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Introduction 

The notion of deterministic chaos was introduced to science as early as the 19th century by  

a French mathematician Henri Poincaré (1). In 1963 the notion was popularised by a meteorologist 

called N.E. Lorenz, who, as a result of the work on a system of three nonlinear differential equations 

modelling the phenomenon of thermal convection in the atmosphere, discovered that for a specified 

set of system parameters, the system is chaotic (2). The Lyapunov exponent is a measure of the 

chaotic nature of classical systems  

Unfortunately, in the case of quantum systems, the criterion related to the exponential rate 

of separation of trajectories in the phase space (positive Lyapunov exponent) becomes useless. This 

results from the Heisenberg uncertainty principle. According to the principle, simultaneous 

measurement of position and momentum observables is possible only with finite precision. 

Therefore, in the phase space it is not possible to study the orbits of the system with arbitrary 

precision. That is why we are looking for new ways to describe and study quantum chaotic systems. 

Recently, the interest in studies of the chaotic quantum systems has significantly grown. Due 

to the extreme difficulties encountered in experiments, mainly theoretical studies of quantum 
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chaotic systems are conducted. For this reason, experimental verifications are very valuable and 

desired.  

Standard methods of verifying of system chaoticity, rely on testing statistical properties of its 

energy spectrum in its discrete range. In case of using spectrum correlation functions such as nearest 

neighbour spacing distribution (NNSD) or spectrum stiffness (Δ3), it is very important to know all the 

eigenvalues of energy in the analysed range (3). Consequently, the knowledge of the complete 

spectrum of the studied system is particularly important. Unfortunately, loss of energy states is 

practically unavoidable, particularly in case of experimental research. It happens because of the 

possible degenerations or overlapping of states due to their finite width resulting from the internal 

absorption as well as from the openness of the system. In case such as this, it is necessary to use 

more advanced methods for analysing the experimental results which take into account such factors 

as dependence of short-range and long-range correlation functions on the number of lost states. 

 

Methodology of research 

 

The research focused on microwave networks and cavities, which, in the case of one and two-

dimensional systems, simulate quantum graphs and quantum billiards, as well as on three-

dimensional microwave cavities in which the phenomenon of wave chaos occurs. 

Graphs are single-dimension quantum systems connected in vertices, creating a network 

structure (fig. 1). For the first time, the concept of quantum graphs was used by L. Pauling in the 

research on free electrons in molecular chains (4). Graphs are also used in the research of other 

systems and phenomena, such as superconducting quantum systems (5), quantum gravity model 

with discrete evolution in time (6) and even Alzheimer’s disease (7). 

 

 

Fig. 1 
Examples of different topologies of quantum graphs. 

 

In the experimental research, the quantum graphs are simulated by microwave networks (8; 

9; 10) (fig. 2a). A network is made up of microwave cables – appropriately connected in their vertices 
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(fig. 2b). The cables act as graph arms and the microwave joints, produced at our laboratory, 

constitute the graph vertices. 

 

 

Fig. 2 
a) Photograph of a microwave network simulating a six-vertex, fully connected graph.  

b) Microwave cable cross-section diagram. The cable is made up of two cylindrical conductors with the radii r1 and r2 and 

a dielectric material filling in the space between them, having dielectric constant 

 

This simulation is possible up to the frequency of 𝑣𝑐 =
𝑐

𝜋(𝑟1+𝑟2)√𝜀
, below which only the wave in the 

basic TEM mode propagates in the cable. Then, the telegraph equations for the network arms  

𝑑2

𝑑𝑥2
𝑈𝑖𝑗(𝑥) +

𝜔2𝜀

𝑐2
𝑈𝑖𝑗(𝑥) = 0 

are analogous to the Schrödinger equations for the graph arms  

𝑑2

𝑑𝑥2
Ψ𝑖𝑗(𝑥) + 𝐸Ψ𝑖𝑗(𝑥) = 0. 

