

X-ray Interactions with Matter

Jerzy Antonowicz

Faculty of Physics Warsaw University of Technology

jerzy.antonowicz@pw.edu.pl

[1] Attwood, D., & Sakdinawat, A. (2017). X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (2nd ed.). Cambridge: Cambridge University Press.

[2] Willmott P. (2011), An introduction to synchrotron radiation: techniques and applications. John Wiley & Sons, Ltd.,

[3] Jens Als-Nielsen, Des McMorrow (2011) Elements of Modern X-ray Physics. John Wiley & Sons, Ltd.

X-ray interactions with matter

https://www.jjxray.dk/wp-content/uploads/2020/06/fxe-finala1-151127-s-1-scaled.jpg

Electromagnetic spectrum

- *c* speed of light
- λ wavelength

X-ray Free Electron Lasers - XFELs

Charecteristic features of X-rays

- "See" small features (short wavelength)
- Elemental and chemical sensitivity (energy of atomic resonances)
- Penetrate visibly opaque objects (weak interaction with matter)

source: Y.Q. Wu, S. Gao, H. Huang, Materials Science in Semiconductor Processing, Volume 71, 2017, Pages 321-325,

source: L. Masci et al., American Mineralogist, Volume 104, pages 403–417, 2019

source: Wikipedia

X-ray interactions mechanisms

Cross section

Cross section for X-ray generated processes

1 barn = 100 fm² = 10^{-28} m²

HUB-POLAND

Cross section for X-ray generated processes

source: https://www.dental-design.com.pl/

The total scattering cross section for X-rays is generally small.

X-ray interactions mechanisms

Scattering by electrons

- Scattering by a single, free (non-bound) electron
- Scattering by many free electrons (electron cloud of an atom)
- Scattering by bound electrons (electrons occupying discrete energy levels in an atom)

X-ray interactions mechanisms

Scattering by a free electron

Equation of motion of a free electron: $m\mathbf{a} = -e[\mathbf{E}_i + \mathbf{v} \times \mathbf{B}_i]$

Oscillations impressed by a incident electric field: $\mathbf{E}_i = \mathbf{E}e^{-i\omega t}$

For non-relativistic oscillation velocities: $\mathbf{a}(\mathbf{r}, t) = -\frac{e}{m}\mathbf{E}_i(\mathbf{r}, t)$

The frequency of oscillations of a free electron is **the same** as that of the incident electric field.

Elastic (Thomson) X-ray scattering

average power per unit area radiated by an oscillating electron:

source: Wikipedia

 $\bar{P}_{\text{scatt.}} = \frac{4\pi}{3} \left(\frac{e^4 |\mathbf{E}_i|^2}{16\pi^2 \epsilon_0 m_e^2 c^3} \right)$

Elastic scattering: the frequency of the incident and the scattered EM wave are equal.

average power per unit area carried by the incident electromagnetic wave (intensity):

$$\bar{\mathbf{S}}_i = \frac{1}{2} \sqrt{\frac{\epsilon_0}{\mu_0}} |\mathbf{E}_i|^2 \mathbf{k}_0$$

Scattering cross-section for a free electron

Thomson cross-section:

$$\sigma_e \stackrel{\text{\tiny def}}{=} \frac{P_{\text{scatt.}}}{|\bar{\mathbf{S}}_i|} = \frac{8\pi}{3} r_e^2$$

$$r_e = \frac{e^2}{4\pi\epsilon_0 m_e^2 c^2}$$

source: [1]

 r_e - **classical electron radius** defined by equating the electrostatic energy of a uniform sphere of radius r and charge e to its rest energy m_ec^2 .

 $r_e = 2.818 \times 10^{-15} \text{ m}$ $\sigma_e = 6.652 \times 10^{-27} \text{ m}^2$ Differential Thomson scattering cross-section:

source: [1]

X-ray interactions mechanisms

Inelastic (Compton) X-ray scattering

 $\lambda > \lambda_0$

The energy loss in Compton scattering can be determined by applying the conservation of (relativistic) energy and (relativistic) momentum.

$$\Delta \lambda = \lambda - \lambda_0 = \frac{h}{m_e c} (1 - \cos \theta)$$

$$\lambda_C = \frac{h}{m_e c} \cong 2.43 \times 10^{-12} \text{ m}$$

 λ_c - **Compton wavelength** of an electron is a property of an electron, defined as the wavelength of a photon whose energy is the same as the electron's rest energy.

WUT

source: [2]

Inelastic vs elastic X-ray scattering

fine-structure constant:

$$\alpha = \frac{r_e}{\lambda_C} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar c} \cong \frac{1}{137}$$

Do not confuse Compton scattering with photoabsorption!

The ratio of the energy ε' of the scattered photon to the energy ε of the incident one as function of scattering angle.

X-ray scattering by a cloud of free electrons

Atomic scattering factor

Atomic scattering (form) factor involves a Fourier transform of a spatial charge distribution from real space to momentum (*Q*) space.

Scattering by a bound electron

Equation of motion of a bound electron:

Oscillations impressed by a incident electric field: $\mathbf{E}_i = \mathbf{E}e^{-i\omega t}$

Acceleration of a bound electron:

Scattering cross-section for a bound electron of resonant frequency
$$\omega_s$$
:

$$\sigma = \frac{8\pi}{3} r_e^2 \frac{\omega^4}{\left(\omega^2 - \omega_s^2\right)^2 + \left(\gamma\omega\right)^2}$$

$$\mathbf{a} = \frac{-\omega^2}{\omega^2 - \omega_s^2 + i\gamma\omega} \frac{e\mathbf{E}_i}{m}$$

Scattering by a bound electron

$$\sigma = \frac{8\pi}{3} r_e^2 \frac{\omega^4}{\left(\omega^2 - \omega_s^2\right)^2 + \left(\gamma \omega\right)^2}$$

Unlike for a free electron, the scattering cross-section for a bound electron is **strongly frequency dependent**, especially near the resonance.

