多くの相を作る。この希土類元素水素化物の中で特にセリウム水素化物、ランタン水素化 物は興味がある。Stalinoki (12) Libowice の実験結果から、これらスコの物質は構造的変 化をともなわない成分依存による金属-半等体転移が見られる。この同じ成分領域(11/me =ス8)で、250 Kにおいて、電子的運移がありこれは成分依存による金属-半等体転移と 対応している。このような物質を圧力下で検討することは興味がある。

この研究目的は、次の水素化物(5) アルカリ金属三成分木素化物(Li BH4, Na BH4, Rb BH4, Li APH4) (2) アルカリ土類金属水毒化物(BaH2, MgH, CaH2) (ハ希土類元素木素化物(La H3, CeH3, YbH3)の高圧カ下での電気振抗の測定により、上記の水毒化物の室温高圧カ 下での特性を調べることである。該料は(Li BH4 E除く) 金てアメリカ, Ventrum 社の物を 使用した。(Li BH4 は和光靴築社製) 純度はCaH2, Li APH4-95%, M3H2-85% Na BH4-98%, Rb B H4-78%, BaH2-99.5%, La H3, CeH3~995% である。水素化物は高い反応性を

とっため、操作け全て乾燥アルコン雰囲日気で行なった。水素化物の粉末を金型に入れて圧縮成型後、試料を図1のように 2000年、パイロフェライトアセンブリー は外間をエポキシ樹脂で固めた。実験は 主にブリッジマンアンビル装置を使った が一部はキュービックアンビル装置を使っ て行なった。結果はアルカり金属の水素

1.1		pyrophyllite
		electrode
		sample
	1	boron nitride
		pyrophyllite
-		electrode
		pyrophyllite

化ホウ素類(Li BH4, Na BH4, Rb BH4)の場合、20 kbの所で電気超抗の大きな上角がみら れた。特にLi B H4の変化は大さい。(図,2) この上身の後、電気超抗はほとんど変化しな かった。しかし、そっと共有結合性の強いしはH4では上記のような電気超抗の変化は見ら れず、全圧力領域でえ変化はあまり大きくなかった。アルカリ土類金属水素化物では、MAL の性質は他の正族水素化物とは異なり、安定性に欠けている。MALの原う開距離はMg金属 の原う間距離よりも大きくな3%。高圧下の抵抗理院によっても、MALの特性は他のものこ は異なっていた。BaH2, CaH2の電気超抗対圧力の曲線は徐々に減少した。57×10~20(体)の MH2の場合、10 kbを越えると、抵抗値はM2→21 × 定変化し下。加圧後の×練回析の結果に よりこのように大きな変化は、試料の部分的な分解によって起こると考えられる。57×10~ Cu/(体)の試料の場合、30 kbで同様の変化が起こった。立方体下ンビル装置で圧縮された体 積、0.28 20 の該期は70 はまでは、大きな怒抗の変化はみられなかったが、この場合にも、 加圧後のX線回折の結果から金属相の増加がみられた。希土類元素水素化物(La H3, Ce H3 、Y6 H3)は大気圧で、高振抗半導体である。圧力の上解にともない、La H3, Ce H3の奄気抵抗は徐々に下がる。知好以上では電気超抗の変化の割合は小さくなる。Y6 H3は(図.3)のように20 K0 所で、抵抗力最小値をもつ。

The study on Ytterbium hydride under high pressure is still attractive:

Tomasz Jaroń *et al.* Synthesis, Structure, and Electric Conductivity of Higher Hydrides of Ytterbium at High Pressure, Inorganic Chemistry 2022 61 (23), 8694-8702

Pressure induced phase transitions in the alkali metal hydrides

Table 1. Bulk moduli K₀, its pressure derivatives K₀`, transition pressure P_T and volume changes at the transition of alkali-metal hydrides.

Sample	K₀ GPa		K0`		PT	Volume
	NaCl-type	CsCl-type	NaCl-type	CsCl-type	GPa	change %
^a CsH	7.6 <u>+</u> 1.9	22.3 <u>+</u> 1.5	4.0 <u>+</u> 0.4	4.8 <u>+</u> 0.5	1.2	8.4
ªRbH	10.0 <u>+</u> 1.0	18.4 <u>+</u> 1.1	3.9 <u>+</u> 0.5	3.9 <u>+</u> 0.5	2.2 - 3.1	11.7
²KH	15.6 <u>+</u> 1.5	28.5 <u>+</u> 1.5	4.0 <u>+</u> 0.5	4.0 <u>+</u> 0.6	4.0	13.4
ªNaH	14.3 <u>+</u> 1.5	-	7.7 <u>+</u> 1.0	-	-	-
^b NaH	19.4 <u>+</u> 2.9	28.3 <u>+</u> 3.0	4.4 <u>+</u> 0.5	4.3 <u>+</u> 0.4	29.3 <u>+</u> 0.9	10.0

^a H. D. Hochheimer, K. Strossner, W. Honle, B. Baranowski and S.M. Filipek, Z. Phys. Chem. NF, 143, 139 (1985).

^b S. J. Duelos, Y. K. Vohra, A. L. Ruoff, S. M. Filipek and B. Baranowski, Phys. Rev., 36, 7664 (1987).

To determine formation pressure of metallic hydrides a very useful is measuring stationary electrical resistance as a function of hydrogen pressure

B. Baranowski, S.M.Filipek, Roczniki Chem. 45 (1971) 1353.

i.

Fig. 9a. Electrical resistance of fcc Ni-Si alloys as function of hydrogen pressure. $(o, \bullet) - Ni_{0.98}Si_{0.02}$, $(\Delta, \blacktriangle) - Ni_{0.90}Si_{0.10}$ (open symbols; absorption-, black symbols; desorption branch).

