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Introduction: XFEL jitter
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Introduction: XFEL jitter
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Introduction: XFEL jitter

Intensity

In a model case: A real XFEL pulse:
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Introduction: XFEL jitter

In a model case: A real XFEL pulse:
Pulse number: 1 Pulse number: 1
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Introduction: XFEL jitter
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Introduction: XFEL jitter

In a model case: A real XFEL pulse:

Pulse number: 1 Pulse number: 1
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Introduction: XFEL jitter

In a model case: A real XFEL pulse:

Pulse number: 1 Pulse number: 1

Intensity

Intensity

Energy (synonyms: Vibraipn, fluctuation,
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also: position, size
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Introduction: Requirements for pulse
diagnostics — Machine

Operators and machine experts:
* Want to know machine performance for commissioning,
improvement, and monitoring.
* On-line/non-invasive:
— Pulse energy
— Spectral distribution
— Position (Poynting vector)
— Pulse length
* Invasive
— Tools for optimization of insertion devices.
— Devices to measure gain curves of pre-SASE beams.
— Profile monitors

X-ray Free Electron Lasers - XFELs
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Introduction: Requirements for pulse
diagnostics — Users

74 1 ¥ . Experimental users:
{oe * Want to know the pulse-to-pulse beam parameters for
data analysis and signal monitoring.
* On-line/non-invasive:
— Pulse energy
— Spectral distribution
— Position (Poynting vector)
— Pulse length
— Arrival time
* Invasive
— Photon pulse transverse profile.

X-ray Free Electron Lasers - XFELs
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XFEL beam positioning and profiling:
MCP detector, diode

Camera and lens housing Motion stage for MCP

Camera

Lens

S — Visible light

Mirror

MCP Phosphor Screen
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XFEL beam positioning and profiling:
MCP detector, diode

Camera and lens housing

Motion stage for MCP

Camera

A

Lens

Elachrons Visible light

|

X-ray m—p

Mirror

MCP Phosphor Screen

Microchannel plate (MCP) detectors — used in
the undulator section.

Undulators should be pointing in the same right
direction. To align them, one needs to use a
series of MCP detectors to get images of the
photon beam as it goes through the
subsequent undulators. Although an extremely
weak signal needs to be visualized, it does not
need to be a shot-to-shot measurement.
Without this alignment procedure, the SASE
(self-amplified spontaneous emission) s
inefficient, and the light may shine all over the
place, each undulator emitting the photons in a
different direction, causing the light to become
diffuse and more jittery.

X-ray Free Electron Lasers - XFELs 24



XFEL beam positioning and profiling:
MCP detector, diode

—_— .

Camera and lens housing Motion stage for MCP

Elec

X-ray

MC

C. Milne et al., Appl. Sci. 7,720 (2017).
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XFEL beam positioning and profiling:
IVICP detector diode

MCP readings
at the subsequent undulators

SwissFEL, Paul Scherrer Institute (PSI)

X-ray Free Electron Lasers - XFELs 26



XFEL beam positioning and profiling:
MCP detector, dlode
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A gain/gap curve is measured to see if the gaps correspond to the correct
photon energies. To do this, one sets the monochromator at a certain
energy, and scans the gap opening of the undulators, looking at the gain
from diodes or MCP detectors for the best performance.
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XFEL beam positioning and profiling:
MCP detector, dlode
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XFEL beam positioning and profiling:
MCP detector, dlode | e s
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A gain/gap curve is measured to see if the gaps correspond to the correct
photon energies. To do this, one sets the monochromator at a certain
energy, and scans the gap opening of the undulators, looking at the gain
from diodes or MCP detectors for the best performance.
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Pulse energy monitoring: gas-based
detector, backscattering monitor

Since the pulse energy changes shot-to-shot, you need to measure the intensity of the FEL beam on a
shot-to-shot basis.

If the beam is monochromatic, the intensity fluctuations can be as much as 100%, i.e. you get no light in
some pulses since there is a mismatch between the spectrum of the FEL and the settings of a
monchromator. Being able to filter out the bad shots by noting that there was no energy in them becomes
invaluable. If you do not have this ability, you do not know if the lack of signal you saw is real (i. e. related
to the dynamics in the sample of interest), or you simply did not get the light necessary for the signal.

Most importantly, pulse energy measurement must be non-invasive, to allow users to conduct their
experiment at the same time. In other words, the pulse energy must be measured in such a way to allow
the light to reach the experiment with minimum interference.

X-ray Free Electron Lasers - XFELs 30



Pulse energy monitoring: gas-based
detector, backscattering monitor

Multipliers (X and Y)
Electrode (Y) / \’

X Ray

 Gas ionization chambers measure pulse energy by counting the number of ions generated in a gas
medium.

