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Curriculum Vitae

1.1. Personal data

First and last name Tomasz Sowinski
|
Address Institute of Physics of the Polish Academy of Sciences
Al. Lotnikéw 32/46, 02-668 Warsaw, Poland
Phone +48 22116 31 17
E-mail Tomasz.Sowinski@ifpan.edu.pl
WWW www.ifpan.edu.pl/ tomsow

1.2. Education and scientific degrees

Sept. 22, 2008 PhD degree in physics
Faculty of Physics, University of Warsaw
PhD thesis “Interaction of the two-level systems
with the quantized electromagnetic field” prepared under
supervision of prof. dr hab. Iwo Biaynicki-Birula.

June 21, 2005 MSc in theoretical physics
Faculty of Physics, University of Warsaw
Thesis “Complete classical and quanium description of motion
in the rotating harmonic trap” prepared under
supervision of prof. dr hab. Iwo Biaynicki-Birula.

2000 - 2005 Student at the Faculty of Physics, University of Warsaw
Specialization: theoretical physics.
Graduated with honours.
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1.3. Employment in academic institutions

2013 -
2010 —
2009 — 2012
2005 - 2009
2003 - 2005

Assistant professor (pol. adiunkt)
Center for Theoretical Physics of the Polish Academy of Sciences

Assistant professor (pol. adiunkt)
Quantum Optics Group
Institute of Physics of the Polish Academy of Sciences

Assistant professor (pol. adiunkt)
Faculty of Biology and Environmental Sciences
Cardinal Stefan Wyszynski University in Warsaw

Assistant
Center for Theoretical Physics of the Polish Academy of Sciences

Laboratory technician for informatics
Center for Theoretical Physics of the Polish Academy of Sciences

1.4. Longer scientific visits

2012 — 2013

2011

Visiting Scientist (9 months)

ICFO — The Institute of Photonic Sciences
Castelldefels (Barcelona), Spain

within KOLUMB PostDoc Scholarship
granted by the Foundation for Polish Science

Visiting Scientist (3 months)

ICFO — The Institute of Photonic Sciences
Castelldefels (Barcelona), Spain

within European Union Project "NAME-QUAM”
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1.5. Bibliometric statistics

Bibliometric data as of the date May 12, 2015 r.
Total number of articles 93
published or accepted for publication
Number of articles after PhD degree 19
Number of articles 99
in the Web of Science database
Total number of citations
; . 127
according to the Web of Science
Number citations without self-citations 102
according to the Web of Science
Hirsch Index 3
according to the Web of Science
Total Impact Factor* 65,61
Total number of citations 998
according to the Google Scholar

*) Total Impact Factor counted under assumption that the Impact Factor
of the articles published in 2014 and 2015 is the same as in 2013.
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Scientific achievement

2.1. Title of the achievement

MODELING OF PHYSICAL PHENOMENA
IN SYSTEMS OF ULTRA-COLD BOSONS
CONFINED IN OPTICAL LATTICES

2.2. Series of articles forming the achievement

[H1] T. Sowinski
"Creation on demand of higher orbital states in a vibrating optical lattice”
Phys. Rev. Lett. 108, 165301 (2012).
Impact Factor: 7.943.

[H2] T Sowinskil, M. Lacki, O. Dutta, J. Pietraszewicz, P. Sierant, M. Gajda, J. Za-
krzewski, M. Lewenstein
*Tunneling-Induced Restoration of the Degeneracy and the Time-Reversal Sym-
metry Breaking in Optical Lattices”
Phys. Rev. Lett. 111, 215302 (2013).
Impact Factor: 7.728.

[H3] T. Sowinski
"Exact diagonalization of the one dimensional Bose-Hubbard model with local
3-body interactions”
Phys. Rev. A 85, 065601 (2012).
Impact Factor: 3.042.

[H4] T. Sowinski
”One-dimensional Bose-Hubbard model with pure three-body interactions”
Cent. Eur. J. Phys. 12, 473 (2014).
Impact Factor: 1.077.

AL,

DAs declared by the co-authors, my contribution is on the level of 55%.
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[H5] T Sowinski?, R. W. Chhajlany
“Mean-field approaches to the Bose-Hubbard model with three-body local inter-
action”
Phys. Scripta T160, 014038 (2014).
Impact Factor: 1.296.

[H6] T. Sowiniski
"Quantum phase transition in a shallow one dimensional optical lattice”
J. Opt. Soc. Am. B 32, 670 (2015).
Impact Factor: 1.806.

2.3. Detailed description of the achievement

2.8.1. Justification of the choice of the articles

After obtaining the PhD degree I have changed the subject of my research and I have
started to explore physics of ultra-cold gases confined in optical traps. Therefore, al-
most all my articles published after 2008 are closely related to this topic. However,
they are devoted to many different problems like spin dynamics (Einstein-de Haas
effect), orbital effects, the role of long-range interactions, etc. Many of these articles
were prepared in a spread national and international collaboration. My habilitation
achievement concerns ultra-cold, spinless bosons confined in optical lattices and in-
teracting via short-range interactions.

2.3.2. Introduction

Quantum engineering, i.e. coherent manipulation of the matter and radiation on the
atomic scale, is rapidly developing field of modern physics. Its development, apart
from the obvious benefits in our everyday life, has a very deep importance for our un-
derstanding of the Nature. These highly precise experiments give many possibilities
to measure various properties of the quantum system with a very high accuracy and
control its dynamics on a quantum level. Nowadays experimental methods of quan-
tum engineering allow controlling individual atoms confined in the so-called optical
lattices — a specially organized laser beams which form a trapping periodic potential
of almost arbitrary shape. From this point of view the concept of the optical lattice
is not only an excellent tool for quantum optics, but also it can be a milestone in
deep understanding of the many-body systems, which solid state physicists are try-
ing to explain for many decades. One of the major advantage of the optical lattice
experiments is fact that, unlike in the solid lattice case, almost all parameters of
the optical lattice (its shape, depth, and distance between sites) can be experimen-
tally controlled. Moreover one can also control strength of the mutual interactions

2Asg declared by the co-author, my contribution is on the level of 50%.
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between particles. These all possibilities make concept of optical lattice a very useful
tool to study changes of different properties of the system by changing its various
parameters. It is also worth to notice that in practice it is possible to prepare the
experimental system in such a way that it can be nearly ideal experimental realiza-
tion of the various theoretical Hubbard-like models. In this way the optical lattices
are becoming nothing else but the dedicated quantum simulators for problems of the
condensed matter physics [1].

The Hubbard-like models

The starting point of our studies on spinless bosons confined in optical lattice is a
quite general Hamiltonian which can be written in the second quantization formal-

ism as

H= f dr ¥ (r) [— B:ZE + V(r)] (r) + -g / dr U1 (r) Bt ()T (r) T (r), (2.1)
where V(r) is an external potential forming the optical lattice, and g is a coupling
constant which is proportional to the s-wave scattering length ap controlled experi-
mentally. Bosonic field operator li!(fr) anihilates a particle at point » and it fulfills
standard commutation relations [\i!(r), G (! )] = 6@ (r — '), [li’(r), @ (v )] =10,

For simplicity, in the following, I will assume that the optical lattice is qubic and
formed by three perpendicular pairs of laser beams with the laser wavelength A and
some intensties. Therefore, the periodic potential has simple, separable form:

V(r) =V, cosQ(ksr:} +V, cosz(ky) +V, cosQ(kz), (2.2)

where k = 2r /). The parameters V;, V, i V; are controlled independently.

The Hamiltonian (2.1) is very general and without further assumptions and sim-
plifications the detailed analysis of its properties is impossible. The standard proce-
dure which leads to the simplified and effective description originates in the decom-
position of the field operator \ff(r) in the single-particle basis of maximally localized
Wannier functions W§(r). In the general case of any periodic potential, finding the
Wannier functions can be quite hard task. However, in the case of separable poten-
tial (2.2) they have a product form Wf(r) = W= ()W, * (y)W;* (2). One-dimensional
Wannier functions W2 (£) can be easily find since single-particle part of the Hamilto-
nian has a form

2 2
H=— h* d +’[/bcos2 (%T-:f) : 2.3)

2m dg? )

In this case, the eigenproblem of finding the Bloch functions (H — Eg)yg () = 0 is
an example of the well known Mathieu equation. The Wannier functions W(£) are
simple superpositions of the Bloch functions [2, 3]

Vv ’
WE(E) = o f _, dae I e) @2.4)
q

:27r
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Figure 2.1: (left panel) Band structure of the one-dimensional optical lat-
tice described by the Hamiltonian (2.3) as a function of the depth of the
optical lattice V5. As expected, the narrowing of the bands is observed
when the lattice depth become larger. For clarity, the zero point energy is
chosen on the level of the ground-energy of the lowest band. (right panel)
Wannier functions (2.4) localized in the chosen lattice site as functions of
the depth of the optical lattice and the band index o. For deep enough lat-
tices, the shapes of Wannier functions imitate shapes of eigenfunctions of
one-dimensional harmonic oscillator.

where Ry, is the position of the chosen lattice site, g is a quasi-momenta of the Bloch
function ¢ (£), and the integration is done over the whole Brillouin zone. The spec-
trum of the Hamiltonian (2.3) and shapes of the first three Wannier functions for

different lattice depths 1j are presented in Fig. 2.1.
One decomposes the field operator in the basis of the Wannier functions as follows:
b(r) = We(r)aas, (2.5)

1,0
where @,; annihilates a boson in a single-particle state described with the wavefunc-
tion W¢(r). The decomposition allows us to rewrite the Hamiltonian (2.1) to the
multi-band Hubbard-like form:
= Z Z tgf}aLi&aj + Z Z Ui(ﬁc'?—ya)&giagj&’rk&ﬂ' (2.6)
a ij ijkl afys

Parameters t.* and Ui(ja,ﬁﬁ) are appropriate matrix elements of the original Hamil-
tonian (2.1)

1) = f & W (r) Ho WE (), 2.72)

UE® = 4 f & WE ()2 (P)WE ()WE (), (2.7b)
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where Hy = —%Vz + V(r). The diagonal parameters t((f‘) express an average single-
particle energies in appropriate Wannier states Wz-(u)(’!’). Remaining single-particle
elements tfgzu are tunneling amplitudes between given lattice sites. It is worth notic-
ing, that due to the construction of the Wannier functions, the tunneling amplitudes
do not change the lattice band. In contrast, the interaction terms do not have this
property and in principle they may couple any bands.

