

# Basic X-ray experimental techniques - WAXS

Jerzy Antonowicz

Faculty of Physics Warsaw University of Technology

jerzy.antonowicz@pw.edu.pl





[1] Attwood, D., & Sakdinawat, A. (2017). X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (2nd ed.). Cambridge: Cambridge University Press.

[2] Willmott P. (2011), An introduction to synchrotron radiation: techniques and applications. John Wiley & Sons, Ltd.,

[3] Jens Als-Nielsen, Des McMorrow (2011) Elements of Modern X-ray Physics. John Wiley & Sons, Ltd.

[4] D.B. Cullity, S.R. Stock (2001), Elements of X-Ray Diffraction (3rd ed.), Prentice Hal.







Wide-Angle X-ray Scattering (WAXS) is an X-ray diffraction technique based on analysis of the scattering of X-rays by sub-nanometer size structures.

WAXS is complementary to SAXS (Small-Angle X-ray Scattering), which is caused by the scattering of X-rays by structures with a characteristic size beyond a nanometer.



### Scattering, diffraction and reflection of X-rays



(a) Isotropic scattering from a point object



(b) Non-isotropic scattering from a partially ordered system





(d) Diffraction from a well-defined geometric structure, such as a pinhole



(e) Refraction at an interface

(f) Total external reflection





source: [2]



### Double slit diffraction of visible light



Fundamentals of Physics source: Halliday, Resnick & Walker



The diffraction pattern forms by adding waves and their constructive or destructive interference.

### Fourier series





source: Wikipedia

### Fourier transform





source: YouTube



### Fourier transform





When light diffracts on an object, it performs a Fourier transform of the object.

First-order

Specular

reflection

A compact disc (modulation length about a micrometer) acts as a diffraction grating for a visible

#### 9



0.833 µm

min pit length

CD

### Diffraction of visible light

Incident

light (wavelength equal to fraction of a micrometer).

ΊΙΤ



DVD

0.400 µm

min pit length

### **Electromagnetic spectrum**





 $\lambda$  – wavelength

#### X-ray Free Electron Lasers - XFELs

### Max von Laue





Die erste Konigen-Burchlenchting eines Rupstales.





source: Wikipedia

source: [2]

The Nobel Prize in Physics 1914 was awarded to Max von Laue "for his discovery of the diffraction of X-rays by crystals".

### W.H. i W.L. Bragg





source: [2]

The Nobel Prize in Physics 1915 was awarded jointly to Sir William Henry Bragg and William Lawrence Bragg "for their services in the analysis of crystal structure by means of X-rays"



source: Wikipedia

### X-ray interactions mechanisms





### Crystalline structure



### Rock salt crystal



source: Wikipedia





### Translational symmetry of crystals





### **Bravais lattices**

#### TABLE 2 CRYSTAL SYSTEMS AND BRAVAIS LATTICES

(The symbol  $\neq$  means that equity is not required by symmetry. Accidental equality may occur, as shown by an example in Sec. 4.)

| System        | Axial lengths and angles                                                                                                                    | Bravais<br>lattice                                        | Lattice<br>symbol |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|
| Cubic         | Three equal axes at right angles<br>$a = b = c$ , $\alpha = \beta = \gamma = 90^{\circ}$                                                    | Simple<br>Body-centered<br>Face-centered                  | P<br>I<br>F       |
| Tetragonal    | Three axes at right angles, two equal<br>$a = b \neq c$ , $\alpha = \beta = \gamma = 90^{\circ}$                                            | Simple<br>Body-centered                                   | P<br>I            |
| Orthorhombic  | Three unequal axes at right angles<br>$a \neq b \neq c$ , $\alpha = \beta = \gamma = 90^{\circ}$                                            | Simple<br>Body-centered<br>Base-centered<br>Face-centered | P<br>I<br>C<br>F  |
| Rhombohedral* | Three equal axes, equally inclined<br>$a = b = c$ , $\alpha = \beta = \gamma \neq 90^{\circ}$                                               | Simple                                                    | R                 |
| Hexagonal     | Two equal coplanar axes at 120°,<br>third axis at right angles<br>$a = b \neq c$ , $\alpha = \beta = 90^{\circ}$ ( $\gamma = 120^{\circ}$ ) | Simple                                                    | Р                 |
| Monoclinic    | Three unequal axes,<br>one pair not at right angles<br>$a \neq b \neq c$ , $\alpha = \gamma = 90^{\circ} \neq \beta$                        | Simple<br>Base-centered                                   | P<br>C            |
| Triclinic     | Three unequal axes, unequally inclined<br>and none at right angles<br>$a \neq b \neq c$ , $(\alpha \neq \beta \neq \gamma \neq 90^{\circ})$ | Simple                                                    | Р                 |