Fig. 9b. Thermoelectric power of fcc Ni-Si alloys as function of
hydrogen pressure.(o) Ni_{0.98}Si_{0.02}, (\Delta) Ni_{0.96}Si_{0.04}, (\Box) Ni_{0.94}Si_{0.06}, (\bullet) Ni_{0.92}Si_{0.08}, (\bullet) Ni_{0.90}Si_{0.10}. (\bullet) Ni_{0.90}

Nickel and nickel alloyed with *p* elements;

Change of resistance and thermoelectric power during hydride formation

S.M. Filipek, A.W. Szafrański, P. Duhaj, *J.Less-Comm. Met,* **101 (1984)** 299.

Ni-Mn-H system

Thermoelectric power of Ni-Mn allos as a function of hydrogen pressure at 298 K.

S.M. Filipek; Polish J. Chem. 71, 1777-1786 (1997).

The stationary relative electrical resistance of Ni-Mn allos as a function of hydrogen pressure at 298 K.

*R*₀ – resistance of sampe at normal pressure of an inert gas. *R*_p – resistance of sample at pressure p of gaseous hydrogen the resistance of nickel hydride at 298 K is about 30% smaller than the resistance of nickel.

Introduction of small quantities of chromium or vanadium to nickel results in a dramatic change of thermopower from $-19.0 \mu V/K$ (for pure nickel) to high positive values (147). This effect was interpreted in terms of virtual bound state of chromium (vanadium) placed near the Fermi level (148). Changes of thermopower of these alloys (Figure 10 and 11) under the hydrogen pressure are quite unusual (25,149). Namely, depending on the concentration of chromium (vanadium) in the alloy, the thermopower change during hydrogenation can be positive or negative. For a certain compohydride sition the transformation into the phase occurs practically without any change of the thermopower. This effect was attributed (149) to the shift of the Fermi energy above virtual bound state level of chromium (vanadium) due to electrons introduced with hydrogen which fill the empty states in the d- and s-bands of the nickel matrix.

Fig. 10. Thermoelectric power of fcc Ni-Cr alloys as function of hydrogen pressure (149). (•) Ni $_{0.995}$ Cr $_{0.005}$, (o) Ni $_{0.975}$ Cr $_{0.025}$, (E) Ni $_{0.920}$ Cr $_{0.080}$, (D) Ni $_{0.89}$ Cr $_{0.11}$.

Fig. 11. Thermoelectric power of Ni-V alloys as function of hydrogen pressure (149). (+) Ni $_{0.97}V_{0.03}$, (•) Ni $_{0.96}V_{0.06}$, (•) Ni $_{0.91}V_{0.09}$, (•) Ni $_{0.88}V_{0.12}$, (o) Ni $_{0.85}V_{0.15}$.

Nickel alloyed with *3d* elements; Hydrides formation

S.M. Filipek, Z. Phys. Chemie NF., 163 (1989) 627.

```
All fcc Ni-Cr alloys considered here form hydride phases
in an isomorphic transition in which a discontinuous chan-
ge of the lattice parameters takes place. Figure 4 shows
lattice parameters of the Ni-Cr hydrides formed at 2.7
GPa(Hp) and at 298K. All samples saturated at these condi-
tions were characterized by a very large lattice parameter
and a high concentration of hydrogen. For Ni-2.5 at%Cr and
Ni-5.0 at%Cr the hydrogen to metal atomic ratio was equal
1.1; for Ni-11 at%Cr it was as high as 1.20. Let us remark
that the hydrogenation of Ni-5 at % Cr carried out for
six hours at 6.7 GPa(H2) and at 573K led to the value
H/(Ni+Cr)=1.14 /12/ (the lattice parameter was the same as
in our case). All the lattice parameters were remarkably
larger than those observed after the electrochemical hud-
rogenation /8/. Lattice parameters of H-free alloys
                                                    Were
as in Ref. /13/.
```

The behaviour of the thermoelectric power for the Ni-Cr-H

Fig. 4. Lattice parameters of Ni-Cr hydride phases obtained at 2.7 GPa(H_2) and 298 K.

Fig. 5. Thermopower S and change of S during hydride formation as functions of Cr content in Ni-Cr alloys.

Nickel alloyed with *3d* elements; Hydrides formation

S.M. Filipek, H.J. Bauer, S. Majchrzak and H. Yamamoto, *Z. Phys. Chemie NF.*, **163 (1989)** 485.

or <u>Pd-Ti</u> do not differ much from that of pure palladium. The VBS of 3d transition metal impurities in palladium hydride has been discussed by Friedel /5/ and Daniel /6/, but without considering changes of hydrogen concentration within the β -hydride phase. A similar problem was studied in details for the Pd-Ru-H system by Wicke et al./7,8/ who reported the appearance of hydrogen induced magnetic moments localized on ruthenium for certain ranges of hydrogen concentrations in <u>Pd-Ru</u> alloys. The model proposed to explain this experimental result is shown in Fig. 1.

Magnetic moments on ruthenium give rise to Kondo minima in the temperature dependence of the electrical resistivity /9/. Let us remark that a similar phenomenon has been observed for such nickel based VBS alloys as Ni-Cr /10/ and Ni-V /11/, hydrogenated using high pressure technique. In the case of Cr-rich <u>Ni</u>-Cr-H alloys Kondo type minima were found at unusually high temperatures /10/.

In this work the thermoelectric power, which is a property very sensitive to changes in the electronic structure in the vicinity of the Fermi level, has been measured as a function of hydrogen pressure for several Ni based and Pd based alloys. A similar behaviour has been observed for

Fig. 1. A model describing the appearance of localized magnetic moments (LMM) in the (Pd-Ru)-H system. a) Virtual bound states of ruthenium in H-free palladium. b) Spin splitted VBS in β -PdH_n at the low n limit. The Fermi level crosses the spin up sublevel giving rise to the LMM due to uncompensated spins. c) Further increase of hydrogen concentration results in a shift of the Fermi level above the upper limit of the splitted VBS. In consequence the LMM disappear. (According to Wicke et al./7,8/).