Since the Wannier functions form a complete basis in the space of single-particle
states, the Hamiltonian (2.6) is fully equivalent to the initial Hamiltonian (2.1). How-
ever, the set of Wannier states is countable set of well localized states. Therefore,
there is a quite natural route to obtain simplified models.

Standard Bose-Hubbard model

When the ultra-cold gas of weekly interacting bosons is confined in a very deep optical
lattice (in practice Vp > 30ER) the typical interaction energies are much smaller than
the energy gap between lattice bands and it is not possible to promote particles to
higher bands. In consequence, the particles will occupy only the ground band of
the optical lattice. At the same time, the tunnelings to the distant neighbors are
negligible small when compared with the tunnelings to the nearest neighbor sites
(details in Sec. 2.8.6.). Therefore, one can simplify the Hamiltonian (2.6) to the form

A =FEo Y aja;—t Y ala;+ %Z alalaga;, (2.8)
i {3,7} i

where for simplicity we introduced Ey = tén), t= tgo}, U= Ufﬁgm) and &; = (,0,0)i-
The symbol {.} is understood as summation over nearest neighbor sites. Properties
of the ground-state of the system described by the Hamiltonian (2.8) are well under-
stood and were analyzed with many complementary methods [4, 5, 6, 7, 8, 9, 10].
One of the most important consequences of the Hamiltonian (2.8) is the existence of
two quantum phases in which the system can be found depending on the parameters
of the model: (i) the superfluid phase, when the single-particle tunnelings between
sites dominate the interactions; (ii) the Mott-Insulator phase, when the interactions
dominate the tunnelings. It is matter of fact that the system (2.8) can be found in this
phase only for commensurate densities p (the average number of particles in given
lattice site). In 2002, in spectacular experiment with ultra-cold Rubidium atoms,
these two quantum phases where observed and the controlled quench through the
quantum phase transition point was performed [11]. Few years later the analogous
experiment with ultra-cold fermions was done [12, 13]. In this way, an experimental
realization of the famous Hubbard model, known in condensed matter physics from
over 50 years, was achieved [14].

Experiments described in [11, 12, 13] had the fundamental impact to the progress
in quantum engineering. They have proved that systems of ultra-cold atoms confined
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in optical lattices may play a role of quantum simulators, i.e. programmable ex-
perimental setups for different theoretical models known in physics and previously
considered only as some interesting toy-models. From that time, the incessant race in
theoretical extensions of Hubbard-like models and possible experimental realizations
is present in the area of ultra-cold atoms [P1]. My habilitation scientific achievement
directly fits in to this context.

2.3.3. Creation on demand of higher orbital states — [H1]

One of the possible extensions of the Hubbard model is taking into account the in-
fluence of higher bands of the optical lattice. This possibility is important since new
methods of promoting ultra-cold atoms to higher orbital states were invented. In the
first experiments of this kind with rubidium ®"Rb atoms the two-photon Raman pro-
cesses stimulated by specially arranged counter propagating laser beams were used
[15]. If the frequency difference between beams is tuned to the energy gap between
bands of the periodic potential then the occupation of the atoms will oscillate between
coupled states. The second path for creating orbital states originates in the resonant
band-dependent tunneling between lattice sites [16]. As was mentioned above, in
the simplest optical lattice arrangement (2.2) the band-dependent tunnelings are not
present. Therefore, in the experiment [16] a more complicated geometry of the super-
lattice (the periodic potential with staggered deep and shallow sites) was used. When
lattice depths are tuned appropriately one can induce the process of tunneling from
the ground-band of the shallow site to the excited-band of the deep site. These two
experiments have opened a completely new path of exploring ultra-cold gasses [17].

In the article [H1] I have presented a completely different receipt for controlled
promoting of atoms to the higher orbital states. It originates on the parametric res-
onance phenomenon and it is described below. All calculations and numerical sim-
ulations in [H1] were done for realistic system of ultra-cold chromium atoms *2Cr
confined in the optical lattice created by the laser beams with A = 523 nm. All quan-
titative results are determined under these assumptions.

To get better understanding of the new way of creating of the orbital states in
optical lattices let us concentrate on the structure of the Hamiltonian (2.6) with a
few lowest bands of the periodic potential. If we assume that the lattice depth in the
Z direction is large then all excited states in this direction are not accessible and the
lowest orbital states are the single particle states p, and p, (single excitations in X
or Y direction respectively). If this is the case, the Hamiltonian (2.6) can be written
as a sum of non-local single-particle Hamiltonian #. and local, two-body interaction

-

{
IQ&L
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Hamiltonian H;,¢ of the form:

. . Uosopossr o
Hiny = Z ZEgnf + 5 T A —1)+ Z UgorAI AT (2.9a)
i o a#o!
Usm «13% U 2. Usiin .
+ = al?8? + %a?c;? + %b?c? 4 H.c.] , (2.9b)

where ¢ € (s, z,y) runs over indices of the bands considered (s = (0,0,0), z = (1,0,0),
y = (0,1,0)). For simplicity, I introduce notation a; = a.;, by = fgi, & = Gty Tlgt =
&li&gi, E, = t({}a), Uypt = Ui(;:g’wl) . Detailed form of the single-particle part of the
Hamiltonian #, is given and discussed in [H1], but it has no importance in further
analysis.

At this point it is worth noticing that in the typical static experimental scenario
the interaction terms in line (2.9b) have no importance and they can be neglected. It
comes from the fact that typically the parameters U, and U, are essentially smaller
than the corresponding energy gaps AE, = E, — E;. Therefore, due to the energy
conservation, they cannot lead to a significant occupation of the related orbital states.
Moreover, in the case of the optical lattice with different lattice depths in X and YV
directions, the interaction energy U, is much smaller than the energy difference
AFE,, = |E; — Ey|. In consequence, the last term of the local Hamiltonian can also
be neglected. The values of these parameters for the example of a symmetric lattice
(calculated directly from the shape of the Wannier functions) are presented in Fig.
2.2. Let us note, that neglecting of the mentioned terms in the Hamiltonian leads
directly to the conservation of the number of particles in each orbital state. Then the
only consequence of the multi-orbital interactions is the energy cost of the "density-
density” interactions caused by the terms 7,7, in the first line of the Hamiltonian.
The key observation described in [H1] is the conclusion that in some dynamical sce-
narios these commonly neglected terms can be important since they may crucially
change the properties of the system. Particularly, they can be exploited for creating
orbital states on demand.

Let us consider the most simple situation at which the system of ultra-cold bosons
is confined in a very deep optical lattice, in the Mott insulating phase far from the
transition point, with an average filling p = 2. Additionally, let us assume that the
lattice depth is not synimetric in X and Y directions and it is equal V,, = 32Er and
V, = 20ER respectively. In such a case, the single-particle tunnelings are completely
dominated by interactions and they can be neglected. In consequence, the state of
the system is a product state with respect to the lattice sites and the dynamics in
each lattice site can be treated independently. Now, let us assume that the depth of
the lattice in X direction is a periodic function of time with small amplitude and well
defined frequency, V,.(t)/Er = 32 + Asin(wt). Due to the structure of the Hamiltonian
(2.9) the entire dynamics takes place in the subspace spanned by three two-body
states [200) = %awivac), [020) = %Bmhac), |002) = ¢t2|vac). In this subspace the

" v
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Figure 2.2: (upper panel) Parameters of the Hamiltonian (2.9) as func-
tions of the lattice depth calculated directly from the shapes of the Wan-
nier functions in a symmetric lattice (V, = V;) and g = 1. As it can be
seen, in the typical experimental situation, the typical interaction ener-
gies are at least ten times smaller than the energy gap between lattice
bands. (bottom panel) Transfer efficiency as a function of the frequency of
the vibrating lattice w. Two distinguishable peaks are related to the reso-
nant condition at which the complete transfer of atoms to the excited band
is possible. The figure adopted from [H1].

Hamiltonian has a simple matrix form

2E; + Uss Usz Usy
o) =| Uy  2B;+Use  Usy (2.10)
Usy Uzy 2By + Uyy

All parameters of this Hamiltonian depend on time through nontrivial dependence
on the lattice depth. If the frequency of the vibrations w is tuned to the energy differ-
ence between the energy of the ground-state 2E, + Us, and the energy of the one of the
excited states 2E; + Uy, (2E,+U,,) calculated in the static situation (A = 0), the para-
metric resonance phenomena induced by off-diagonal elements of the matrix (2.10)
will take place. In consequence the system will oscillate between coupled many-body
states. The bottom panel in the Fig. 2.2 shows the transfer efficiency, defined as the
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highest depletion of the initial state for a given frequency w and amplitude A = 4. The
positions of the resonant frequencies agree with the energy difference between con-
sidered many-body states. The full width at half maximum for the both resonances is
about éw/(27) = 700 Hz. At this point it is worth noticing, that the full transfer from
the ground-band to the excited-band takes place in few milliseconds (details in [H1]).
Therefore, it is much faster than the experimentally obtained decay time of hundreds
of milliseconds [15]. It means that the mechanism of orbital states creation is quite
fast and indeed can be exploited.

The theoretical analysis described above was also generalized to other experi-
mental scenarios in [H1]. Among others, the dynamics of the system with initially
symmetric lattice depths was considered. As it was shown, in this case the states
|020) and |002), due to the off-diagonal terms and vanishing energy gap, are not good
approximations for the excited eigenstates of the Hamiltonian (2.10). In this case,
atoms can be efficiently transferred to the symmetric or antisymmetric superposi-
tions of these states |+£) = (|020) £ |002))/+/2 via symmetric or antisymmetric modu-
lations in both directions. One of the most interesting results presented in [H1] is the
recipe for creation orbital states of the form |+i) = (|020) & 4/002))/+/2. It is possible
by a specially arranged sequence of vibrations in X and Y direction. All these cases
were studied with details in [H1].

