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Linear optics — study of interaction of electromagnetic radiation with linear media
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Nonlinear vs. linear optics

linear optics — study of interaction of electromagnetic radiation with nonlinear media

Non
Nonlinear media — their response is nonlinear to the incident wave:
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Nonlinear vs. linear optics

Nonlinear optics — study of interaction of electromagnetic radiation with nonlinear media
Nonlinear media — their response is nonlinear to the incident wave:
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Nonlinear vs. linear optics

Nonlinear optics — study of interaction of electromagnetic radiation with nonlinear media
Nonlinear media — their response is nonlinear to the incident wave:
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Nonlinear vs. linear optics

Nonlinear optics — study of interaction of electromagnetic radiation with nonlinear media

Nonlinear media — their response is nonlinear to the incident wave:
P=Py+ W e E+y? gy E? + 43 g, E3 + ... (the Taylor series)
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Nonlinear vs. linear optics

Nonlinear optics — study of interaction of electromagnetic radiation with nonlinear media
Nonlinear media — their response is nonlinear to the incident wave:

P=Py+ Ve E+ P ey E? + 4 gy E? + ... (the Taylor series)
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Nonlinear vs. linear optics

Nonlinear optics — study of interaction of electromagnetic radiation with nonlinear media
Nonlinear media — their response is nonlinear to the incident wave:

P=Py+ W e E+ 52 gy E? + 43 g, E3 + ... (the Taylor series)

The wave equation taking into centrosymmetric medium
account the medium’s nonlinear
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Nonlinear vs. linear optics

Nonlinear optics — study of interaction of electromagnetic radiation with nonlinear media
Nonlinear media — their response is nonlinear to the incident wave:

P=Py+ /D e E+ 4P, E?2 + 43 ¢, E3 + ... (the Taylor series)

The wave equation taking into centrosymmetric medium
account the medium’s nonlinear
polarization delivers surprising
solutions — mutliphoton interactions!
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nonlinear, why haven’t we observed
those nonlinear processes before
1960s?
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Laser radiation

pginstruments.com
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Laser radiation

pginstruments.com

wickedlasers.com
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Laser radiation

pginstruments.com

wickedlasers.com

number of photons X photon energy

intensity = photon flux X photon energy =
y=»p P &Y time (i. e. pulse duration) X area
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Laser radiation

pginstruments.com
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Laser radiation

pginstruments.com wickedlasers.com

number of photons X photon energy

intensity = photon flux X photon energy =
y=»p P &Y time (i. e. pulse duration) X area
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Laser radiation

pginstruments.com

wickedlasers.com

number of photons X photon energy

intensity = photon flux X photon energy =
y=»p P &Y time (i. e. pulse duration) X area

laser power =2 W, wavelength = 445 nm, beam size = 2 mm x5 mm
laser intensity =2 W /(2 mm x 5 mm) = 20 W/cm?

P= Py+ 340 e E + 4@ g, E? + #® ¢, E3 + ... - convergence at about 10! W/cm?
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X-ray two-photon absorption (TPA)

X-ray multiphoton absorption

ionization threshold

Fermi level
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X-ray two-photon absorption (TPA)

X-ray multiphoton absorption

one-photon absorption (OPA)

ionization threshold

Fermi level
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X-ray two-photon absorption (TPA)

X-ray multiphoton absorption

two-photon absorption (TPA, 2PA)

ionization threshold

Fermi level
M
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X-ray two-photon absorption (TPA)

X-ray multiphoton absorption

A

multiphoton ionization (MPI)
ionization threshold
Fermi level
M
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X-ray two-photon absorption (TPA)

X-ray multiphoton absorption

two-photon absorption (TPA, 2PA)

ionization threshold

Fermi level
M

Ge plate

Monochromator

KB mirror

X-ray laser
K. Tamasaku et al., Nature Photon 8,313 (2014)
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X-ray two-photon absorption (TPA)

X-ray multiphoton absorption 05

_|Ge target irradiated with 5.6 keV photons Ry
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X-ray multiphoton absorption 05
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Nonlinear X-ray Compton scattering

- T 22
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Nonlinear X-ray Compton scattering
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M. Fuchs et al., Nature Phys 11, 964 (2015)
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Nonlinear X-ray Compton scattering
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Nonlinear X-ray Compton scattering
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X-ray second harmonic generation (SHG)

nonlinear me dium
(most common are crystals)

- k-
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X-ray second harmonic generation (SHG)

nonlinear medium
(most common are crystals)

Detector
2 W Al filter \

Diamond

S. Shwartz et al., Phys. Rev. Lett. 112, 163901 (2014)
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X-ray second harmonic generation (SHG)

nonlinear medium
(most common are crystals)

Detector
hw Slits ¢
2 h @ Al filter \
hw

S. Shwartz et al., Phys. Rev. Lett. 112, 163901 (2014)
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X-ray second harmonic generation (SHG)

nonlinear medium
(most common are crystals)

Detector
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hw
slits:
reduce 2k,
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phase matching condition
’/ for constructive inteference:

Ko +ky+ G =kyy

S. Shwartz et al., Phys. Rev. Lett. 112, 163901 (2014)
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X-ray second harmonic generation (SHG)

hw

hw

nonlinear medium
(most common are crystals)
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S. Shwartz et al., Phys. Rev. Lett. 112, 163901 (2014)
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X-ray optical mixing
Sum-frequency generation (SFG)

nonlinear medium
(most common are crystals)
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X-ray optical mixing
Sum-frequency generation (SFG)

nonlinear medium
(most common are crystals)
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T. Glover et al., Nature 488, 604 (2012)
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X-ray optical mixing
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X-ray optical mixing

Sum-frequency generation (SFG)
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Parametric downconversion (PDC)

nonlinear me dium
(most common are crystals)

- .
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Parametric downconversion (PDC)

ZW

nonlinear medium
(most common are crystals)
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Y.Yoda et al., J. Synchrotron Rad. 5, 980 (1998)
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Parametric downconversion (PDC)

ZW

nonlinear medium
(most common are crystals)
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Summary

X-ray two-photon absorption
Nonlinear X-ray Compton scattering
X-ray second harmonic generation
X-ray optical mixing

ST

Parametric downconversion
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