Local disturbances in the Electron Liquid; Virtual levels

A virtual bound level is a region of space and Energy around a foreign ion in a metal in which itinerant electrons linger and temporarily assume to a marked degree the atomic features of the precursor atomic state. Physically, the virtual level is formed from a resonance (hybridization) between the Energy level of an outer orbital of foreign atom and those levels in the host's conduction band that have comparable energy.

J. Hurd, Electrons in metals 1975

Virtual levels and hydride formation

A.W. Szafrański, S.M. Filipek, *Z.Phys. Chem. (N.F.)* **147** (1986) 15

value of the nickel hydride. This behaviour can be qualitatively explained using a schematic model shown in Fig.3. When nickel (Fig.3a) transforms into Ni-hydride (Fig. 3b) the electrons introduced by the hydrogen fill up the empty

Nickel alloyed with *p* and 3d elements; **Hydrides formation**

S.M. Filipek, Z. Phys. Chemie NF., 163 (1989) 627.

Ni-Cr-H

Hydrogen in amorphous alloys

A consistent interpretation of the results is given within the framework of a Fermi-Dirac statistics, developed and used recently for the interaction of hydrogen with defects in solids. Equivalent to electrons in metals, hydrogen is distributed among sites of different energy caused by the disorder in an amorphous metal. By assuming a gaussian distribution of site energies for an amorphous metal it was shown by Kirchheim (j. Non-Cryst. Solids, 70 (1985) 23) that the chemical potential of hydrogen should be related to the hydrogen concentration by the following equation:

 $\mu = E' + \sigma \text{ inverf } (1 - 2c)$

Where σ is the width and E' the everage energy of the gaussian distribution

Hydrogen in amorphous alloys

Chemical potential of hydrogen in amorphous Pd82Si18 at 295 K vs. inverse error function erf /1 - 2x/. The dotted line corresponds to a chemical potential which contains H-H interaction term 0,12 x eV per hydrogen atom.

4. CONCLUSIONS

It has been shown that the measured activity of hydrogen in amorphous Pd–Si alloys can be described with the following assumptions:

(1) Hydrogen is dissolved in a solid matrix with a spectrum of different sites or a spectrum of binding energies, respectively, where the thermal occupancy of the sites is given by Fermi-Dirac statistics.

(2) A Gaussian function is an appropriate distribution function of site energies to describe hydrogen activity over eighteen orders of magnitude.

(3) Deviations from this theoretical treatment occur at concentrations of H/Pd > 0.1 and can be interpreted either by a repulsive H–H interaction energy within the framework of a quasichemical approach or by a smaller number of available interstices in the amorphous structure in comparison with crystalline Pd.

A. Szokefalvi-Nagy, S.M. Filipek and R. Kirchheim, .Phys.Chem.Solids Vol. 48 No7 (1987) 613-619.

SEARCH FOR "COLD-FUSION" IN SOME Me-D SYSTEMS AT HIGH PRESSURES OF GASEOUS DEUTERIUM*

B. BARANOWSKI and S. M. FILIPEK

Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland)

M. SZUSTAKOWSKI, J. FARNY and W. WORYNA

Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw, P.O. Box 49 (Poland) (Received September 19, 1989)

Summary

Metallic palladium and nickel were treated with gaseous deuterium at 298 K to pressures of 3.1 GPa and 1.0 GPa respectively. The high concentrated deuterides did not exhibit, at long time equilibrium as well as in dynamic conditions, evidence of neutron emission nor evolution of heat due to possible "cold fusion". The volume concentrations of deuterium definitely exceeded those achieved by electrolytic charging. Electrical resistance measurements of palladium deuteriu, a above the estimated stoichiometry of octahedral vacancies. A partial filling up of tetrahedral vacancies probably takes place. Electrolytic charging in high pressures of gaseous deuterium did not improve the negative observations above. Thus the observations of deuterium in the palladium and nickel lattice as well in equilibrium as in dynamic conditions (phase transitions, high pressure electrolysis).

1. Introduction

The recently published information about "cold fusion" in electrolytically prepared palladium deuteride [1] presents an attractive challenge for Me–D systems.

However, the electrochemical preparation used [1] has three disadvantages.

(1) The thermodynamically reversible range is rather limited and uninteresting for "cold fusion" purposes, but in the range of large overpotentials the activity of the electrode surface is hardly reproducible and stable. Thus results obtained at different places cannot be compared in an objective way and station-

So colled "Cold fusion"

Thus the observations of Fleischman and Pons in are not confirmed at higher volume concentration of deuterium in the palladium and nickel lattice as well in equilibrium as in dynamic conditions (phase transition, high pressure electrolysis)

0022-5088/90/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

^{*}Results of this paper were presented on July 20 on the high pressure conference (AIRAPT) in Padeborn (F.R.G.).

S.M. Filipek, V. Paul-Boncour, Ru-Shi Liu, ZrNi5-based hydrogenated phases under high hydrogen pressure conditions, Appl. Surface Science, 257 (2011) 8237-8240

Fig. 4. Time dependence of lattice parameters of α and β phases of ZrNi₅H_x sample calculated from data given in Fig. 2.

Fig. 5. Time dependent of weight percent of α and β phases of ZrNi₅H_x sample calculated from data given in Fig. 2.

Table 1

Comparison of hydrogen absorption in Zr-Ni based alloys performed in different conditions.