Predictions described in [H1] were also tested against approximations of the model.
It was done by performing simulations in the generalized models. It was shown that
the tunnelings to neighboring sites, when taken into account, do not change transfer
efficiency. It was also shown that higher bands of the optical lattices, neglected in the
model studied, do not change the conclusions. As it is described in details in [H1], all
these simulations confirm validity of the approximations.

Finally let me mention that the model studied completely neglects additional
term in the time-dependent Schrédinger equation related to the time evolution of
the single-particle basis. As was shown in [18] this additional correction leads to the
spreading of the resonance but it does not change the maximal value of the transfer
efficiency.

2.3.4. Properties of bosons loaded to the orbital states of the optical
lattice — [H2]

It is natural, that controlled transfer of atoms to the higher orbital states of the op-
tical lattice opens a new experimental possibilities. Indeed, properties of atoms in
higher states can be completely different from those in the ground-band. For ex-
ample, in the square lattice in each lattice site the two single-particle states p, and
py are degenerate. The question, how this degeneracy influences the properties of
many-body system has inspired many discussions and has brought many interesting
results [19, 20, 21, 22, 23, 24].
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The article [H2] was inspired by the theoretical paper [25], where the authors
analized the system of ultra-cold bosons loaded to the first excited band of the asym-
metric two-dimensional optical lattice described by the potential

V(z,y) = Ve sin?(kyz) + V, sin?(kyy). (2.11)

The parameters of the lattice were chosen in such a way that the tunnelings are pos-
sible only in the one direction, i.e. we assume that V;, > V,. At the same time the
single-particle degeneracy of the orbitals p, and p, is restored by tuning the wave
vectors of the lasers forming the lattice. Such a possibility is well visible in the har-
monic approximation of the lattice site. In the vicinity of the minimum the potential
can be approximately written as V(z,y) ~ (Vzk2)z®+ (V,k2)y*. Therefore, by choosing
the laser wavelengths to fulfill the condition V,/V, = (k,/k.)? the lattice site become
rotationally symmetric and orbitals p, and p, are degenerated. In such a case the
Hamiltonian (2.6) of bosons loaded to the first excited band can be reduced to the

form:

orblt = ZH Z (txamawg + tya’y@a‘yj‘) (2.12a)
¢ {33}
The local part of this Hamiltonian has a form #
) UUJ -2 U oo s
B=Y [Egn + 7 (Af - 1)] == [4 PhY + G0z, + alta g} . (2.12b)

o
The summation runs over excited orbitals ¢ € {z,y}. The tunneling of bosons is al-
lowed only in the X direction, but due to the different shapes of excited states in
these directions, orbitals p, and p, tunnel with different amplitudes, ¢, < 0, ¢, > 0
and |t;| > |t,|. The ratio t,/t, is determined by the lattice depths in X and Y direc-
tion (see details in [H2]). It is quite obvious that the Hamiltonian (2.12) commutes
with the operator of the total number of particles N = N + N, where N, = >, #¢.
However, due to the last two terms in the contact interactions, it does not commute
with N, and Ny separately. As it is seen, the interaction terms responsible for trans-
fer of bosons between orbitals conserve the parity of the operators N,. Therefore
the Hamiltonian (2.12) has an additional Z; symmetry controlled by the operator
8 = exp(imN,). With this observation, the ground-state of the system can be found
by looking for ground-states in two eigensubspaces of the operator S. Let me name
these state by |Geven) and |Goaq), respectively.

It can be shown that independently on the lattice depth, in the harmonic approx-
imation, the parameters of the Hamiltonian (2.12) related to the contact interactions
fulfill the condition U,, = Uy, = 3U,,. It means that the local part of the Hamiltonian
can be rewritten in the form [25]:

3Note that the shape of the lattice is tuned in such a way the degeneracy between orbitals is restored,

E. = E,. Therefore, all single-particle terms in the Hamiltonian can be neglected.
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where f; = A¥ + 7Y oraz Ly =i [&L&yi — a;i&mi] is a counterpart of the local an-
gular momentum operator. These observation leads directly to the conclusion, that
in the harmonic approximation, local Hamiltonian commutes with the local angular
momentum operator and has rotational symmetry. The numerical analysis based on
this assumption presented in [25] shows that in the limit of vanishing but non-zero
tunneling (|t;| ~ 0), when the average filling p = 3/2, the many-body ground-state
of the system has anti-ferro-orbital ordering, i.e. the expectation value of the stag-
gered angular momentum operator £ = ¥,(—1)}L,; is non-zero. It means, that in
the limit of small tunnelings, the ground-state is degenerated and due to the sponta-
neous breaking of the symmetry & induced by tunneling the time-reversal symmetry
is also broken.

The essence of our work [H2] is showing that going beyond the harmonic approx-
imation changes the scenario described above completely. In general, different in-
teraction parameters calculated directly from the Wannier functions do not obey the
particular condition U, = Uy, = 3U;,. Whenever lattice depths in X and Y directions
are different and the degeneracy between orbitals p, and p, is restored by tuned laser
wavelengths, the exact inequalities 3U,, < U, < Uy, hold. In consequence, the local
part of the Hamiltonian can not be written in the form (2.13) and the local angular
momentum operator L.:; does not commute with the Hamiltonian. One would think,
that this apparently technical and quantitatively small change modifies previous re-
sults insignificantly. However, the results obtained for the exact Hamiltonian (2.12)
and for the Hamiltonian in the harmonic approximation differ not only quantitively
but also qualitatively.

The first difference between the exact and the approximated model is visible in
the limit of small tunneling, |t.| ~ 0. The orbitals p, and p, are degenerated on
the level of the single-particle part of the Hamiltonian. However, due to the contact
interactions, this degeneracy is lifted. For the filling p = 3/2, the lowest energy
many-body state is some specific combination of an insulating phase in p, orbital and
half-filled superfluid phase in p, orbital ¥. In the limit of huge tunnelings, when all
interactions can be neglected, all bosons occupy the p, orbital and form the superfluid
phase with filling p = 3/2. In these two limits the ground-state of the system is not
degenerate and it is the eigenstate of the symmetry operator S. When the tunneling
is changed, the ground-state of the system smoothly goes from one phase to the other.
In the left panel of the Fig. 2.3 the average densities in each orbital (p, = >_,(f¢:)/L)
and hopping correlation (hy = _,(G0i)/L) as a functions of normalized tunneling are
presented. The results were obtained by exact diagonalization of the Hamiltonian in
the lattice with L = 8 sites.?

“This observations is a natural consequence of two facts: 3Usy < Uzs < Uyy and [tz] > |ty].

®The insulating phase in given orbital is characterized by a vanishing hopping k. and integer fill-
ing ps. In the superfluid phase, large nonlocal single-particle correlations are present and they are
characterized by a non-vanishing hopping h..
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Figure 2.3: (left panel) The average filling of the orbitals p, and the hop-
ping correlation h, as functions of normalized tunneling. The average fill-
ing of the lattice p = 3/2. (right panel) The energy difference between
ground-states calculated in eigen-subspaces of the symmetry operator S as
a function of the normalized tunneling. For well defined and finite range
of tunnelings (gray area) the ground-state of the system is degenerated.
All plots obtained from the exact diagonalization of the Hamilotnian with
L = 8 sites. The figure adopted from [HZ2].

The most interesting scenario, which is absolutely not present in the harmonic
approximation, is realized in the vicinity of the point where both orbitals are signifi-
cantly occupied (p; = p,). From the numerical analysis based on the exact diagonal-
ization of the Hamiltonian for finite lattice size L it follows, that in the well defined
range of tunnelings the ground-state of the system is degenerate. In practice, the
method gives us the energy difference between the ground-states in the eigenspaces
of S. For given lattice size L the ground-state become degenerate exactly in L points
and the range of tunnelings where it happens is of finite size and it is well defined
(right panel in Fig. 2.3). Moreover, the energy difference |Eoqq — Feven| calculated
in points where the degeneracy is not present decreases with L. On this basis we
conclude that in the thermodynamic limit L — oo the many-body ground state of the
system is degenerate for any tunneling in this range.

In the range of restored degeneracy both states |Geven) and |Goqq) have exactly
the same energy. From the model point of view, any of their superposition |G) =
c05(0)|Geven) + sin(#)e’?|Coga) is an equally good ground-state of the system. Never-
theless, since we are dealing with the many-body system, it is quite natural that in
the limit of the macroscopic system (L — oo) different superpositions will respond
differently to the external interactions with environment which can not be neglected.
Induced by this interaction, the system will spontaneously select well defined super-

%’]\ﬁ\
&
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position which is the most robust for the external disturbance 6. This phenomeno-
logical observation can be formulated more formally via einselection principle [26].
According to this principle, the macroscopic state that is realized physically should
exhibit as low entanglement as possible. In other words, the state which is selected
should be as close to the product state (with respect to the lattice sites) as possible.
In practice, to find appropriate superposition, we numerically minimize the entan-
glement entropy as a function of angles ¢ and ¢. Finally, without going into details
described in [H2], we find two states |G+) = (|Geven) & |Goaa))/v/2 Which are the clos-
est states to the product state. Note, that in the case studied the states are complex
superpositions of the eigenstates of the symmetry operator. This observation leads
directly to the non-vanishing expectation value of the staggered angular momentum
operator £, = Ej(—l)j ﬁzj. In consequence, in the range of tunnelings where the
degeneracy of the ground-state is restored, due to the spontaneous symmetry break-
ing mechanism, the system is found in the anti-ferro-orbital order and breaks the
time-reversal symmetry. All results obtained with the exact diagonalization of the
Hamiltonian were confirmed by co-authors in the large scale calculations with DMRG
method.

At this point it is worth noticing, the article [H2] was nominated by the director
of the Institute of Physics as the best publication in the Institute in 2013.

2.3.5. Bose-Hubbard models with three-body interactions - [H3-H5]

Higher orbitals of the optical lattice can be taken into account also in an effective
manner. It is possible, whenever any interaction term leading to the change of the or-
bital is much smaller then the energy gap between considered states. In such a case,
higher orbital states play a role of virtual, intermediate states and their influence can
be taken into account as corrections to the ground-band states in the second order of
perturbation theory. Since contact interactions considered in the model have a short-
range and local form, they can be effectively included to the Bose-Hubbard model (2.8)
by generalizing the energy interaction parameter U to the parameter which depends
on occupation U (n). Obviously, the new parameter has to obey natural requirements
U(0) = U(1) = 0 and U(2) = U. Therefore, the lowest nonvanising correction is pro-
portional to (n — 2) and in consequence the expansion of the interaction energy has a

form: W
WMZU+?W—2+W. (2.14)

OThe similar effect is present in the Ising model without external magnetic field. The ground-state
manifold is two-dimensional and it is spanned by the eigenstates of the spin-reversal operator, which
commutes with the Hamiltonian. In the thermodynamic limit the system spontaneously select the state
with the largest magnetization which breaks the immanent symmetry of the Hamiltonian.