* Direct current measurements are used for absolute numbers, but are slow.
* Multiplier signal measurements are good for fast measurements, but are relative.
* Fast and slow measurements are combined to get an absolute pulse energy for every pulse.
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Pulse energy monitoring: gas-based
detector, backscattering monitor

Multipliers (X and Y) Number of particles detected (electrons or ions),
Electrode (Y) / \’

corrected by their expected average charge.

RN

N N

particle __ particle

N
QE(ha) a(hammzm;z

Detector amplification factor

Quantum eff|C|ency
Atpomic gas density

This equation requires a lot of reference data of gas cross- Cross section (requires temperature info)
sections and mean charges. If not found in scientific

. . . . Detection efficiency
literature, they are typically measured in collaboration

with other research facilities. Detector acceptance length
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Pulse energy monitoring: gas-based
detector, backscattering monitor

Diode shielding
downstream

x-ray beam
entrance

Photodiode (PSI)

Active area

Diamond film (PSI)

Thin diamond or Si;N, foils let most of the
beam through, and the elastically back-
scattered photons are detected by the four
diodes. Backscattering monitor is used to
measure the relative pulse intensity and the
position of the beam.

Here, too, the reference data for the coherent
and incoherent scattering of light from the
materials are found in old experimental texts,
though people have made programs for the
evaluation these days.

Very compact, useful for end-station
measurement of pulse energies.
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Pulse energy monitoring: gas-based
detector, backscattering monitor

, foils let most of the
the elastically back-
detected by the four
monitor is used to
yulse intensity and the

e data for the coherent
ring of light from the
#old experimental texts,
ahade programs for the

Photodiode (PSI)

ful for end-station
Active area

energies.
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Pulse profile measurement: scintillating
screen, optics, camera

Even something as simple as a 2-dimensional
visible light-camera (e. g. CCD) can be adapted for
better accuracy. In the design shown the mirror
and the camera do not move — only the
scintillating screen does (because of the XFEL
beam damage). The camera always looks at the
Scintillating screen exact same spot, so any motion detected can only
Il come from the motion of the beam.

Camera

X-ray beam

X-ray Free Electron Lasers - XFELs 35



Pulse profile measurement: scintillating
screen, optics, camera

X position (mm)

X-ray Free Electron Lasers - XFELs
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Pulse spectrum measurement: grating,
X-ray spectrometers

Online measurement of the XFEL beam spectra is all about

Bragg diffraction. One equation to remember — the Bragg’s

diffraction law:

2d * sinflg = nA = nE E%I
E BraggDiffractionWB.nb

, where d — lattice spacing constant, 3 — Bragg angle, n —

diffraction order (n=1,2,3,..), A — wavelength, h — Planck’s

constant, ¢ — speed of light, E — photon energy.

X-ray Free Electron Lasers - XFELs



Pulse spectrum measurement: grating,

X-ray spectrometers

Online measurement of the XFEL beam spectra is all about
Bragg diffraction. One equation to remember — the Bragg’s
diffraction law:

hc
2d * Sin93 =nA= nf

, where d — lattice spacing constant, 3 — Bragg angle, n —
diffraction order (n=1,2,3,..), A — wavelength, h — Planck’s
constant, ¢ — speed of light, E — photon energy.

X-ray Free Electron Lasers -

detector transations

diffracted beam
detector
through beam Yteﬁon

crystal (6/
4 bent crystal

translation . .
crystal incoming x-ray beam
rotation

D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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Pulse spectrum measurement: grating,
X-ray spectrometers

D et >
' beam spectra is all about
FEE ’
Eﬂ o remember — the Bragg’s
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' {.' - wavelength, h — Planck’s
_ oton energy.
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crystal incoming x-ray beam
rotation

D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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Pulse spectrum measurement: grating,
X-ray spectrometers
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D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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Pulse spectrum measurement: grating,
X-ray spectrometers
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Pulse spectrum measurement: grating,

X-ray spectrometers

Online measurement of the XFEL beam spectra is all about
Bragg diffraction. One equation to remember — the Bragg’s
diffraction law:

hc
2d * Sin93 =nA= nf

, where d — lattice spacing constant, 3 — Bragg angle, n —
diffraction order (n=1,2,3,..), A — wavelength, h — Planck’s
constant, ¢ — speed of light, E — photon energy.

X-ray Free Electron Lasers -

detector transations

diffracted beam
detector
through beam Yteﬁon

crystal (6/
4 bent crystal

translation . .
crystal incoming x-ray beam
rotation

D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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Pulse spectrum measurement: grating,
X-ray spectrometers

Online measurement of the XFEL beam spectra is all about
Bragg diffraction. One equation to remember — the Bragg’s
diffraction law:

detector transations

diffracted beam

detector
\/otahon

, where d — lattice spacing constant, 3 — Bragg angle, n — rysto ‘/6
diffraction order (n=1,2,3,...), 4 — wavelength, h — Planck’s trariont = bent crystal i M-
constant, ¢ —speed of light, E — photon energy. otalan

Top view detector ‘

o
ratin filter profile crystal /&
B B ry.

monitor Use a grating to split off a part of the beam to shoot onto a
bent crystal spectrometer. This allows us to see whole
spectrum while letting main beam (>95%) through.