Sample	Lattice parameter [Å]	Unit cell volume [Å ³]	Volume expansion/f.u. ΔV/Z [Å ³]	Calculated hydrogen content H/f.u.	Conditions of treatment
Parent ZrNi5	6.7030	301.167			
α ₀ -phase	6.7335(7)	305.293	1.03	0.38	
α ₁₀₀ -phase	6.7092(3)	302.000	0.21	0.08	After treatment at 0.9 GPa(H ₂)
β ₀ -phase	6.7713(3)	310.463	2.324	0.86	
ZrNi ₅	6.7027(3)	301.131			
ZrNi ₅ H _{0.5}				0.5	Treatment at 10 MPa (H-) Ref [6]
La _{0.5} Zr _{0.5} Ni ₅ (by ball milling)	a = 4.8704	82.77			freatment at foliera (H2) Kei.[0]
	c=4.0293				
La _{0.5} Zr _{0.5} Ni ₅ H _{1.12}				1.12	
ZrNi ₅	6.683	298.5			Treatment at 2.5 MPa (Ha) Ref. [4]
ZrNi ₅ H _{0.57}	6.707	299.8	0.76	0.57 (0.28)	reachene at 2.5 km a (112) kei. [4]
ZrNi _{4.8} Al _{0.2}				0.005	By cathodic
					charging; Ref. [5]
Zr9Ni91	2.851 (bcc)				
Zr ₉ Ni ₉₁ H ₅₂				0.52*	Treatment at 700 MPa. Ref. [12]
Zr ₉ Ni ₉₁ H ₃₉	Amorphous			0.39*	freather at 700 mild. Ref. [12]

Manganese hydrides

The Fig.1 represents results plotted in the T - $p(H_2)$ diagram together with previous data.

of the $hcpMnH_X$ (our results). $\bigcup hcpMnH_X$ (Ref. 1). --- ons

S.M. Filipek, S. Majchrzak, A.B. Sawaoka, M. Cernansky, *High Press. Res.* 7, 271 (1991).

Sample 1 hcp MnH _{0.84}	1.0 GPa (H ₂) and 500 K (during 48 hours)	(<i>a</i> =2.700 Á, <i>c</i> =4.378 Á)
Sample 2 f cc MnH_{0.64}	1.2 GPa (H ₂) and 800 K during 72 hours	non Ferromagnetic (<i>a</i> =3.827 Á)
Sample 3 fcc MnH _{0.30} N _{0.08}	1.0 GPa (H ₂) and 600 K (during 50 hours). The small amount of nitrogen was added to the hydrogen gas.	Ferromagnetic (<i>a</i> =3.856 Á)

X-ray diffraction pattern for fcc- MnH_{0.64} (sample 2) observed during the in situ measurements in DAC aparatus

Compression curves of manganese hydrides. For sample 2 the closed symbols correspond to reduction of pressure. For other samples data for pressure increase and reduction did not differ.

S.M. Filipek, H. Sugiura, T. Skoskiewicz: AIRAPT-17 Proc. Science and Technology of High Pressure (Murli H. Manghnani, William J. Nellis and Malcolm F. Nicol Eds.) Universities Press, Hyderabad, India **2000** p. 550-554.
Influence of hydrostatic pressure on MnH_{0.64} and MnH_{0.30}N_{0.08} samples

S.M. Filipek, H. Sugiura, T. Skoskiewicz: AIRAPT-17 Proc. Science and Technology of High Pressure (Murli H. Manghnani, William J. Nellis and Malcolm F. Nicol Eds.) Universities Press, Hyderabad, India **2000** p. 550-554.

Aluminum hydride

 AIH_3 can be synthesized in a reaction between lithium aluminum hydride and aluminum chlodride carried out in an organic solvent. Formation of AIH_3 from elements required pressure higher than 2.8 GPa(H₂) and temperature T = 573 K.

M. Tkacz, S.M. Filipek, B. Baranowski, Polish J.Chem., 57 (1984) 651.

Baranowski, B.; Tkacz, M.; Filipek, S. High pressure investigations of the AI-H system. Mater. Res. Soc. Symp. Proc. 1984,22, 53– 56.

Studies of Laves Phase Hydrides

- Introduction and Experimental Techniques.
- Novel Laves phase hydrides synthesized under high hydrogen pressure;
- Simple lattice expansion case (ZrFe₂H₄, ZrCo₂H₂)
- Derived by expansion and distortion of the parent lattice (ErFe₂H₅, YFe₂H₅)
- Derived by the total restructurization of the parent lattice (YMn₂D₆, ErMn₂D₆, DyMn₂D₆ and HoMn₂D₆)
 Never observed before in Laves-based hydrides
- Selected properties of novel RMn₂D₆ hydrides.
- Studies under high hydrostatic pressures.
- Summary and Conclusions

Laves phases

- > In recent decades, a large number of intermetallic compounds have been synthesized and their properties have been studied. Among them AB₂ Laves phases attract especially great interest due to their physical properties and possible practical applications. These phases can be formed from various elements of different groups of the Periodic Table. For instance they can contain Y, Zr or Rare - earth and a transition metal.
- The Laves AB₂ compounds can crystallize in three structures: cubic - C15 (MgCu2) and two hexagonal - C14 (MgZn2) and C36 (MgNi2).

Laves intermetallics RT₂ C15 (*Fd3m*) C14 (P6₃/mmc)

Laves – Hydrogen absorption

- Hydrogen absorption in intermetallic compounds of rare earth and transition metal has raised interest in both fundamental and application field (H storage, batteries...).
- In RT₂ compounds, hydrogen absorption leads to the formation of several single-phase hydrides, which crystallize in different structures, derived from that of the parent compound. The lowering of the crystal symmetry has been related to hydrogen ordering in preferential interstitial sites.
- In all the RT₂ hydrides the modification of the crystal structure accompanied by an increase of the cell volume, leads to a change of the magnetic properties. The increase of the T-T distances and the change of the atomic bounds, due to various H surrounding explain this evolution.