Scientific achievement 18

In this way one obtains the effectice Hubbard-like model of the form:

Het = EOZa -ty ala;+— Za alaza; + — Zajajajazaiaz (2.15)
{i.d}

Formally, effective correction W can be viewed as an additional, local, three-body
interaction. It is worth noticing that parameter W, as well as higher corrections,
were determined in recent experiment with ultra-cold rubidium atoms "Rb confined
in optical lattice [27]. It means that the extended model (2.15) is not only a theoretical
divagation but it has also some experimental meaning.

From the effective approach point of view, the three-body interactions term W is
directly related and determined by the two-body one and therefore it can not be con-
trolled independently [28, 29]. However, this rigorous conjecture is valid only in the
case of short-range interactions. As was shown in [30], whenever long-range interac-
tions are considered, an effective three-body interaction can be tuned independently
from the two-body one in a huge range of parameters. Moreover, as was shown re-
cently in [31], it is possible to use ultra-cold spinor atoms in Mott-Insulator phase
to simulate Bose-Hubbard Hamiltonian with local three-body interactions. All these
together mean that it is quite important to perform general studies on the properties
of the Hamiltonian (2.15).

The first theoretical analysis of the Bose-Hubbard model with three-body inter-
actions was done in the perturbative mean-field theory framework [32, 33]. In these
articles, it was shown that three-body interactions lead directly to the shift of the
boundary between insulating and superfluid phases. However, in this approach the
lowest boundary for filling p = 1 is insensitive to the three-body interaction. The per-
turbative mean-field approach is directly related to the [H5] described below. In other
work [34] the two-dimensional version of the model was studied within Monte Carlo
method. This work focuses on the first-order phase transition induced by changes
of the chemical potential (changes of the total number of particles in the system).
Also, the model in the one-dimensional case was partially studied in [35] via DMRG
method (Density Matrix Renormalization Group). It was shown that, in contrast
to the mean-field approach, the boundary of the first insulating lobe (for p = 1)
is changed when three-body interactions are considered. This subtle analysis has
shown that properties of the Hamiltonian (2.15) should be analyzed with more accu-
rate methods than simple mean-field approach of independent lattice sites.

Exact diagonalization of the one-dimensional model - [H3]

I used an exact diagonalization of the one-dimensional Hamiltonian (2.15) to study
its properties mainly in the vicinity of the phase transition point [H3]. Here, in
contrast to previous analysis [35], calculations were performed also for higher filling
p = 2 where three-body interactions play a crucial role in stabilizing an insulating



Scientific achievement 19

phase. Due to the experimental circumstance presented in [27], both repulsive and
attractive three-body interactions were studied in the paper.

The method of an exact diagonalization of the Hamiltonian belongs to the "brute-
force” methods. On the one hand, it is exact since it does not contain any approx-
imations. On the second, it is highly limited by operational resources of nowadays
computers since it is based on diagonalization of huge matrices which dimension
scales exponentially with the size of the problem. The method is based on the obser-
vation that whenever the system is in the insulating phase then the finite energy gap
A for adding/subtracting a particle to/from the system is present. The gap decreases
with increasing tunneling and it becomes equal to 0 in the quantum phase transition
point t./U. When performing an exact diagonalization of the Hamiltonian with fixed
number of particles N and fixed size of the lattice L one finds the ground-state of the
system |Gy r) and its energy F(L, N). Then one defines upper and bottom border of
the insulating phase 7:

p+(p, L) = E(L,pL +1) — E(L, pL), (2.16a)
p—(p, L) = E(L,pL) — E(L,pL — 1). (2.16b)

It is quite obvious that both quantities strongly depend on the size of the system L.
Therefore, calculations for given t, U, and W are repeated for different sizes (in this
case L = 5,...,8). It is worth mentioning that the diagonalization is performed in
a full many-body Fock basis, i.e. it is assumed that each site of the lattice can be
occupied by 0,..., N bosons. In the next step, borders p4 are extrapolated to the
infinite-size limit . — co. The extrapolation is possible since the quantities consid-
ered depend linearly on the system size [H3]. The energy cost in the thermodynamic
limit is defined as a difference of the quantities obtained in this way, A = py — p_.
Without going into detalis described in [H3], the quantum phase transition point ¢.
from the insulating to the superfluid phase is determined from the condition A = 0.
At the same time, both quantities p.. determine the border on the phase diagram
between insulating and superfluid phase (Fig. 2.4).

The results obtained in [H3]show that for higher filling p = 2 the size of the
insulating lobe is very sensitive to the presence of three-body interactions. It is visible
even in the limit of vanishing tunneling ¢t — 0, where an analytical result can be
obtained. In this limit, for p = 1, the energy cost A does not depend on W. However
for p =2 it is equal A = U + W. An increasing sensitivity for three-body interactions
is quite natural when microscopic picture is considered. Any tunneling process which
leads to destruction of the insulating phase with p = 2 has to compete not only with
two-body interactions but also with three-body ones.

Exact diagonalization of the Hamiltonian gives also a possibility to check numer-
ically what is the universality class of the model at the quantum phase transition

"'The quantities p+ are direct counterparts of the chemical potential defined for finite-size systems.

A
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Figure 2.4: Phase diagrams for the one-dimensional model (2.15) for three
different three-body interactions W/U. Note, the first insulating phase
(p = 1) is almost insensitive to the presence of three-body interactions.
However, the shape of the second insulating lobe (p = 2) crutialy depends
on these interactions. The lobe is enlarged (shrunk) for repulsive (attrac-
tive) three-body forces when compared to the lobe predicted by the stan-
dard Bose-Hubbard model. The figure adopted from [H3].

point. It is known that at the tip of the Mott lobe the one-dimensional Bose-Hubbard
model belongs to the universality class of the XY spin model. It means that the phase
transition from the insulating to the superfluid phase is of the Berezinskii-Kosterlitz-
Thouless (BKT) type [36, 37, 88]. It is characterized by the exponential decay of the
correlation length which can be related to the characteristic decay of the energy cost
A on the insulating side:

A 1

Inl—=)~——m—, for t < t.. (2.17)
(U ) V1= t/t ¢

The numerical results (details in [H3]) show that the universality of the phase tran-

sition does not depend on additional local three-body interactions. Independently on

the sign and amplitude of three-body interactions W, the quantum phase transition

point from the insulating to the superfluid phase always belongs to the BKT class.

DMRG method for the model without two-body interactions — [H4]

The observation, that in the one-dimensional model the universality class of the
phase transition from the insulating to the superfluid phase does not depend on
the three-body interactions, have inspired me to study an extreme version of the
model — the model with huge three-body interactions, U/W — 0. In the article [H4] I
study properties of the one-dimensional model defined via the following Hamiltonian
[42, 43]:

Favoay = —t Y &} (Gim1 + Giy1) + %{ alalal 46,0, (2.18)

i i

Here, in contrast to [H3], the ground-state of the model is studied on a large scale
(I =~ 100). Obviously, for such a big system, the exact diagonalization method fails.
Therefore, this analysis is performed using DMRG method. The DMRG algorithm
was invented in the 90s of the previous century and till now it is viewed as the most
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effective large-scale method for one-dimensional problems [44]. Without going into
details (for example, see the beautiful review [45]), as a result of the algorithm one
gets the ground-state energy E(L, p, ) calculated for a given chain size L and fixed
total number of bosons p- L+ &. In principle, it is also possible to estimate the value of
any k-order correlation function of the form (¢|0;, - - - @;, |6}, where O; is an arbitrary
operator acting locally on site 7 (in practice k is not large). Without any additional
cost, due to the construction of the algorithm, it is also possible to calculate entan-
glement entropy of the subsystem of the size [, S(I, L) = —Tr (p;1np;). The operator
pr = Trp_;|G){(G| is a reduced density matrix of the subsystem of the size [ obtained
by tracing out remaining degrees of freedom from the projection operator |G)(G|. As
discussed in [H4], the entanglement entropy of the subsystem can be used for inde-
pendent estimation of the position of the phase transition point from insulating to
superfluid phase.

In the first part of the article [H4] the analysis of the ground-state of the system
was performed in close analogy to the concept described in [H3]. The ground-state
energy E(L,p, k) calculated for p € {2,3}, x € {—1,0,1}, and different system sizes
L = 32,48,...,128 was used to determine the boundaries of the insulating phase
p+. In consequence, the energy cost A for adding/subtracting a particle to/from the
system is also calculated. In this way, one obtains the insulating lobes on the phase
diagram of the model and determines the positions of the phase transition points
for the first two insulating phases (Fig 2. in [H4]). Due to the huge accuracy of
calculations performed, the energy cost A scales exactly as it is predicted for BKT
universality class (2.17) (left panel in Fig. 2.5).

In the second part of the article [H4], the position of the critical point was de-
termined in completely independent way which does not originate on the energetic
arguments. The method exploits universal properties of the entanglement entropy
& in finite-size systems. It is known, that in the thermodynamic limit L — oo, an
entanglement entropy of the subsystem is logarithmically divergent with the size of
the subsystem [ whenever long-range correlations are manifested in the ground-state
of the system, i.e. the system is in the superfluid phase. In contrast, if the system
remains in the insulating phase all correlations have finite range. Therefore, for
large enough sizes of the subsystem, an entanglement entropy saturates on some fi-
nite value. This observation has some consequences also for the finite-size systems
(L < oo). It can be shown that in such a case the entanglement entropy of the sub-
system treated as a function of the subsystem size [ has the following form [46, 47]:

S(,L) = S—Zln [’jr—Lsin (%)] +s(L)+ 0O (%) , (2.19)

where « = 1 or k = 2 for periodic and open boundary conditions respectively. The
parameter c is called the central charge of the model. If the system remains in the
insulating phase the central charge is equal to 0. However, it is greater than 0 when-
ever long-range correlations are present in the system (like in the superfluid phase).
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Figure 2.5: (left panel) The energy cost A determined in the insulating
phase as a function of the tunneling . In chosen scaling the numeri-
cal points fit to the linear regression predicted for BKT universality class
(2.17). The numerical points were obtained with DMRG method for the
system size L = 128. (right panel) The central charge c as a function of the
tunneling ¢ obtained from the scaling of the entanglement entropy (2.19).
In the vicinity of the phase transition point the central charge changes its
value from 0 (in insulating phase) to 1 (in superfluid phase) and it reaches
the maximal value at the critical point. The figure adopted from [H4].

