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Terminology
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Strongly correlated materials: wide class of compounds that reveal collective electronic 

and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-
metallicity, and spin-charge separation. Their physical properties cannot be described effectively 
in terms of non-interacting entities (i.e. Fermi liquid description). The seminal example of such 
materials are superconductors. 

Quantuum materials is a class of materials that reveal strong correlations (electronic, 

superconducting or magnetic) or non-generic quantum effects (topological insulators, graphene, 
2D materials) as well as systems whose collective properties are governed by genuinely quantum 
behavior (ultra-cold atoms, cold excitons, polaritons). 

XMCD (X-ray Magnetic Circular Dichroism) is a phenomenon observed as a difference between 

two spectra or scattering patterns excited with circularly polarized light of opposite helicity. It is 
sensitive to projection of magnetic moment of the absorbing or scattering atom, respectively. 



1.  Strongly correlated materials

2.  Examples of XFEL study of:

- phonon and electron excitations

- charge order

- phase transitions

- ultrafast demagnetization

3.  Summary

Outline
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Physics of strongly correlated materials
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Interplay of lattice, charge, spin, and orbital degrees of freedom leads to extraordinary 
properties, e.g. ferromagnetism, superconductivity and multiferroicity
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Spin and orbital moment
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Bohr magneton



Magnetic materials
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Correlation energy

Electronic correlations are negligible in ionic crystals and significant in materials 
containing elements with open d and f electron shells as well as high Z elements

A measure of how much the movement of one electron 

is influenced by the presence of all other electrons

charge order orbital order
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Electronic structure of d orbitals

source: [4]
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Examples of configurations for 
transition-metal 3d orbitals which 
are bridged by ligand p orbitals

Crystal-field splitting of 3d orbitals in different symmetries
(the numbers indicate degeneracy)



Metal-insulator transitions

source: [4]
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Hubbard model include inter-particle interactions 
(e.g. Coulomb repulsion) as independent energy term  



Mott-Hubbard vs. charge transfer

source: [4]
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Mott-Hubbard insulator 
is due to electronic 
(orbital) interactions 
within single atom

Charge transfer insulator 
is due to electronic 
interactions between 
neighboring atoms



Electronic and magnetic excitations
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charge transfer

∆𝑆 = 0

∆𝑛 = ±1

Quasiparticles and 
collective excitations:

phonon, exciton, 
plasmon, polariton

polaron, magnon
bimagnon, spinons, 

holons, orbitons,
trimerons, etc.

spin flip (dd)

∆𝑆 = 1

∆𝑛 = 0



Core level X-ray spectroscopy
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Empty orbitals
(bands)

Valence orbitals
(bands)

Core orbitals
(levels)

XPS            XES XAS            (R)IXS ET [meV]

Element selective probe electronic structure of solids, including low energy excitations



Transient RIXS experiments (trRIXS)
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equilibrium by an optical pump and 
probed with X-ray pulses with energy 
(ωi) and momentum (ki) resonantly 
tuned to a specific absorption edge



Charge order melting in cuprates
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Magnetic correlations in iridates
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Sr2IrO4

𝑗𝑒𝑓𝑓 = Τ1 2
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Dynamics of magnetic correlations
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Sr2IrO4
Destruction and recovery 

of 3D magnetic order 

2D correlations before 
and after photo-excitation

spin orbitalM
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Decay and recovery dynamics
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Fluence dependence 
of the decay time that 
is required to destroy 
the ground state

Fast recovery of 
the charge degree 
of freedom 
measured via 
optical reflectivity

Slow recovery of 
the charge that 
matches that of 
2D magnetic 
correlations

Slow recovery 
of 3D magnetic 
long-range
order
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J.A.Nielsen, D. McMorrow, Elements of 
Modern X-ray Physics, Wiley (2011) 

Elastic X-ray scattering

SAXS
size/shape

WAXS/XRD
lattice/unit cell



Dynamics of Verwey 
transition in Fe3O4
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X-ray diffraction resonantly 
excited at Fe L2,3-edge