LAVES phases

 AB_2 A = Er, Y, Zr, REB = Fe, Co, Mn

XRD and NPD measurements

- The X-ray diffraction (XRD) patterns were measured with a D8 Brucker diffractometer equipped with a rear graphite monochromator in the range $10^{\circ} < 2\theta < 120^{\circ}$ with a step of 0.02° using Cu K α radiation.
- The neutron powder diffraction (NPD) patterns of the deuteride have been registered at 2 K and 80 K on the 3T2 diffractometer and at 1.5 K, 80 K and 290 K on the G4.1 diffractometer at the Laboratoire Léon Brillouin (LLB) at Saclay. For the 3T2 experiment the wavelength was 1.225 Å and the angular range 6° < 2 < 125 $^{\circ}$ with a step of 0.05 $^{\circ}$. For the G4.1 experiments the wavelength was 2.427 Å and the angular range was $2^{\circ} < 2 < 82^{\circ}$ with a step of 0.1° . The deuteride sample was contained in a vanadium sample holder. All the XRD and NPD patterns were refined with the Rietveld method, using the Fullprof code. The line shapes were refined with a Pearson VII function.

Synchrotron Measurements

- Synchrotron XRD experiments were carried out in the BL 01C2 beam line (National Synchrotron Radiation Research Center (NSRRC), Taiwan) by using a DCM monochromator with a wavelength of synchrotron radiation 1.3332Å. Structural refinements were made with X-ray data by using GSAS program.
- The Mn and Fe K-edge XANES measurements were recorded in absorption mode for synthesized alloys and their hydride mounted on a scotch tape, at BL 17C Wiggler beam line (NSRRC) using a double-crystal Si (111) monochromator. The X-ray harmonic was rejected by mirrors. The ion chambers used for measuring the incident (I0) and transmitted (I) beam intensities were filled with a mixture of N2 and H2 gases and a mixture of N2 and Ar gases, respectively. Energy calibration was carried out by using the first inflection point of the spectrum of Mn and Fe metal foils as references (Mn K-edge: 6539 eV and Fe K-edge: 7112 eV). Reference spectra were simultaneously collected for each in situ spectrum by using Mn and Fe metal foils.

Hydrides formed by simple lattice expansion (ZrFe₂H₄, ZrCo₂H₂)

ZrFe₂ - H₂ system

P(H₂)=0.35 GPa T = 100°C

Compound	Space group	a (Å)	V, Å ³	∆V/V (%)
ZrFe ₂	Cubic (Fd3m)	7.072	354	ł
ZrFe ₂ H ₄	Cubic (Fd3m)	7.637	445	26

S. M. Filipek, I. Jacob, V. Paul-Boncour, A. Percheron-Guegan, I. Marchuk, D. Mogilyanski, J. Pielaszek: *Polish J. Chem.*, **75** 12), (2001), 1921-1926.

ZrFe₂ or ZrCo₂ C15 (*Fd3m*) C15 (*Fd3m*)

S. M. Filipek, I. Jacob, V. Paul-Boncour, A. Percheron-Guegan, I. Marchuk, D. Mogilyanski, J. Pielaszek: *Polish J. Chem.*, **75**, (12), **(2001)**, 1921-1926.

ZrFe₂H₄ Magnetic measurements

Thermomagnetization curves

Magnetization curves of **ZrFe₂ and ZrFe₂H₄**

of **ZrFe₂ and ZrFe₂H₄**

 $\label{eq:main_series} \begin{array}{ll} \mbox{ZrFe}_2: & \mbox{Ms} = 1.78 \ \mu_{B} / Fe \\ \mbox{ZrFe}_2 H_4: & \mbox{Ms} = 1.88 \ \mu_{B} / Fe \end{array}$

$ZrFe_2 - D_2$ system

ND

RESULTS:

Refined ND pattern of a ZrFe₂D₄ (270 K)

V. Paul-Boncour, F. Bouree-Vigneron, S.M. Filipek, I. Marchuk, I. Jacob, A. Percheron-Guegan, 356-357 (2003) 69

ZrCo₂ - H₂ system

XRD

Cubic (Fd3m)

ZrCo₂H₂

 $P(H_2) = 1.0 \text{ GPa}$ T = 100°C

V. Paul-Boncour, F. Bouree-Vigneron, S.M. Filipek, I. Marchuk, I. Jacob, A. Percheron-Guegan, J.Alloys and Comp.. 356-357 (2003)

7.267

384

14

ZrCo₂D₂

Refined ND pattern of a ZrCo₂D₂ (10 K)

RESULTS:

ZrCo₂ *a* = **6.993** Å Cubic *Fd3m*

 $ZrCo_2D_x a = 7.191 \text{ Å}$ Cubic *Fd3m*

ZrCo₂D_x *a* = 2 *7.191 = 14.382Å Cubic *F43m*

 A_2B_2 $x = 1.65 D/ZrCo_2$

V. Paul-Boncour, F. Bouree-Vigneron, S.M. Filipek, I. Marchuk, I. Jacob, A. Percheron-Guegan, J. Alloys Comp. 356-357 (2003) 69

Stabilization effect of V addition

N. Takeichi, H. Tanaka, N. Kuriyama AIST I. Marchuk, R. Sato S.M. Filipek – IPhChem. PAS

Hydrides derived by expansion and distortion of the parent lattice (ErFe₂H₅, YFe₂H₅)

• Synthesis at 10 Kbar (H₂), 397 K, 7 days, but!!!

a) with rapid exposition, without cooling, to high hydrogen pressure – **SEGREGATION!**

b) appropriate hydrogenation resulted in synthesis of YFe₂H₅ – **SYNTHESIS OF NOVEL HYDRIDE!!**

V. Paul-Boncour, S.M. Filipek, A. Percheron-Guegan, I. Marchuk, J. Pielaszek: Journ. Alloys Comp., 317-318 (2001) 83-87.

YFe₂/ErFe₂ (Cubic Fd3m)