It can be shown, that in the ideal superfluid phase in the limit of infinite size I — co
the central charge is equal to 1. As it is shown in [H4], all this theoretical predic-
tions are clearly visible in numerical results obtained for the system studied with
the DMRG method. First, the entanglement entropy scales appropriately with the
size of the subsystem. The numerical results for S(I, L), if plotted as a function of
In [sin(wl/L)], fit to the linear regression (Fig 4. in [H4]). With this observation, the
central charge c as a function of the tunneling can be estimated. The central charge
determined with the help of this procedure vanishes deeply in the insulating phase
and saturates at 1 far in the superfluid phase (right panel in Fig. 2.5). In the vicin-
ity of the phase transition point one observes a rapid change in the behavior of the
central charge and the maximal value of ¢ is reached near the position of the critical
point determined with the previous method. Such behavior of the central charge is
very similar to the situation observed in the standard Bose-Hubbard model [10]. It is
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believed that non monotonicity in the central charge behavior is a direct consequence
of the finite size of the system, and in the thermodynamic limit it smoothly flows to
"step-like” behavior.

The Gutzwiller anzatz approach - [H5]

As it was mentioned above, the model (2.15) was analyzed in the perturbative mean-
field approach in [32, 33]. The method based on the assumption that the superfluid
phase appears in the system when the U(1) symmetry of the model is spontaneously
broken and the non-vanishing value of the local order parameter ®; = (a;) is present.
The existence of the non-vanishing order parameter ®; is not consistent with the
conservation of total number of particles N = Y ajai. Therefore, the analysis has
to be carried out in the grand canonical ensemble. The average number of parti-
cles in the system is controlled by the chemical potential i. The assumption on the

translational invariance of the system together with the following approximation of
8)

.

tunneling terms

ala; ~ |0 + B6 + 6t = ®al + Fa; — |9, (2.20)
bring the Hamiltonian (2.15) to the sum of independent Hamiltonians for each site
separately

g = [%aja;{&iai it %agagagaiaiai 20 (ag ol s cI)) " ,uagai] . (221)
K
The coordination number z defines the number of neighboring sites in the lattice.

Directly from energetic arguments one finds that the ground-state of the Hamil-
tonian (2.21) can be obtained for vanishing or not vanishing order parameter ¢ de-
pending on the value of parameters ¢, 4, U i W. It is a matter of fact, that vanishing
value of the order parameter ® consequently leads to the integer value of the aver-
age number of particles (", &I&i) /N, i.e. the ground-state of the model (2.15) can
be found in the insulating phase only for integer filling p. The border in the phase
diagram between the insulating and superfluid phase t.() can be found by solving
well defined energetic condition in which both phases have the same energy (detalis
in [32, 33] and [H5]). The solid line in Fig. 2.6 represents the border between phases
for different values of three-body interactions.

The perturbative mean-field approach is sufficient to determine the boundary be-
tween quantum phases of the ground-state, but it has some fundamental limitations.
It is based on approximate decomposition (2.20) which is not valid in deep superfluid
phase dominated by single-particle tunnelings. Therefore, the value of the order pa-
rameter is not well determined in this phase. Moreover, the method assumes ideal

®Directly from the definition of the order parameter one finds that the annihilation operator can be
written as @; = ® + &;, where &; is some well defined operator with vanishing expectation value.

AL
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Figure 2.6: Phase diagrams of the model (2.15) obtained with mean-
field methods for different values of the three-body interaction W. White
line represents the border between phases obtained with perturbative
mean-field theory. The order parameter determined numerically with the
Gutzwiller ansatz is presented in the background. Both method determine
the same position of the border between insulating (black area) and super-
fluid phase (light area). The figure adopted from [H5].

translational invariance of the system. Therefore, it is hard to check the stability of
the solution to the local differences in the density of particles. In the article [H5] we
compare all pretictions of the perturbative mean-field approach with the results ob-
tained in the framework of, so called, Gutzwiller ansatz [39, 40, 41] which has no
mentioned disadvantages but still it belongs to the class of the mean-field methods.

The Gutzwiller ansatz approach belongs to the variational methods. Therefore,
the starting point of the analysis is the definition of the whole family of probe func-
tions for the ground-state of the system. In this case we assume that the ground-state
of the system |¥) is a product state with respect to the lattice sites, ) = []; [+;). The
state of the subsystem |4;) is decomposed in the local Fock base cut at a large enough
number of particles nyayx. Strictly, the ground-state of the system is assumed to be of
the form:

Nmax

0y =T] > ai(m)n), (2.22)

i n=0
where a;(n) is the probability amplitude of finding »n bosons in the i-th lattice site.
The normalization condition for these amplitudes has a form Y, |a;(n)> = 1. It
is quite obvious that the product state (2.22) cannot describe any non-local correla-
tions in the superfluid phase. Nevertheless, the superfluid long-range coherence is
captured at this level by non-trivial superpositions of local Fock states and the local
value of the order parameter ®; = (a;) can be determined.

The amplitudes of the state which mimics the ground-state of the system in the
family of probe functions (2.22) are determined by minimizing the expectation value
of the Hamiltonian (2.15). In the article [H5] the minimization was performed numer-
ically with imaginary-time method on the square 8 x 8 lattice with periodic boundary
conditions and with nmax = 4. Without going into details described in [H5], as a result

sl
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of this minimization one obtaines the colection of amplitudes {a;(n)} related to the
state with the lowest energy. Without any difficulties one can calculate expectation
values of different operators like the order parameter &;, the average local density
(didi), etc. The numerical results obtained fully confirm that the order parameter is
transitionally invariant, i.e. ®; does not depend on 7. Shaded plots in Fig. 2.6 show
the value of @ as a function of the parameters of the Hamiltonian for different val-
ues of three-body interactions. The border between insulating phase (the black area
with ® = 0) and superfluid phase (gray-scaled area with ® # 0) is clearly visible and
its position coincidences with the border determined with the perturbative method
(white line).

2.3.6. Quantum phase transition in a shallow optical lattice — [H6]

In my recent paper [H6], I discuss a different regime of experimental parameters
where interactions between particles are still very weak but the periodic potential of
the optical lattice is very shallow. This problem seems to be difficult for two reasons.
The first is related to enlarged spreading of the Wannier functions which directly in-
creases importance of the tunnelings to the further sites t?(:o) (li| > 1). The second
comes from the fact that the band gap between the ground-band and a excited-band
becomes smaller and it may be of the same size as typical interactions between par-
ticles. Then, the influence of higher bands of the periodic potential has to be taken
into account. From the point of view of the Hubbard-like model the description of
the system becomes quite complicated and one can have conviction that some other
methods should be adopted. One possibility is to exploit some methods, working di-
rectly in the configuration space of confined particles. This idea was adopted recently
with the so-called hybrid quantum Monte Carlo method and used to study the phase
transition from the insulating to the superfluid phase in a very shallow optical lattice
[48].

In my recent paper [H6], I tried to formulate the problem of shallow lattices in the
old-fashioned Hubbard-like description approach. The main goal is to find the most
relevant corrections to the standard Bose-Hubbard model. For simplicity, I assume
that the lattice is shallow only in the one spatial direction. In the remaining direc-
tions the lattice is very deep, therefore one can assume that the dynamics of bosons
is frozen. With this assumption, the model (2.6) reduces to the one-dimensional case.
The subtle analysis shows that in the vicinity of the quantum phase transition point
(for filling p = 1) the only correction that is relevant, even for very shallow lattice
(V = 4FER), comes from the tunnelings to the next-nearest neighbor tg)) . In particu-
lar, all other corrections that originate in the higher bands’ physics, as well as in the
inter-site interactions, are less important, and at the first approximation they can be
omitted.

To justify these non-obvious statements let me first show that the influence of

S
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higher orbitals of the optical lattice can be neglected. An influence of higher bands
depends on the interactions which can promote bosons to higher orbitals. The most
y )

relevant term of this kind is controlled by the parameter Uiz = Uyj;;; ’, where s and
p denote ground and excited band respectively. This term controls the process of a
direct promotion of two bosons from the ground-band |g) = (a&];)%|vac) to the first
excited band in the same site of the lattice |e) = (&L)ﬂvae). In the subspace of
two-body states in the chosen lattice site and reduced to the two lowest bands the

Hamiltonian has a form:
Fhioo = 2A|e)(e| + 2Us (&) (e] + le)(g]) (2.23)

where A = E, — E, denotes the single-particle band-gap. Due to the inter-band
interaction term Utg, the contribution of the excited orbital |e) to the ground-state |G)
of the Hamiltonian (2.23) has a form

2 2Uss

T
62 = , -
elo) 222 + 2 4 2¢/1 + 22 * A

This quantity is a proper measure of the influence of higher orbital to the properties

(2.24)

of the ground-state of the system. One can estimate its value in the vicinity of the
quantum phase transition point. It is known that in the one-dimensional case (for
filling p = 1) the critical tunneling is in the region ¢/U 2 0.25. The band-gap A de-
pends on the lattice depth and even for very shallow lattices (as shown in [H5]) fulfills
the condition ¢/A < 0.1. At the same time, the ratio of he inter-band interaction to
the ordinary two-body interaction in the ground-band U;z/U is always smaller than
0.5. These three facts together lead directly to the conclusion that in the vicinity of
the phase transition the condition Us/A < 0.2 is satisfied. It means that even for
very shallow lattices the excited state contribution |{e|G)|? < 4%. Therefore, the in-
fluence of higher orbitals can be neglected. At this moment it is worth noticing, that
relatively small contribution of the higher bands is caused by the conservation of the
energy. In the vicinity of the phase transition, the energy cost of transfer bosons from
the ground to the excited band is much larger than the typical interaction energy
which lead to this promotion. However, this argument is not general and in the case
studied it is valid only for small densities. For larger densities all interactions are en-
hanced by a factor /n and in consequence they can become larger than the band-gap
A.