Scattering by a bound electron

The amplitude of the scattered EM wave decreases as the energy of the incident radiation approaches the electron binding energy (the resonance).

Complex atomic scattering factor

The interference between the incoming and emitted radiation causes energy loss (i.e. absorption), and the additional (damping) term is imaginary.

$$f = f_1 + if_2$$

$$f_1 = f - f'$$

source: [2]

Index of refraction

The index of refraction n is a complex quantity describing the response of electrons in matter to electromagnetic radiation of a wavelength λ .

$$n = n_{Re} + i n_{Im}$$

$$n = 1 - \frac{r_e}{2\pi} \lambda^2 \sum_i N_i f_i^0$$

 N_i - number of atoms of type i f_i^0 - complex atomic scattering factor in a forward direction

Anomalous dispersion

n

source: Wikipedia

source: [1]

eg. for Si in the X-ray regime: $\delta \approx 5 \times 10^{-6}$

> For X-rays, n_{Re} is only slightly less than unity.

$$\begin{split} n &= 1 - \delta + i\beta \\ n_{Re} &= 1 - \delta \\ n_{Im} &= \beta \end{split}$$

 λ , nm

$$\begin{split} \delta &= \frac{n_a r_e \lambda^2}{2\pi} f_1^0(\omega) \\ \beta &= \frac{n_a r_e \lambda^2}{2\pi} f_2^0(\omega) \end{split}$$

 n_a - atomic density

Total external reflection of X-rays

For X-rays, at grazing angles less than the critical angle, total **external** reflection will occur.

$$n_{Re} = \frac{\cos \alpha}{\cos \alpha'} < 1$$

 $\alpha_c \approx \sqrt{2\delta}$

typical values of α_c : a few milliradians/tenths of a degree

Phase velocity of X-rays in matter

phase velocity =
$$\frac{v}{n_{Re}} > C$$

source: Wikipedia

RED point moves at phase velocityGREEN point moves at group velocityIt is the group velocity that carries energy/information.

source: przegladsportowy.pl

Total external reflection of X-rays

X-ray interactions mechanisms

Basic absorption and emission processes

Absorption coefficent

$$I \sim E^2 = E_0 \exp(-2n_{Im}k_0 z)$$

Beer–Lambert equation for linear absorption:

$$\frac{I(z)}{I_0} = \exp\left(-\mu z\right)$$

$$\mu = 2n_{Im}k_0$$

Absorption coefficient μ is defined as the reciprocal of the thickness *d* of the material which is needed to reduce the intensity of an incident beam by a factor of 1/e.

Absorption coefficent

Absorption edges

Absoption edge energy scales with the the atomc number Z

Moseley law

source: Wikipedia

 $\varepsilon_{K_\alpha}\approx 1.017\times 10^{-2}(Z-1)^2$

Nomenclature for absorption edges

Edge	Configuration	Edge	Configuration
K	1 <i>s</i>	N ₁	45
L_1	2 <i>s</i>	N_2	$4p_{1/2}$
L_2	$2p_{1/2}$	N_3	$4p_{3/2}$
L_3	$2p_{3/2}$	N_4	$4d_{3/2}$
M_1	35	N_5	$4d_{5/2}$
M_2	$3p_{1/2}$	N_6	$4f_{5/2}$
M_3	$3p_{3/2}$	N_7	$4f_{7/2}$
M_4	$3d_{3/2}$	O_1	5 <i>s</i>
M_5	$3d_{5/2}$	O_2	$5p_{1/2}$

source: [2]

Absorption edges of elements

source: http://skuld.bmsc.washington.edu/scatter/AS_chart.html

X-ray fluorescense and Auger emission

source: [2]

X-ray interactions mechanisms

Fluorescent X-ray emission lines

X-ray fluorescent emission lines result from the transition of an outer-shell electron relaxing to the core-hole left behind by the ejection of the photoelectron from the atom.

total angular momentum quantum numer (j) = azimuthal quantum numer (l) + spin quantum number (s)

$$\mathbf{j} = \mathbf{l} + \mathbf{s}$$

 $l = 0, 1, 2, ... (s, p, d, ...); s = \pm 1/2$

Selection $\Delta l = \pm 1$ but notrules: $\Delta j = 0, \pm 1$ $0 \rightarrow 0$

X-ray interactions mechanisms

Auger emission

Auger electrons are produced when an outer shell electron relaxes to the core-hole produced by the ejection of a photoelectron. The excess energy in this process is $|\varepsilon_c - \varepsilon_n - \varepsilon_n'|$ where ε_c is the core electron binding energy and and ε_n , ε_n' are outer-shell binding energies of the core-hole filling and emitted eletron.

X-ray fluorescence vs. Auger emission

The contribution of fluorescence (radiative relaxation of the excited state) increases with the atomic number.

Auger emission (non-radiative relaxation) exhibits an opposite trend.

X-ray properties of elements

B.L. Henke, E.M. Gullikson and J.C. Davis, "X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92," Atomic Data and Nucl. Data Tables 54, 181 (1993). Current updates are maintained by E.M. Gullikson at <u>http://www.cxro.LBL.gov/optical_constants</u>

source: [1]

X-ray Free Electron Lasers - XFELs