In the above equations, the wave function Ψ𝑖𝑗(𝑥) describes the motion of particle in the graph arm 

connecting vertices 𝑖 with 𝑗 and fulfils there the Dirichlet (Ψ𝑖𝑗(𝑥) = 0), or the Neumann boundary 

conditions (function continuity). The 𝑈𝑖𝑗(𝑥) means the potential difference between the cable 

coaxial conductors.  

The equations are analogous assuming that 
ℏ

2𝑚
= 1, where 𝑚 is the mass of the particle moving  

in the graph arms, Ψ𝑖𝑗(𝑥) ⟺ 𝑈𝑖𝑗(𝑥), and the role of energy 𝐸 is fulfilled by the square of wave 

vector 𝑘2 =
𝜔2𝜀

𝑐2 .  

In order to simulate quantum graphs with a broken time reversal symmetry relative to time, 

i.e. systems which the statistical properties of the energy eigenvalues are the same as eigenvalues of 

unitary matrices (Gaussian Unitary Ensemble – GUE, 𝛽 = 2) described in the random matrix theory 

(RMT), microwave circulators were placed in the network vertices (fig. 3a). 

(1) 

(2) 
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Figure 3b shows the circulator operating principle. The wave entering the first port of the 

device can exit it only via the second port, the wave entering the second port can exit only via the 

third port and the wave entering the third port can exit the circulator only via the first port. 

 

 

Fig. 3 
a) Diagram of the measuring system used for simulation of graphs with a broken time reversal symmetry. Microwave 

circulators and attenuators are introduced to the network. 
b) Photograph of a microwave circulator with directions of signal propagation marked. The photograph also shows 2 dB 

attenuators. 
c) Diagram of the experimental setup used for the elimination of direct processes. 

The figure was published in H1 

 

A network without circulators simulates a graph with a time reversal symmetry (Gaussian 

Orthogonal Ensemble – GOE, 𝛽 = 1 ) in the RMT. It should be emphasised that there are papers 
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showing the possibility of using microwave networks with circulators to study the systems with a spin 

(Gaussian Symplectic Ensemble – GSE, 𝛽 = 4 (11)).  

Therefore, microwave networks are unique objects that make it possible to experimentally study the 

three symmetry classes defined in the RMT. 

Other interesting and important systems in research of quantum chaos, microwave cavities 

simulating two-dimensional (2D) quantum billiards (12; 13; 14; 15; 16) were considered in my 

publications listed with a brief description in item 5 of this manuscript. 

With the help of the Vector Network Analyzer (VNA), we measured the spectrum of the 

scattering matrix, both of microwave networks and cavities. The Agilent E8364B analyser (fig. 2a) 

enabled single and double-port measurements. The result of single-port measurement is a one-

element scattering matrix 𝑆 = √𝑅𝑒𝑖Θ and of the double-port measurement, a four-element matrix: 

𝑆̂ = [
𝑆11 𝑆12

𝑆21 𝑆22
]. 

Diagonal elements of the matrix are related to signals entering the system and exiting it via the same 

input/output (reflected from the system.) The non-diagonal elements are related to the signals 

passing through the system from one port to the other (fig. 5). 

 

 

Fig. 4 
Presentation of signals and the corresponding scattering matrix elements 𝑆̂ for double-port measurement. 

 

 

Analysis of the problem of lost eigenvalues in the spectra of the systems 

simulating chaotic quantum graphs. 

 

At the beginning, it was mentioned that much research on chaotic quantum systems consists 

in the analysis of statistical properties of the energy spectra of such systems. Therefore, in such 

research, the possibility of finding as many energy levels as possible is so important. This is a serious 

problem, particularly in case of analysing experimental spectra of real physical systems, as for 

example in the case of research on atomic nuclei or particles (20; 21; 22; 23). 