After we excluded influence of the higher bands we consider processes which act
within the ground-band of the lattice. These processes have completely different
character since they are not suppressed by the conservation of energy. There is no
single-particle cost to move particle between lattice sites. Therefore, these processes,
even if their characteristic energy is small, can lead to a large non-local correlations
and in consequence they can play a substantial role in the vicinity of the phase transi-
tion where the insulating phase is destroyed. The most relevant process of this kind
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(and the only parameter in the limit of a very deep lattice) is obviously the single-
particle tunneling to the neighboring site t. In the case of shallow lattice, one can
find the most important correction to this process by comparing the importance of the
tunneling to the next-nearest neighbors ¢ = tgs) and interaction-induced tunneling
Ug = U,L.(i‘z;”), for j = i+ 1. The detailed analysis (described in [H6]) shows that in the
vicinity of the phase transition point the ratio |Up|/t is substantially smaller than the
ratio [#| /t. It means that in the vicinity of the phase transition of the one-dimensional
model the most relevant correction to the standard Bose-Hubbard model is related to
the next-nearest neighbor tunneling #'. Therefore, the extended Hubbard-like model
has a form:

Flsnatios = —t 36} @s + dr) ~ ¥ 3l + dug0) + 2 3 alalads  (229)

i i

i
The ratio t'/t is determined by the depth of the optical lattice and it can be calculated
directly from (2.7a) (details in [H6]). One can show that the ratio is always negative
and it decays to zero when the lattice become infinitely deep.

In the limit of deep lattice (Vo — co) the next-nearest neighbor tunnelings are
neglected and the properties of the system are fully determined by the total number
of bosons N and the only one dimensionless parameter ¢/U. When the parameter is
tuned to the well defined critical value, the system undergoes the phase transition
from the insulating to the superfluid phase. In general, the parameter ¢/U can be
controlled experimentally in different ways. Typically the changes of t/U are con-
trolled by changing the lattice depth. Then, the single-particle tunneling ¢ changes
its value together with two-body interaction U. In other scenario one can tune the
interaction coupling ¢ without changing the shape of the lattice. Then, only the inter-
action U varies. From the standard Bose-Hubbard model point of view both scenarios
are equally good since the critical value ¢./U can be reached in both ways.

When extended models with larger number of parameters are considered, the sit-
uation is more complicated and different scenarios can lead to different results. It
is quite well visible in the model with next-neighbor tunnelings (2.25). In this case,
the properties of the ground-state are controlled by two independent dimensionless
parameters t/U and ¢ /U. When the depth of the optical lattice changes, both tunnel-
ings, their ratio, as well as the interaction U vary. Therefore, it is hard to determine
the moment when the system crosses the quantum phase transition point. However,
when the experiment is performed in the lattice with given depth Vg, the ratio ¢/t’ is
fixed and the transition through the critical point can be tuned by varying interaction
U. In this scenario the ratio t'/U is explicitly determined by the lattice depth and the
ratio t/U. After all, the model has only one parameter of control t/U. The additional
parameter t'/U plays only additional role in fixing the value of critical tunneling.
This simple observation can have some importance when very subtle experimental
quench through the phase transition point are considered. In the article [H6] it is

AL

assumed that the second experimental scenario is realized.
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Figure 2.7: (left panel) The phase diagram of the model (2.25) with the
borders of the first insulating lobe p = 1 in to limiting cases: very shallow
lattice (solid line) and very deep lattice when the next-nearest neighbor
tunneling can be neglected (dashed line). (right panel) The critical value
of the tunneling t. as a function of the depth of the optical lattice. Note,
for shallow lattices the critical tunneling ¢. is larger. The figure adopted from
[HE].

In [H6] the Hamiltonian (2.25) was studied with the exact diagonalization method
in close analogy to the analysis of the model with local three-body interactions in
[H3]. Therefore, I will limit myself to discuss the final results obtained. It should be
mentioned that although the model is valid only in the vicinity of the phase transition
its properties were studied in the whole range of the tunnelings. The theoretical
model (2.25), without any derivation, was studied recently in the mean-field approach
[49] and in the two-dimensional case with the quantum rotor approach [50]. The
general analysis in a whole range of interactions enable us to compare the results
obtained with different methods.

The results presented in [H6] shows that the critical value of the tunneling t./U
is substantially changed in the shallow optical lattice. In Fig. 2.7 the phase diagrams
for two different lattice depths are compared. On the right panel, the critical value
of the tunneling as a function of the lattice depth is shown. Contrary to the naive
intuition, when the next-nearest neighbor tunneling is included the area of the insu-
lating phase is enlarged (for more shallow lattice the critical tunneling is larger). It
comes from the fact that both tunnelings ¢ and ¢’ have opposite signs and some kind
of destructive interference of both processes is present in the system. This fact was
also noticed in higher dimensions [49, 50]. This observation validates also the model
assuming that the critical tunneling is in the region where ¢t/U 2 0.25. The shift of
the position of the critical point in the phase diagram takes place also in the direction
of the chemical potential. However, the value u./U decreases with the value ¢'. This
behavior is opposite in higher dimensions [49, 50].
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Other scientific achievements

Detailed references [P1-P23] can be find in the paragraph 4.1.

3.1. Before obtaining PhD degree

My scientific career started in 2003 during the third year of studies at Faculty of
Physics of the University of Warsaw. At this time I was employed in the Center for
Theoretical Physics of the Polish Academy of Sciences and I started collaboration with
professor Iwo Bialynicki-Birula. At that time the main objective of my scientific work
was a deep analysis of classical and quantum dynamics of particles confined in the
anisotropic harmonic trap rotating along arbitrary axis, not necessary parallel to one
of main directions of the trap. This research was motivated by recent experiments on
trapping Bose-Einstein condensates and single ions in harmonic traps.

As a result we found previously unknown areas of trap parameters when the dy-
namics is unstable. Additionally, we have predicted phenomenon of gravity-induced
resonances in harmonic trap [P22,P23]. In the framework of loghatirmic Schridinger
equation, we have shown that the size and positions of the regions of unstable dynam-
ics strongly depend on interactions [P23]. Moreover, we gave a simple prescription
for constructing complete set of stationary states for any linear system from classical
trajectories [P21]. All these results were finally summarized in my diploma thesis
under supervision of prof. Bialynicki-Birula. I was graduated with the suma cum
laude note in 2005.

In my PhD thesis a systematic description of two-level systems (qubits) interact-
ing with external quantized electromagnetic field was developed. This problem, in
the general framework, is still awaiting for exact solution. It has a fundamental im-
portance in understanding of physical properties of qubits, e.g., characteristic decay
time to the ground-state, the sensitivity to the external perturbations, etc.

Our approach to the problem [P20] exploits the formalism of the quantum field
theory, where the central role is played by the Feynman propagators and diagrams.
This approach, in contrast to other methods exploited previously, enables one to carry
on the perturbative calculations effectively. In particular, we have calculated the po-
larizability and susceptibility up to the fourth order of perturbation theory (previous
result was known only in the second order; the result in fourth order was incorrect).
This result lead directly, via the analytical continuation and the linear response the-
ory, to the general formulas for the atomic polarizability and the dynamic of single
spin susceptibility, i.e. quantities which characterize the intensity of the system re-
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sponse to the external perturbation. At this point it was possible to resolve also some
ambiguities concerning the sign prescription that arise in the literature in the phe-
nomenological treatment. We also generalized the method to the systems with higher
number of internal degrees of freedom (qudits) [P20].

3.2. After obtaining PhD degree

After obtaining my PhD in theoretical physics I continued my employment in the
Center for Theoretical Physics of the Polish Academy of Sciences till 2009. In that
time I generalized the results from my PhD to the situation when the system is in
contact with a thermostat [P19].

In 2009, when I was employed in the Faculty of Biology and Environmental Sci-
ences of the Cardinal Stefan Wyszynski University, I have started collaboration with
professor Mariusz Gajda from the Institute of Physics, Polish Academy of Sciences. In
our first paper we discussed validity of the Gross-Pitaevskii (GP) equation by compar-
ing its predictions with exact dynamics of two ultra-cold bosons confined in harmonic
trap [18].

In 2010-2011 we worked on the problem of Einstein—de Haas (EdH) effect induced
by the long-range dipolar forces in the spinor condensates. With the simplified but
still realistic model, we have shown that the selective promotion of atoms confined in
the harmonic trap to states with non-vanishing orbital angular momentum is possible
[P186]. In our next paper [P17] we have shown that the orbital states created via EdH
effect have some topological properties which are protected and conserved when the
geometry of the external trap is changed dynamically.

In 2011, after joining the international scientific project NAME-QUAM, I had a
short-time visit (3 months) in the Quantum Optics Group in ICFO - The Institute
of Photonic Sciences (Barcelona, Spain) led by prof. Maciej Lewenstein. During the
visit I have started my research on possible extensions of Hubbard-like model de-
scribing properties of ultra-cold gases confined in optical lattices. Till now, this is the
main subject of my scientific activity. My first task in the group was to accurately
estimate parameters of a model describing gas of ultra-cold molecules (for example
RbCs, KLi, etc.) interacting via electrically induced long-range dipolar forces. To
make this calculations precisely I developed a new method for calculating matrix el-
ements of the interaction Hamiltonian from shapes of Wannier functions for given
optical lattice. Having these parameters the properties of the Hamiltonian were an-
alyzed with an exact diagonalization approach. This analysis shows that in a very
narrow window of optical lattice parameters it is possible to find the ground-state in
the so called pair-superfluid phase. This prediction was confirmed by coworkers in a
large-scale calculations performed with MERA algorithm (Multiscale Entanglement
Renormalization Ansatz). The results were published in Phys. Rev. Lett. [P15].

