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Production of X-ray pulse requires a 

synchronized work of many devices 

installed over a long distance.

C. Milne et al., Appl. Sci. 7, 720 (2017).
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Production of X-ray pulse requires a 

synchronized work of many devices 

installed over a long distance.

This talk concerns the photon diagnostics.

C. Milne et al., Appl. Sci. 7, 720 (2017).
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also: position, size

jitter
(synonyms: vibration, fluctuation, 

oscillation, twitch, tremor, wobble)
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Operators and machine experts:

• Want to know machine performance for commissioning,

improvement, and monitoring.

• On-line/non-invasive:

− Pulse energy

− Spectral distribution

− Position (Poynting vector)

− Pulse length

• Invasive

− Tools for optimization of insertion devices.

− Devices to measure gain curves of pre-SASE beams.

− Profile monitors
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Experimental users:

• Want to know the pulse-to-pulse beam parameters for

data analysis and signal monitoring.

• On-line/non-invasive:

− Pulse energy

− Spectral distribution

− Position (Poynting vector)

− Pulse length

− Arrival time

• Invasive

− Photon pulse transverse profile.
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Microchannel plate (MCP) detectors – used in

the undulator section.

Undulators should be pointing in the same right

direction. To align them, one needs to use a

series of MCP detectors to get images of the

photon beam as it goes through the

subsequent undulators. Although an extremely

weak signal needs to be visualized, it does not

need to be a shot-to-shot measurement.

Without this alignment procedure, the SASE

(self-amplified spontaneous emission) is

inefficient, and the light may shine all over the

place, each undulator emitting the photons in a

different direction, causing the light to become

diffuse and more jittery.
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Microchannel plate (MCP) detectors – used in

the undulator section.

Undulators should be pointing in the same right

direction. To align them, one needs to use a

series of MCP detectors to get images of the

photon beam as it goes through the

subsequent undulators. Although an extremely

weak signal needs to be visualized, it does not

need to be a shot-to-shot measurement.

Without this alignment procedure, the SASE

(self-amplified spontaneous emission) is

inefficient, and the light may shine all over the

place, each undulator emitting the photons in a

different direction, causing the light to become

diffuse and more jittery.
C. Milne et al., Appl. Sci. 7, 720 (2017).
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MCP readings

at the subsequent undulators

SARUN03

7.5mm

SARUN04 SARUN05 SARUN06 SARUN07

SARUN08 SARUN10SARUN09 SARUN11 SARUN12

SARUN13 SARUN14 SARUN15
SwissFEL, Paul Scherrer Institute (PSI)
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A gain/gap curve is measured to see if the gaps correspond to the correct

photon energies. To do this, one sets the monochromator at a certain

energy, and scans the gap opening of the undulators, looking at the gain

from diodes or MCP detectors for the best performance.

S
w

is
sF

E
L,

 P
a

u
l 

S
ch

e
rr

e
r 

In
st

it
u

te
 (

P
S

I)
Monochromator:

2395 eV



XFEL beam positioning and profiling:

MCP detector, diode

X-ray Free Electron Lasers - XFELs 28

hamamatsu.com

A gain/gap curve is measured to see if the gaps correspond to the correct

photon energies. To do this, one sets the monochromator at a certain

energy, and scans the gap opening of the undulators, looking at the gain

from diodes or MCP detectors for the best performance.

S
w

is
sF

E
L,

 P
a

u
l 

S
ch

e
rr

e
r 

In
st

it
u

te
 (

P
S

I)
Monochromator:

2395 eV



XFEL beam positioning and profiling:

MCP detector, diode

X-ray Free Electron Lasers - XFELs 29

hamamatsu.com

1 2 3

4 5 6

7 8 9
1

2

3

4
5

6 7

8
9

A gain/gap curve is measured to see if the gaps correspond to the correct

photon energies. To do this, one sets the monochromator at a certain

energy, and scans the gap opening of the undulators, looking at the gain

from diodes or MCP detectors for the best performance.
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detector, backscattering monitor
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• Since the pulse energy changes shot-to-shot, you need to measure the intensity of the FEL beam on a

shot-to-shot basis.