YFe₂H₅ (Orthorhombic *Imm2*)

K. Shashikala, P. Raj, A. Sathyamoorthy, Mat. Res. Bull., 31, (1996), 957 . Paul-Boncour V, Filipek S M, Marchuk I, André G, Bourée F, Wiesinger G, Percheron-Guégan A. J. Phys.:Cond. Matt. 2003; 15: 4349-59

		Lattice parameters (Å)			V, Å ³
Compound	Space group	ũ	Ø	0	
YFe ₂	Cubic <i>(Fd3m)</i>	7.36	-	-	398
YFe ₂ H ₅	Orthorhombic(Imm2)	5.437	5.850	8.083	257

Paul-Boncour V, Filipek S M, Percheron-Guégan A, Marchuk I, Pielaszek J. J. Alloys Compds 2001; 317-318: 83-87

Magnetic measurements

 $\frac{YFe_2}{YFe_2} M = 2.9 \ \mu_B / YFe_2$ $YFe_2H_5 \ M_s = 0.8 \ \mu_B / YFe_2$

Temperature dependant magnetization of YFe_2H_x compounds for x= 3.3 and 5 H/f.u.)

/lagnetization versus fields of YFe₂H₂ (T=6K)

V. Paul-Boncour, S.M. Filipek, A. Percheron-Guegan, I. Marchuk, J. Pielaszek: Journ. Alloys Comp., 317-318 (2001) 83

YFe₂D₅

Mössbauer spectrum recorded from YFe_2D_5 at various temperatures; O - experimental points; Solid line - total spectrum.

G. Wiesinger, V. Paul-Boncour, S.M. Filipek, Ch. Reichl, I. Marchuk, A. Percheron-Guéguan - 2004

rel. transmission / %

ErFe₂D₅

Neutron diffraction

Results:

3.8 % ErFe₂D₄ *a* = 7.781 Å *Cubic (Fd3m)*

96.2% $ErFe_2D_5$ a = 5.418 Å, b = 5.732 Å, c = 7.936 Åorthorhombic (Pmn21)

 A_2B_2 and AB_3 4.62 D/ErFe₂

V. Paul-Boncour, S.M. Filipek, I. Marchuk, G. Andre, F. Bouree, G. Wiesinger, A. Percheron-Guegan, J.Phys.; Condens. Matter 15 (2003) 4349

Refined ND pattern of a $ErFe_2D_5$ compound measured on the 3T2 spectrometer at 270 K. YMn₂D₆ Hydride derived by the total restructurization of the parent lattice **Never observed before in Laves - hydrogen systems**

YMn₂ (C15 Laves) and YMn₂D₆

Chien-Yuan Wang, Valerie Paul-Boncour, Chia-Cheng Kang, Ru-Shi. Liu, Stanislaw M. Filipek, Maria Dorogova, Iryna Marchuk, Toshiya Hirata, Annick Percheron-Guegan, Hwo-Shuenn Sheu, Ling-Yun Jang, Jin-Ming Chen, and Hung-Duen Yang, Solid State Communications **130** (2004) 815-820.

Rietveld refinement for XRD pattern of YMn₂D₆. Phases: 1) YMn₂D₆, 2) Y₂O₃, 3) YMn₂D_{4.5}

Table : XRD results for YMn₂D₆

Sample	Space group	Lattice parameters	
YMn ₂	Fd3m	a=7.681 Å	400.06 Å ³
YMn ₂ D ₆	Fm3m	a=6.709 Å	299.34 Å ³

Formation of YMn_2D_6 (cubic *Fm3m*) from YMn_2 (C15).

New hydride YMn₂H₆

• A new phase YMn₂D₆ was synthesized by submitting YMn₂ to 1.7 kbar deuterium pressure at 473 K. According to X ray (XRD) and neutron powder diffraction (NPD) experiments, YMn_2D_6 crystallizes in the K_2 PtCl₆-type cubic structure with a =6.709(1) Å at 300 K. The Y and half of the Mn atoms occupy statistically the 8c site whereas the other Mn atoms are located in 4a site and surrounded by 6 D atoms (24 e). No ordered magnetic moment is observed in the NPD patterns and the magnetization measurements display a paramagnetic behaviour. The study of the thermal stability by Differential Scanning Calorimetry and XRD experiments indicates that this phase decomposes in YD_2 and Mn at 625 K, and is more stable than $YMn_2H_{4.5}$.

Differential Scanning Calorimetry

TA-Q100 DSC apparatus

Evolution of the DSC signal versus temperature for YMn₂H₂, YMn₂H₃, YMn₂H_{4.5} and YMn₂D₆

The large endothermic peak observed in YMn_2D_6 (T_{max} = 664 K and H=200±2 J/g) can be attributed to the decomposition into YD_2 and α -Mn which is complete at 673 K

V. Paul-Boncour, S.M. Filipek, M. Dorogova, F. Bourée, G. André, I. Marchuk, A. Percheron-Guégan, R. S. Liu, J. Sol.State Chemistry 178 (2005) 256

Evolution of the YMn₂D₆ patterns after various DSC treatments. The temperatures correspond to the DSC experiment maximum temperatures.