In 2012 I started my nine-month postdoctoral research (granted by the Founda-
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tion for Polish Sciences) in the group of prof. Lewenstein. At that time, a new idea
of combining the both recently developed paths was launched. Namely, we started
to analyze if the EdH mechanism can be observed in the optical lattice scheme. It
turned out that this concept is very productive and many interesting results were ob-
tained. In [P13] we derive the first extended Hubbard-like model taking into account
the dynamics of spin of confined particles. We explore the quantum phases of the
ground-state of the system with mean-field approach and we support these results
with, already well established, exact diagonalization approach. In this way we show
that depending on the parameters the state of the system can be found in the exotic
superposition of many-body states: Mott-Insulator state in one of the spin component
and superfluid phase in remaining component. In [P10] we discuss an influence of
the anisotropy and anharmonicity of the lattice site to the existence of the EdH mech-
anism. Due to the high selectivity of the long-range magnetic interactions (caused by
a very small interaction energy) these two properties of the lattice site (typically ne-
glected by other authors) have a curtail importance for producing quantum phases
with an orbital angular momentum. This observation is related to the fact that mag-
netic interactions couple states from the ground-band of the lattice with the states
from the excited band, where anharmonicity and anisotropy cannot be neglected. It
is worth noticing, that the results obtained in [P10] and [P13] were basis of the PhD
thesis of J. Pietraszewicz prepared under my co-supervision.

In the context of orbital physics in the optical lattices, we have analyzed extended
Fermi-Hubbard model which describes the system of ultra-cold polar fermions in two-
dimensional optical lattice. In our paper [P11] we show that, in the case of fermionic
systems, the single-band description is invalid even for quite typical experimental
situations. Therefore, the extension of the model by taking into account higher or-
bitals become necessary. The analysis of the derived extended model shows that
some exotic, strongly correlated quantum phases may appear in the system when
interactions between fermions become strong.

Our few-year experience in developing and studying the extended Hubbard-like
models resulted in the idea of composing a review article on the subject. The review
was written in a huge international collaboration of coauthors with different expe-
rience and different interests. Therefore, it covers almost all aspects of the issue —
from the simplest extensions of the standard Bose-Hubbard model, through the mod-
els taking into account higher orbitals of the periodic potentials and internal degrees
of freedom, to the models with long-range interactions. At the moment the review
article is accepted for publication in the Reports on Progress in Physics and it is
awaiting publication [P1].

In 2013 I have started collaboration with the group of prof. Wiestaw Leonski from
University of Zielona Géra. One of the subjects developed in the group is question
on possible applications of strongly-correlated quantum systems to the problems of
quantum information theory. In our joint paper [P5] we study quantum correlations
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in the system of ultra-cold spin-1 bosons confined in optical superlattice (in insulat-
ing phase). We use the effective-spin approach and we classify all possible correla-
tions that can be observed. We show that adiabatic change of parameters controlled
experimentally can lead to "switching” the system between states with different cor-
relations.

Recently, it turned out that the numerical method of an exact diagonalization
of the Hamiltonian can be a very useful tool to analyze systems of a few strongly-
correlated fermions. Already during my postdoc in ICFO, we studied spectrum of
the many-body Hamiltonian describing two-flavor mixture of fermions interacting
via short-range interactions and confined in a one-dimensional harmonic trap [P9].
The problem is closely related to the running experiments in the J. Selim’s group in
Heidelberg [51, 52, 53, 54]. In these experiments it is possible to precisely control a
number of confined fermions, to change quasi-adiabatically mutual interactions, ete.
Moreover, in the final phase of the experiment, the probability of finding a fermion on
a given single-particle level of harmonic confinement can be measured. In our work
[P9] we show that for strong enough interactions, due to the quasi-degeneracy of the
many-body ground-state of the system, experimental tuning of interactions cannot
be treated as adiabatic and can lead to observable consequences. In addition, we
checked how the properties of the system will change when possible anharmonicity
of the trap as well as spin-dependent interactions are present in the system.

The same model of few fermions in the regime of attractive forces was studied in
our recent paper [P3]. The main motivation of this work was the question if one can
find some tracks showing that pairing correlations (similar to the Cooper pairing [55])
can be observed in the system of a few particles. After exact diagonalization of the
Hamiltonian for a two-component mixture of few fermions we analyze the ground-
state of the system in the language of the one- and the two-particle density matrices.
We show how for a strong attraction the fraction of correlated pairs of opposite spins
emerge in the system. We find that the fraction of correlated pairs depends on a
temperature and we show that this dependence has universal properties analogous
to that known from the BCS theory [56]. Due to the connection of our results with
currently developed experiments, we proposed experimental scheme to validate our
predictions.

In this way I have started the next, for me completely unknown, path of my re-
search on strongly correlated few-body systems of ultra-cold particles. This quite
fresh idea can be very fruitful since it forms some kind of bridge between quantum
optics of two, three particles and the condensed matter and the nuclear physics where
collective behavior of many-particle systems are responsible for spectacular phenom-
ena having no counterparts in classical world. It seems that good understanding of
this missing puzzle, i.e. properties of mesoscopic number of quantum particles, may
be a milestone in understanding of fundamental quantum phenomena. Recently, I
decided to intensify my research in this direction and from 2015, as the leader of the
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Tuventus Plus grant, this is my main subject of studies.

In 2015 I was coauthored the article [P4] where we studied and compared proper-
ties of the soliton solutions of the one-dimensional GP equation with exactly solvable
Lieb-Liniger model of interacting bosons. My contribution to this work is relatively
small and it is limited to validation of some temporary hypothesis.
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Scientific activity

4.1.

Full list of scientific papers

Articles [P2], [P6], [P7], [P8], [P12] and [P14] form a habilitation achievement

and were discussed in Paragraph 2.
Other articles were discussed in Paragraph 3.

After PhD degree

[P1]

[(P2]

[P3]

[(P4]

[P5]

[P6]

[P7]

O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lihmann, B. A. Malomed,
T. Sowiniski, J. Zakrzewski

”Non-standard Hubbard models in optical lattices”

Rep. Prog. Phys. (accepted, in press) (2015).

T. Sowinski
?Quantum phase transition in a shallow one dimensional optical lattice”
J. Opt. Soc. Am. B 32, 670 (2015).

T. Sowiniski, M. Gajda, K. Rzazewski
"Pairing in a system of a few attractive fermions in a harmonic trap”
Europhys. Lett. 109, 26005 (2015).

T. Karpiuk, T. Sowinski, M. Gajda, K. Rzazewski, M. Brewczyk
"Correspondence between dark solitons and the type II excitations of Lieb-Liniger
model”

Phys. Rev. A 91, 013621 (2015).

A. Barasinski, W. Leoriski, T. Sowinski
’Ground-state entanglement of spin-1 bosons undergoing superexchange interac-

tions in optical superlattices”
J. Opt. Soc. Am. B 31, 1845 (2014).

T. Sowinski
“One-dimensional Bose-Hubbard model with pure three-body interactions”
Cent. Eur. J. Phys. 12, 473 (2014).

T. Sowiniski, R. W. Chhajlany
*Mean-field approaches to the Bose-Hubbard model with three-body local inter-

action”
Phys. Scripta T160, 014038 (2014).
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[P8] T. Sowiniski, M. Lacki, O. Dutta, J. Pietraszewicz, P. Sierant, M. Gajda, J. Za-
krzewski, M. Lewenstein
*Tunneling-Induced Restoration of the Degeneracy and the Time-Reversal Sym-
metry Breaking in Optical Lattices”
Phys. Rev. Lett. 111, 215302 (2013).

[P9] T. Sowiniski, T. Grass, O. Dutta, M. Lewenstein
"Few interacting fermions in a one-dimensional harmonic trap”
Phys. Rev. A 88, 033607 (2013).

[P10] J. Pietraszewicz, T. Sowiriski, M. Brewczyk, M. Lewenstein, M. Gajda
"Spin dynamics of two bosons in an optical lattice site: a role of anharmonicity

and anisotropy of the trapping potential”
Phys. Rev. A 88, 013608 (2013).

[P11] O. Dutta, T. Sowinski, M. Lewenstein
*Orbital physics of polar Fermi molecules”
Phys. Rev. A 87, 023619 (2013).

[P12] T. Sowinski
*Exact diagonalization of the one dimensional Bose-Hubbard model with local
3-body interactions”
Phys. Rev. A 85, 065601 (2012).

[P13] J. Pietraszewicz, T. Sowiniski, M. Brewczyk, J. Zakrzewski, M. Lewenstein, M.
Gajda
*Two component Bose-Hubbard model with higher angular momentum states”
Phys. Rev. A 85, 053638 (2012).

[P14] T. Sowinski
“Creation on demand of higher orbital states in a vibrating optical lattice”
Phys. Rev. Lett. 108, 165301 (2012).

[P15] T. Sowiriski, O. Dutta, P. Hauke, L. Tagliacozzo, M. Lewenstein
*Dipolar molecules in optical lattices”
Phys. Rev. Lett. 108, 115301 (2012).

[P16] T Swistocki, T. Sowinski, M. Brewczyk, M. Gajda
“Creation of topological states of a Bose-Einstein condensate in a square plague-

tte of four optical traps”
M

Phys. Rev. A 84, 023625 (2011).
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[P17] T. Swislocki, T Sowinski, J. Pietraszewicz, M. Brewczyk, M. Lewenstein, J. Za-
krzewski, M. Gajda
*Tunable dipolar resonances and Einstein-de Haas effect in a 87Rb-atom con-

densate”
Phys. Rev. A 83, 063617 (2011).

[P18] T. Sowiriski, M. Brewczyk, M. Gajda, K. Rzazewski
“Dynamics and decoherence of two cold bosons in a one-dimensional harmonic

trap”
Phys. Rev. A 82, 053631 (2010).

[P19] T. Sowinski
*Two-level atom ot finite temperature”
Acta Phys. Polon. A 116, 994 (2009).

Before PhD degree

[P20] I. Bialtynicki-Birula, T. Sowiriski
"Quantum electrodynamics of qubits”
Phys. Rev. A 76, 062106 (2007).

[P21] T. Sowiriski
*Wave functions of linear systems”
Acta Phys. Polon. B 38, 2173 (2007).

[P22] I. Bialynicki-Birula, T. Sowiriski
”Gravity-induced resonances in a rotating trap”
Phys. Rev. A 71, 043610 (2005).