\* Also called trigonal.

source: [4]





source: [4]

### Atomic planes in crystals







(110)







С





source: [4]





### Diffraction of visible light











### WUT

#### X-ray Free Electron Lasers - XFELs

### Diffraction of visible light

|**→→**| 10 mm















20



- The characteristic distance in the diffraction pattern is **inversely proportional** to the distance in the real space.
- The diffraction can be viewed as a projection of the reciprocal space.



### Diffraction of visible light



←→ 10 mm

### **Reciprocal lattice**





- The reciprocal lattice is the Fourier transform of the Bravais lattice.
- A **set of planes** in the real lattice corresponds to a **point** in the reciprocal lattice.
- A magnitude of a vector in the reciprocal lattice is **inversely proportional** to a magnitude of a corresponding vector in the real lattice  $(2\pi/a)$ .

### X-ray scattering by a cloud of free electrons





 $\mathbf{k}$  – incident wave wave vector  $\mathbf{k}'$  – scattered wave wave vector  $\mathbf{Q}$  – scattering vector

### Atomic scattering factor





Atomic scattering (form) factor involves a Fourier transform of a spatial charge distribution from real space to Q-space.

### The Ewald construction





$$|k_{in}| = |k_{out}| = |k| = \frac{2\pi}{\lambda}$$
$$|Q| = 2|k| \sin \theta = \frac{4\pi}{\lambda} \sin \theta$$
$$|G| = \frac{2\pi}{d_{hkl}}$$

Diffraction occurs when the scattering vector **Q** is equal to the reciprocal lattice vector **G**.

Bragg's law







### Bragg's law



$$m\lambda = 2d_{hkl}\sin\theta$$

$$m = 1, 2, 3, ...$$

source: [2]

Bragg condition for a given set of atomic planes with spacing  $d_{hkl}$  is met when angle  $\theta$  corresponds to the maximum of the constructive interference of the scattered waves.



## Equivalence of real space and reciprocal space view on diffraction



Real space (Bragg) view: diffraction occurs when Bragg condition is satisfied.

Reciprocal space (Laue) view: diffraction occurs when the scattering vector is equal to the reciprocal lattice vector.

### Diffraction from monocrystals – Laue method





In the Laue method, a <u>polychromatic</u> ('pink') beam is focused on a sample. Because there is a continuum of wavelengths in the incident beam, specific wavelengths will satisfy the Bragg condition for some crystal planes and thus form a diffracted beam.

## Diffraction from monocrystals – rotating crystal method





source: [4]

In the **rotating crystal method**, a <u>monochromatic</u> beam is focused on a sample. As the crystal rotates, a particular set of lattice planes will, for an instant, make the correct Bragg angle for diffraction and at that instant a diffracted beam will be formed.

### Diffraction from polycrystals - powder method





In the **powder method**, a <u>monochromatic</u> beam is focused on a polycrystalline sample. Each crystalline grain in the sample is randomly oriented with respect to the incident beam. By chance, some of the crystals will be oriented for diffraction from a set of planes (other crystals will be correctly oriented for other reflections). The result is that every set of lattice planes will be capable of diffraction.



### Diffraction patterns of amorphous samples







source: https://www.globalsino.com/EM/page3097.html

source: A. R. Yavari et al., vol. 53, no. 6, pp. 1611–1619, 2005

## Example: picosecond dynamics of a shock-driven phase transformation in zirconium metal







T. D. Swinburne *et al.*, Phys. Rev. B 93, 2016, 144119

### Example: WAXS from an aqueous solution of [Fe(bpy)<sub>3</sub>]<sup>2+</sup>





source: D. Khakhulin et al., Appl. Sci. 2020, 10, 995



What kind of questions can be answered using X-ray diffraction (WAXS):

- Is the sample crystalline or amorphous?
- What is the atomic structure of the crystalline sample (type of crystal structure, strain, texture, crystal size, etc.)?
- What is the pair distribution function of the liquid/amorphous sample (distances between the pairs of atoms/particles)?