• If the beam is monochromatic, the intensity fluctuations can be as much as 100%, i.e. you get no light in

some pulses since there is a mismatch between the spectrum of the FEL and the settings of a

monchromator. Being able to filter out the bad shots by noting that there was no energy in them becomes

invaluable. If you do not have this ability, you do not know if the lack of signal you saw is real (i. e. related

to the dynamics in the sample of interest), or you simply did not get the light necessary for the signal.

• Most importantly, pulse energy measurement must be non-invasive, to allow users to conduct their

experiment at the same time. In other words, the pulse energy must be measured in such a way to allow

the light to reach the experiment with minimum interference.
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• Gas ionization chambers measure pulse energy by counting the number of ions generated in a gas

medium.

• Direct current measurements are used for absolute numbers, but are slow.

• Multiplier signal measurements are good for fast measurements, but are relative.

• Fast and slow measurements are combined to get an absolute pulse energy for every pulse.
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Cross section

Detector acceptance length

Detection efficiency

Atomic gas density

(requires temperature info)

Detector amplification factor

Number of particles detected (electrons or ions), 

corrected by their expected average charge.

This equation requires a lot of reference data of gas cross-

sections and mean charges. If not found in scientific

literature, they are typically measured in collaboration

with other research facilities.
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• Thin diamond or Si3N4 foils let most of the

beam through, and the elastically back-

scattered photons are detected by the four

diodes. Backscattering monitor is used to

measure the relative pulse intensity and the

position of the beam.

• Here, too, the reference data for the coherent

and incoherent scattering of light from the

materials are found in old experimental texts,

though people have made programs for the

evaluation these days.

• Very compact, useful for end-station

measurement of pulse energies.
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screen, optics, camera
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Even something as simple as a 2-dimensional

visible light-camera (e. g. CCD) can be adapted for

better accuracy. In the design shown the mirror

and the camera do not move — only the

scintillating screen does (because of the XFEL

beam damage). The camera always looks at the

exact same spot, so any motion detected can only

come from the motion of the beam.
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X-ray spectrometers
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D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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BraggDiffractionWB.nb

D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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Use a grating to split off a part of the beam to shoot onto a

bent crystal spectrometer. This allows us to see whole

spectrum while letting main beam (>95%) through.

BraggDiffractionWB.nb

D. Rich et al., J. Synchrotron Radiat. 23, 3 (2016).
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• XFEL pulse arrival time
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C. J. Milne, T. J. Penfold, M. Chergui, Coordination Chemistry Reviews 277, 44 (2014).
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C. J. Milne, T. J. Penfold, M. Chergui, Coordination Chemistry Reviews 277, 44 (2014).
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M. Harmand et al., Nature Photonics 7, 215 (2013).
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M. Harmand et al., Nature Photonics 7, 215 (2013).



Temporal diagnostics: spatial and 

spectral encoding, THz streaking

X-ray Free Electron Lasers - XFELs 51

M. Harmand et al., Nature Photonics 7, 215 (2013).

• Can only measure arrival

time, not pulse duration.

• Has a large window to work

over.

• Can be invasive at low

photon energies.

• Reliable tool requiring less

setup than the THz streaking.

• Could be hard to find the

signal since the edge may be

weak.
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C. Milne et al., Appl. Sci. 7, 720 (2017).
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C. Milne et al., Appl. Sci. 7, 720 (2017).

• Very non-invasive e since it is gas-based.

• Can give both arrival time and pulse length,

though within a ~600 fs window only.

• Requires lots of work (eTOFs, THz generation,

weird mirror geometries).

• Easy to find the signal since it is just a peak

moving left and right.
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• Photon Diagnostics are necessary for the proper function and use of current X-ray FELs.

• It is an interesting mix of basic physics, optics, nanofabrication, atomic physics, and engineering, combined

with integration with electronics and data systems. Very multi-disciplinary.

• Defining parameters is important — not everything is achievable all the time.

• Once a device is developed, users immediately come up with a way to use them to measure something

new and ask for even better devices.