[P23] I. Bialynicki-Birula, T. Sowinski
“Solutions of the logarithmic Schrdinger equation in rotating harmonic trap”
Nonlinear Waves: Classical and Quantum Aspects (F. Kh. Abdullaev and V. V.
Konotop (eds.)) p. 99-106, Kluwer Acad. Amsterdam (2004).

Only in ArXiv repository

[X1] T. Sowinski, R. W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein
*Violation of the universality hypothesis in ultra-cold atomic systems”
ArxXiv:1304.4835(2013).

[X2] T. Sowinski, I. Bialynicki-Birula
”Harmonic oscillator in rotating trap: Complete solution in 3D”
ArXiv:quant-ph/0409070 (2004).
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4.2. Scientific grants

As the Principal Investigator
1. "Strongly correlated systems of few ultra-cold atoms”
The scientific grant founded by the Ministry of Science and Higher Education
in the period 2015 — 2017, Action: Iuventus Plus IV
Budget: 185 000 PLN

2. "Ultra-cold gases confined in optical lattices of different shapes”
The scientific grant founded by the National Science Center
in the period 2011 — 2014, Action: SONATA I
Budget: 188 500 PLN

As an investigator

1. "Thermal phenomena in cold atomic gases”
The scientific grant founded by the National Science Center
in the period 2012 — 2015, Action: MAESTRO
PL prof. dr hab. Kazimierz Rzazewski

2. "NAME-QUAM: Nanodesigning of atomic and molecular quantum matter”
European Union Project funded under 7th Framework Programme
in the period 2010 — 2012.
PI of the polish part: prof. dr hab. Mariusz Gajda.

3. "Quantum electrodynamics of qubits and qudits”
The scientific grant founded by the Ministry of Science and Education
in the period 2008 — 2010.
PI: prof. dr hab. Iwo Bialynicki-Birula.

4. "Quantum Informatics and Engineering”
The scientific grant ordered by the Ministry of Science and Higher Education
realized by the Laboratory of Physical Foundations of Information Processing
in the period 2003 — 2007.
PI: dr hab. Lech Mankiewicz.

5. "Electromagnetic phenomena in rotating and accelerated systems”
The scientific grant founded by the Ministry of Science and Higher Education
in the period 2004 — 2006.
PI: prof. dr hab. Iwo Bialynicki-Birula.
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4.3. Scientific conferences and symposia

Oral presentations

1.

"Tunneling-Induced Restoration of the Degeneracy and the Time-Reversal Sym-
metry Breaking in Optical Lattices”

21th Central European Workshop on Quantum Optics, Brussels

June 25, 2014. (contributed talk)

?Universality of extended Bose-Hubbard models with local three-body interac-
tions”

The Third Poznari Symposium on Quantum Engineering, Information, and Non-
linear Optics (QEINO 2013)

October 16, 2013. (invited talk)

?One-dimensional extended Bose-Hubbard models with local three-body interac-
tions”

20th Central European Workshop on Quantum Optics, Stockholm

June 16, 2013. (contributed talk)

”Dipolar molecules in optical lattices”

The Second Poznad Workshop on Quantum Engineering, Quantum Informa-
tion, and Semi-Quantum Biology

October 16, 2012. (invited talk)

. "One-dimensional Bose-Hubbard model with local three-body interactions”

Quantum Technologies Conference III, Warszawa
September 15, 2012. (invited talk)

”Density-dependent processes of dipolar molecules in an optical lattice”
Quantum Technologies Conference II, Krakéw
September 30, 2011. (invited talk)

"Exact dynamics and decoherence of two cold bosons in a harmonic trap”
Quantum Technologies Conference, Torun
September 2, 2010. (invited talk)

“Physical properties of qubits at finite temperature”
LFPPI Symposium, Sopot
April 25, 2009.

"Quantum field theory methods applied to qubits”
4th LFPPI Symposium in ¥.6dz
April 4, 2008.



Scientific activity 39

Conference posters
1. *Spontaneous breaking of the time reversal symmetry in optical lattices”
Workshop on Coherent Control of Complex Quantum Systems (C3QS 2014)
Okinawa, April 14-17, 2014.

2. *Creation on demand of higher orbital states in a vibrating optical lattice”
International Conference on Frontiers of Cold Atoms and Related Topics
Hong Kong, May 14-17, 2012.

W]

. "Density-dependent processes of dipolar molecules in an optical lattice”
Bose-Einstein Condensation (BEC 2011)
Sant Feliu, September 10-16, 2011.

4. "Dynamics and decoherence of two cold bosons in a 1D harmonic trap”
Many-Body Quantum Dynamics in Closed Systems
Barcelona, September 7-9, 2011.

5. "Two-level atom at finite temperature”
Quantum Optics VII - Quantum Engineering of Atoms and Photons
Zakopane, June 8-12, 2009.

@)

. "Quantum electrodynamics of qubits”
(a) Foundations of Quantum Physics Conference
Bad Honnef, September 21-26, 2008.

(b) Control, Constraints and Quanta
Bedlewo, October 10-16, 2007.

(c) Photons, Atoms, and Qubits (PAQOQ7)
London, September 2-5, 2007.

7. "Gravity-induced resonances in the rotating harmonic trap”
Quantum Optics VI - Quantum Engineering of Atoms and Photons
Krynica, June 13-18, 2005.

4.4, Seminar lectures

Over 30 seminar lectures on running scientific projects presented in polish scientific
centers (Institutes of the Polish Academy of Sciences, University of Warsaw, Jagiel-
lonian University, Adam Mickiewicz University, University of Zielona Géra).

4.5. Organizing activity

e (2005 — 2011) member of the Main Committee of the Physics Olympiad.
Organizing manager of the Committee in the season 2009/2010.

]
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e Secretary of the annual Quantum Technologies Conference

(www.QuantumTech.ifpan.edu.pl).

e member of the Organizing Committee of the symposium
"From Geometry and Chaos to Quantum Information and Neurobiology”
(www.cft.edu.pl/SymposiumMarek), April, 24-25 2015 .
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Teaching activity

5.1. Supervisor functions

PhD co-supervisor
e Joanna Pietraszewicz
*Ultra-cold bosonic atoms with weak magnetic interactions confined in optical
latices”
Supervisor: prof. dr hab. Mariusz Gajda.
Institute of Physics of the Polish Academy of Sciences (2013).

Bachelor supervisor

e Marcin Obidziriski
"Motion of the charged particle in crossed electric and magnetic fields”
Faculty of Mathematics and Natural Sciences UKSW (2010).

e Piotr Majblat
“Estimation of areas of polygons with Monte Carlo approach”
Faculty of Mathematics and Natural Sciences UKSW (2009).

5.2. Classes for students

2005/2006
e Theoretical Physics I - exercises (30 hours, in polish)
Faculty of Mathematics and Natural Sciences UKSW

e Physics I - exercises (30 hours, in polish)
Faculty of Christian Philosophy UKSW

2006/2007
e Physics I - exercises (30 hours, in polish)
Faculty of Christian Philosophy UKSW

2007/2008
e Introduction to Nucleus and Particle Physics - exercises (30 hours, in polish)
Faculty of Mathematics and Natural Sciences UKSW

2008/2009
e Introduction to Nucleus and Particle Physics - exercises (30 hours, in polish)
Faculty of Mathematics and Natural Sciences UKSW
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2009/2010
o Mathematics I - exercises (90 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

o Mathematics II - exercises (60 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

o Physics II - exercises (60 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

2010/2011
e Mathematics I - exercises (90 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

e Information Technology - exercises (90 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

2011/2012
e Mathematics I - exercises (90 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

e Information Technology - exercises (90 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

e Information Technology - exercises (30 hours, in polish)
Faculty of Biology and Environmental Sciences UKSW

5.3. Activity in community organizations

2009 — 2013 Member of the "Almukantarat”Astronomy Club
In the period 2001-2003 member of the Club Council.

5.4. Popular science articles

e T. Sowinski
"Modelowanie Rzeczywistosci — electronic manual”
Polish version of the manuals to programs attached to the book:
I. Bialynicki-Birula and I. Bialynicka-Birula *Modelowanie Rzeczywistosci”,
Wydawnictwa Naukowo-Techniczne (2006).

e A. Tretowska, k.. Nowotko, W. Sliwa, G. Wrochna, T. Sowiriski, P. Fita
”CCD Observatory in school. Guide for students, teachers and parents”
Electronic publication founded by European Commission in program “Hands-

On Universe” (2005).
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e 57 articles about physics published in the oldest polish educational magazine
"Young Technician” (pol. "Mlody Technik”). Full list on my home webpage.

e T. Sowinski, "The Earth is flat” (pol. "Ziemia jest plaska”), Glos Nauczycielski
9/2011, 10-11.

o T. Sowiniski, "Ecological reactors” (pol. ”“Ekologiczne reaktory”), Charaktery
3/2010, 78-80.

o T. Sowiniski, "Right of the observation” (pol. "Racja obserwacji”), Charaktery
5/2009, 76-79.

T. Sowiniski, "Formula for a miracle” (pol. "Wzér na cud”), Charaktery 12/2008,
62-65.

5 short subject popular science movies.

5.5. Popular science lectures
e 2 talks in the Polish Physical Society in Bialtystok.
e 8 talks during few editions of the Festival of Science in Warsaw.
e 7 talks in public schools.
o 7 talks for students in the Children University.

1 talk in the Copernicus Science Center in Warsaw.

1 talk in the N. Copernicus Astronomical Center, Polish Academy of Sciences.

The detailed list of my popular science talks is available on my home webpage.
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Awards and honors

2014 Director of the Institute of Physics Prize
for the best scientific publication in 2013

2013 3-year scholarship for Outstanding Young Scientists
granted by Ministry of Science and Higher Education

2012 KOLUMB PostDoc Scholarship
granted by the Foundation for Polish Science

2009 Best lecture of the XIII Science Festival in Warsaw

2008 "Master of science popularization Golden Mind 2008”
Title awarded by the President of the Polish Academy of Sciences

2005, 09, 10 Nominated for the title "Popularizer of Science”
awarded by the Polish Press Agency and
the Ministry of Science and Higher Education

2004/05 Ministry of National Education Scholarship
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