Table: XRD results for YMn₂D₆ after DSC experiments

Tmax (K)	phase	%	cell parameter	Remarks
298	YMn ₂ D ₆ YMn ₂ D _x Y ₂ O ₃	91 7 2	a =6.709 Å a =8.210 Å	
523	YMn ₂ D ₆ YMn ₂ D _x Y ₂ O ₃	87 8 5	a =6.707 Å a =8.200 Å	
573	YMn ₂ D ₆	100	a= 6.7050 Å	Additional lines have disappeared
593	YMn ₂ D ₆ YD ₂	62 38	a= 6.705 Å	
623	YMn ₂ D ₆ YD ₂ Mn	22 35 42	a =6.688 Å	small particles
673	YD ₂ Mn	44 55		broad lines due to the small size of the diffracting domain
723	YD ₂ Mn	44 55		
873	Y ₂ Mn ₂ O ₇			

New hydride YMn₂H₆

- The random (Y, Mn) substitution on the 8c site is rather surprising due to the difference of the metallic atomic radius between the Y (1.80 Å) and the Mn (1.35 Å) atoms. However this can be related to the fact that this phase has been obtained with a complete reorganization of the atom location under pressure.
- The deuterium atoms are not located into interstitial sites (A2B2 or AB3) like in other YMn₂H_x hydrides but form octahedra around the Mn2 atoms. The distances between the D atoms (d=2.34 Å) are larger than the Switendick criterium d=2.1 Å, whereas the Mn2-D distances (1.65 Å) are shorter than the sum of the atomic metallic radius (1.75 Å). The Mn1 and Y atoms have 12 D neighbors at 2.37 Å.

New hydride YMn₂H₆; Mn-H bonding

The Mn2-D distances (d(Mn-D) = 1.65 Å) are close to those observed in other M₂TH₆ hydrides. For example, in Mg₂FeH₆, d(Fe-D) = 1.556 Å and in Mg₂OsH₆, d(Os-D) = 1.682 Å. These short distances are indicative of covalent bonding. These hydrides can therefore be considered as coordination compounds rather than interstitial metal hydrides. In addition these M₂TH₆ compounds are described as complex anions TH_6^{4-} surrounded by a cage of divalent M²⁺ cations. Assuming the same type of electronic configuration for YMn_2D_6 , one should suppose that the Mn atoms surrounded by the D atoms (Mn2) are Mn²⁺ whereas the Mn on the 8c site (Mn1) should be Mn⁺, if we consider that the Y atoms are Y³⁺.

Under influence of hydrogen the Laves phases C15+C14 (DyMn₂,HoMn₂) and C14 (ErMn₂) would transform into...?

...the same structure as YMn₂D₆ (Fm3m) through complex rearrangement of the (C15 or C14!!) lattice!!!

S.M. Filipek, H. Sugiura, V. Paul-Boncour, R. Wierzbicki, I. Marchuk Studies of Novel Deuterides RMn2D6 (R – Rare Earth) compressed in DAC up to 30 GPa *submitted to J. Phys.C.; Condens. Matter*

Experimental and refined NPD pattern of ErMn₂D₆ at 300K

V Paul-Boncour, S M Filipek, G André, F Bourée, M Guillot, R Wierzbicki, I Marchuk, R S Liu, B Villeroy, A Percheron-Guégan, H.D. Yang, S. C. Pin, J.Phys.: Condens. Matter **18** (2006), 6409-6420.

Novel ErMn₂D₆ deuteride

> A new phase $ErMn_2D_6$ has been prepared by applying high hydrogen pressure on C14 ErMn₂. This phase is isostructural to YMn_2D_6 and crystallizes in a disordered fluorite structure with Er and half the Mn atoms randomly substituted on the same 8c site and the other Mn atoms forming octahedral MnD₆ units. This complex hydride is very stable and decomposes into ErD_3 and Mn at about 630 K. The reverse susceptibility follows a Curie Weiss law with an effective moment of 10 µB similar to that of $ErMn_2$. But although a saturation magnetization of 4 μ B, which is half that of ErMn₂ at 2 K is observed, no long range magnetic order was found in the NPD patterns. However short range order corresponding to both ferromagnetic and antiferromagnetic correlations are observed up to 5 K. The chemical disorder of Er and Mn atoms on the 8c site should prevent the long range order and favours a distribution of Er spins orientation.

DSC curves of YMn_2D_6 and $ErMn_2D_6$ measured with a speed of 20 K/mn.

V. Paul-Boncour, S.M. Filipek et al. J. Phys.: Condens. Matter 18 (2006) 6409-6420

Table. Structural properties of RMn₂ and RMn₂D₆ compounds (R= Er, Y, Ho and Dy) V/Z (Å³) c(Å) V(Å³) **A** (Å) Ζ $\Delta V/V_0(\%)^a$ Compound Structure; percentage 8 7.6791 56.60 YMn, C15; 100% 452.82 YMn_2D_6 Fm-3m, 100% 6.7083 301.89 4 75.47 33.33^c 5,3606 C14; 4% 8,7343 217,36 4 54,34 DyMn, 8 54,59 C15; 95% 7.5872 436,76 Fm-3m; 100% 6.720 303.52 75.88 **39,63**^b 4 DyMn₂D₆ 38.98^c 5,3269 8,6885 53,38 C14; 19% 213,51 4 HoMn, C15; 80 % 8 7,5430 429,17 53,65 **39,46**^b 6.677 4 74.44 Fm-3m; 100% 297.78 HoMn₂D₆ **38.77**^c C14, 100% 5.2949 8.6446 209.90 4 52.47 ErMn, 74.51 **42.00^b** Fm-3m, 100% 6.6796 298.04 4 ErMn₂D₆

^aVariation of the molecular volume: $\Delta V/V_0 = (V_{deuteride} - V_{parent})/V_{parent}$

^bValue calculated with respect to the parent C14 structure.

^cValue calculated with respect to the parent C15 structure.

The YMn₂D_{1.15} and YMn₂D₂ undergoes spinodal like phase separation; at the highest pressure limit (30 GPa) the amount of hydrogen enriched phase is estimated at 34% for YMn₂D_{1.15} and 59% for YMn₂D₂, respectively. YMn₂D_x (where *x*=3.4 or 4.0) do not decompose but high value of *KO* ' at initial pressure range is still observed just like in its parent (hydrogen free YMn2) compound. The bending near 8 GPa observed in the compression curves reflects that the bulk modulus of these compounds should change

H. Sugiura, S. M. Filipek, V. Paul-Boncour, I. Marchuk, R.-S. Liu, S.I. Pyun, Nukleonika 2006;51 (Supplement 1): S73-S77.