. hc through beam
2d * SIHBB =nl= nf

D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

e XFEL pulse arrival time

Intensity

Time

X-ray Free Electron Lasers - XFELs
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

e XFEL pulse arrival time

vy 2000
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9 T 100
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

Pulse number: 1

XFEL pulse arrival time
vy 2000
8 1750 A 18499 pulses
= ) FWHM=60.8 fs
4? o 1500
m g
c 45 1250
403 QL) 1000 -
E o) 750
= |
S 500
Z 250 -
| "
. =150 =100 =50 0 50 100 150
Time Arrival time (fs)

e XFEL pulse duration (or length)
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

XFEL pulse arrival time
vy 2000 -
8 1750 A 18499 pulses
S ] FWHM=60.8 s
Z 3 o
m g
GCJ HC—) 1250
Se. 1000 -4
I= @
Laser \
Sample ,v
At Transmission (Iy)
. / XAS detector
Time
e XFEL pulse duration (or length) X-raysy %

V Fluorescence (I;)
k XAS detector /

C. J. Milne, T. J. Penfold, M. Chergui, Coordination Chemistry Reviews 277, 44 (2014).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

XFEL pulse arrival time
vy 2000
g 1750 A 18499 pulses
3 FWHM=60.8 fs
4? o 1500 A
m P
QCJ ‘ ‘IC—) 1250
s 1000 4
I= v
Laser \
Sample wv
At Transmission (Iy)
i / XAS detector
Time
L
e XFEL pulse duration (or length) X-raysy %

XFEL pulse time structure ! Fluorescence (I¢)
k XAS detector /

C. J. Milne, T. J. Penfold, M. Chergui, Coordination Chemistry Reviews 277, 44 (2014).

X-ray Free Electron Lasers - XFELs 48



Temporal diagnostics: spatial and
spectral encoding, THz streaking

l XFEL 7.1 keV < 80 fs unfocused
a Spectral encoding I3 l Sapphire | ’
” Chirped Optical
E continuum laser
e 800 nm -50fs
o
: SipN,—|—
0 500 1,000 4 Spectrometer
Pixel [N
b Spatial encoding
v §
kS Si;N,
g Camera .
g J =
0 500 1,000
Pixel
€ Pump-probe ' .
experiment ,
R4

M. Harmand et al., Nature Photonics 7,215 (2013).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

T/ Toox —

400 pixels
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Pixel
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€ Pump-probe ’
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experiment

M. Harmand et al., Nature Photonics 7,215 (2013).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

M. Harmand et al., Nature Photonics 7,215 (2013).

X-ray Free Electron Lasers - XFELs
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Can only measure arrival
time, not pulse duration.

Has a large window to work
over.

Can be invasive at Ilow

photon energies.

Reliable tool requiring less
setup than the THz streaking.

Could be hard to find the
signal since the edge may be
weak.
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Temporal diagnostics: spatial and
spectral encoding, THz streaking
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

Future upgrade

X-Rays .
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

Future upgrade

X-Rays .

Not streaked

Energy

—_—

m Time

X-ray pulse

C. Milne et al., Appl. Sci. 7,720 (2017).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

Future upgrade

X-Rays .

Not streaked

—
>

m Time

X-ray pulse

\./

C. Milne et al., Appl. Sci. 7,720 (2017).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

Future upgrade

THz pulse

- I
|
X-Rays E

Not streaked
I
§
>

Time

1
;
1
i
eTOFI Xe gas jet eTOF |

\./

X-ray pulse X-ray pulse

C. Milne et al., Appl. Sci. 7,720 (2017).
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Temporal diagnostics: spatial and
spectral encoding, THz streaking

Future upgrade

eTOF

eTor-'I Xe gas jet eTOF |

* Very non-invasive e since it is gas-based.

* Can give both arrival time and pulse length,
though within a ~600 fs window only.

* Requires lots of work (eTOFs, THz generation,
weird mirror geometries).

* Easy to find the signal since it is just a peak

eTOF
THz pulse
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C. Milne et al., Appl. Sci. 7,720 (2017).
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Summary

D

s Photon Diagnostics are necessary for the proper function and use of current X-ray FELs.

* Itis an interesting mix of basic physics, optics, nanofabrication, atomic physics, and engineering, combined
with integration with electronics and data systems. Very multi-disciplinary.

*  Defining parameters is important — not everything is achievable all the time.

* Once a device is developed, users immediately come up with a way to use them to measure something
new and ask for even better devices.
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