Melting and recovery of trimerons
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Normalized (001) diffraction intensity 
versus time delay for different pump 
fluences – two processes involved

Pump fluence dependence of the fast 
(t < 300 fs) intensity drop (A) and the 
slower intensity decay (B)
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Fluence dependent recovery
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Ultrafast trimeron annihilation due to high fluence leads to metallic state 
(cubic) instead of recovering an insulating state (monoclinic) 
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X-ray holography
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A hologram is made by 
superimposing reference beam on 
the wavefront scattered from 
physical medium generating an 
interference pattern, which can be 
reconstructed into 3D image of the 
physical medium

Using ultra-brilliant coherent photon 
beam generated by FEL  a hologram 
may be generated in single shot 
experiment   

J.A.Nielsen, D. McMorrow, Elements of 
Modern X-ray Physics, Wiley (2011) 



Melting of magnetic order
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X-ray magnetic circular dichroism
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Atomic form factor:
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Elastic Reflection Absorption
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Magnetic scattering/absorption is strongly
increased when probed with circularly polarised
X-rays near spin-orbit split absorption edges

Magnetic dichroism (polarization dependence of 
scattering/absorption in magnetic materials) is
sensitive to spin and orbital magnetic moments



Ultrafast demagnetization
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fast subpicosecond demagnetization 
induced using femtosecond optical pulses

Three different dynamics 
are present 

These are attributed to 
heat transfer between 
electron, spin and lattice



Ultrafast demagnetization (2)
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An increase in valence-electron
localization on a timescale of 120 ± 50 fs

This mechanism is possibly related to the driving 
force for a spin–lattice relaxation that proceed on 
a timescale of 120 ± 70 fs

C. Stamm, et al., Nature Materials 6, 740 (2007) 

t = 200fs 

Femtoslicing with
f = 500Hz at ALS

Ni



Ultrafast demagnetization (3)
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Orbital momentum Lz(t) of 
Co reveals ultrafast change 
in magneto-crystalline 
anisotropy (220 ± 20 fs)

spin momentum Sz(t) 
decreases more slowly
(280 ± 20 fs)

Spin-orbit decoupling

C. Boeglin, et al., Nature 465, 458 (2010) 

Femtoslicing 
at BESSY

Co0.5Pd0.5



Ultrafast demagnetization (4)
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B. Wu, et al., Phys. Rev. Lett. 117, 027401 (2016) 
X-ray magnetic diffraction 
at LCLS

Disappearance of both charge 
and magnetic contrast cannot 
be explained by ultrafast
demagnetization

At an intensity of about 10 
mJ/cm2/pulse the coherent 
incident field

take control on the temporal evolution of the electronic core-
valence transitions, and stimulated decays begin to
dominate over spontaneous Auger and radiative decays

Full X-ray transparency confirmed by 
Z. Chen, et al., Phys. Rev. Lett. 121, 
137403 (2018)



Ultrafast demagnetization (5)
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A.H. Reid, et al., Nature Commun. 9, 388 (2018) X-ray magnetic diffraction 
at LCLS

Unstrained samples: CoPt nanoparticles

Magnetoelastic stress builds up on the sub-ps timescale, 
characteristic of ultrafast demagnetization 

Stress from transiently populated phonons takes  over on 
the ps timescale → reduced magn. anisotropy



Fundamental interactions 
and timescales
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Hellman, et al., Rev. Mod. Phys. 89, 025006 (2017)
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Summary

What can we learn with XFELs regarding strongly correlated matter:

• What is the dynamics of chargé, orbital and spin excitations?

• What is the time scale of energy transfer between different  degrees of 
freedom – spin, charge, orbitals and lattice?

• What is the domain shape and dynamics in photo-excited magnets?

• What is the dynamics of lattice, electrons and spins at phase transition?

2.12.2024
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