Energy dispersive patterns of YMn₂D₆; ErMn₂D₆; DyMn₂D₆ and HoMn₂D₆ taken at different pressures

0.12 0.11

HoMn₂D₆

0.12 0.11

Pressure dependence of the molar volume of $HoMn_2D_6$, $ErMn_2D_6$, $DyMn_2D_6$ and YMn_2D_6 .

Sample	Vo cm3/mol	Ko [GPa]	<i>K</i> o'	n	Remarks	Refer.
YMn ₂	34.02	21.6	13.2	21	<i>Cubic</i> C15 (low pressure segment <i>P</i> <8GPa)	[1]
	31.24	83.1	7.13	29	<i>Cubic</i> C15 (high pressure segment <i>P</i> >8Gpa)	
YMn ₂ D _{3,4}	40.11	60.28	4.0 fixed	11	<i>Cubic C15</i> (low pressure segment <i>P</i> <8GPa)	
	37.80	133.9	4.0 fixed	20	<i>Cubic</i> C15 (high pressure segment <i>P</i> >8Gpa)	
YMn ₂ D ₄	41.65	46.07	4.0 fixed	27	Rhombohedral (low pressure segment)	
	38.22	153.0	4.0 fixed	17	Rhombohedral(high pressure segment)	
YMn_2D_6	45.35	68.05	6.28		<i>cubic</i> Fm-3m (whole range)	
DyMn ₂	33,01	63.2	6.1		Cubic (C15)	[2]
DyMn ₂ D ₆	45.69	83.8	4.59	60	<i>cubic</i> Fm-3m (whole range)	
HoMn ₂	32,31				C15 + C14	
HoMn ₂ D ₆	44.83	73.2	5.85	23	cubic Fm-3m (whole range)	
ErMn ₂	31,6				C14	
ErMn ₂ D _{4.6}	40.65	79.2 (2)	4 fixed		hexagonal	[3]
ErMn ₂ D ₆	44.97	76.1	5,20	50	<i>cubic</i> Fm-3m (whole range)	
n –number of points						

EOS parameters of RMn₂ and RMn₂D_x deuterides (R = Y, Dy, Ho and Er) K_0 and K_0 are bulk modulus and its first derivative

number of points

[1].Sugiura H, Paul-Boncour V, Percheron-Guégan A, Marchuk I, Hirata T, Filipek S M, Dorogova M 2004 J. Alloys Compd, 367 230.

[2] Reiss G, Dissertation, February 2000 University of Paderborn

[3] Makarova O L, Goncharenko I N and Le Bihan T 2004 Sol. State Comm. 132 329,

Summary and Conclusions

- Treatment of RMn₂ Laves phases by using high hydrogen pressure resulted in discovery of novel hydrides including group of isostructural hydrides RMn₂D₆ formed in a process of dramatic rearrangement of the parent metallic lattice.
- RMn₂D₆ hydrides have complex structure of Fm-3m symmetry with (Mn^ID₆)⁵⁻ anions and disordered location of R and Mn1 atoms in 8c positions independently of the parent structure. Such hydrides have never been obtained from Laves compounds.
- RMn₂D₆ phases have unusually high stability due to bonding character different from interstitial hydrides. Compression curves of this new family of hydrides goes smoothly excluding possiblity of phase transitions. All EOS curves are located close each other but differ from those received for hydrides with smaller H (D) content. Bulk moduli of all RMn₂D₆ do not differ much and have values comparable with those of the parent compounds.
- Further work: Search for new hydrides/deuterides (RMn2D6 and other) also in pseudobinary systems.

Short comment about recent discovery of room temperature superconductivity in LuHnNy

Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015)

M. Kostrzewa, K. M. Szczęśniak, A. P. Durajski, R. Szczęśniak, From LaH10 to roomtemperature superconductors, Scientific Reports (2020) 10:1592

F. Peng *et al.*, Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity, Phys. Rev. Lett. (2017) 119, 107001

A. Majumdar *et al.* Superconductivity in FeH5, Phys. Rev. B 96, 201107(R) (2017) and Phys. Rev. Materials 4, 084005

T. Palasyuk, M. Tkacz, Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH 3, HoH 3, LuH 3), *Solid State Communications* (2005) 133(7):481-486

High-pressure X-ray diffraction studies of gadolinum, holmium and lutetium trihydrides have been carried out in a diamond anvil cell up to 30GPa at room temperature. A reversible structural phase transformation from the hexagonal to cubic phase has been observed for all the hydrides investigated.

Short comment about recent discovery of room temperature superconductivity in LuHnNy

N. Dasenbrock-Gamon *et al.*, Evidence of near-ambient supercoductivity in a N-doped lutetium hydride, Nature (2023)

More than a hundred samples (metallic Lu or LuH2); samples were loaded into the DAC with the H2/N2 gas mixture (99:1) and pressed to 2 GPa. The sample was heated overnight at 65 C. After 24 hours the DAC was released to recover the sample.

Success rate of measuring a sample with superconducting properties was about 35 %.

The exact amount, location and nature of the nitrogen is not specified. It was not explained what was the difference between the samples (there were 35%) in which the occurrence of superconductivity was found and the remaining samples.

Recently, a number of papers have been published in which the authors negatively verified the report on superconductivity in lutetium hydride.

- The precious contribution of all Friends and Colleagues, especially from:
- Institute of Physical Chemistry PAS
- Institute of High Pressure Physics PAS
- Tokyo Institute of Technology
- Institut de Chimie et des Matériaux CNRS Thiais (Paris)
- National Taiwan University (Taipei)
- Ben-Gurion University (Beer Sheva)

is very much appreciated

Thank you very much for your kind attention