(3) 
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One of the reasons for losing the states is the overlapping of energy levels resulting from 

their finite width connected with the absorption in the real physical systems. In the work H1 the 

author describes his research of a system with strong absorption. As part of this research, he 

constructed a six-vertex fully connected network, i.e. each of the six vertices was connected with 

each of the other ones.  

Microwave circulators were introduced to four network vertices (fig. 3a). Thus, the network 

simulated a hexagonal quantum graph with broken time symmetry, i.e. a GUE-type system in the 

RMT. Strong absorption in the system was achieved by introducing 1 dB and 2dB microwave 

attenuators to the network arms. Figure 3b shows the 2dB attenuators. Figure 3c shows the 

measuring system, which was used to eliminate the so-called ‘direct processes.’ These processes 

result from the reflection of part of the signal before entering the system and from the signal passing 

directly through the cable connecting the entry/exit vertices. For the networks which were 

constructed, the author measured the spectra of their scattering matrix 𝑆̂, for each realisation of the 

network implementations, distinguished by their arm lengths. The arm lengths were modified with 

the help of phase shifters (fig. 3a).  

The introduction of strong absorption lead to the impossibility of correctly determining the 

resonance positions in the obtained spectra. The measure of effective absorption is the coefficient: 

𝛾 =
2𝜋Γ

Δ
= 𝛾𝑎𝑏𝑠 + 𝑇𝑎 + 𝑇𝑏 .  In this expression, Γ  is the average resonance width, Δ  the average 

distance between them. 𝑇𝑖=𝑎,𝑏 means the transmission which is the measure of openness of the 

system, i.e. of the connection of the system with the surroundings and 𝛾𝑎𝑏𝑠 is an internal absorption 

strength. In case of author’s experiments, the network was connected to the surroundings via the 

cables introducing signals to and from the 𝑎 and 𝑏 ports of the microwave analyzer. In a theoretical 

analysis, a cable can be considered as an arm of infinite length, connecting the graph with the 

external world.  

For the network with 1 dB attenuators, the mean coefficient 〈𝛾〉 was equal to 19.4. After 

applying 2 dB attenuators, the mean value of 〈𝛾〉 increased to 48.4. The author obtained the values 

by fitting the experimental distributions of the reflection coefficient 𝑃(𝑅)  with the theoretical 

distributions (24). The obtained distributions and the fitted theoretical curves are shown in figure 5. 

Red, empty circles show the experimental distributions for the network with 1 dB attenuators and 

the red, full circles show the distribution for the network with 2dB attenuators. Next, the author 

compared the experimental distributions of the real and imaginary parts of Wigner’s reaction matrix 

𝐾̂ with the theoretical distribution predicted for the obtained values of 𝛾. Wigner’s reaction matrix is 

linked with the scattering matrix by the following relation:  

𝐾̂ = 𝑖
𝑆̂ − 𝐼

𝑆̂ + 𝐼
. (4) 
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The real part of Wigner’s matrix is shown in figure 6, the imaginary part in figure 7. The distribution is 

presented with the same symbols as in figure 5.  

 

Fig. 5 
Experimental distributions of the reflection coefficients obtained for microwave networks with 1 dB attenuators (red, 

empty circles) and with 2 dB attenuators (red, full circles). The experimental distributions were compared with the 
theoretical predictions (corresponding solid lines)  

The figure was published in H1. 

 

 
 Fig. 6 

Experimental distributions of the real part of the Wigner’s 
reaction matrix obtained for microwave networks with 1 dB 

attenuators (red, empty circles) and with 2 dB attenuators (red, 
full circles). The experimental distributions were compared with 

the theoretical predictions (corresponding solid lines) 
The figure was published in H1. 

 

Fig. 7 
Experimental distributions of the imaginary part of the Wigner’s 

reaction matrix obtained for microwave networks with 1 dB 
attenuators (red, empty circles) and with 2 dB attenuators (red, 
full circles). The experimental distributions were compared with 

the theoretical predictions (corresponding solid lines) 
The figure was published in H1. 

 

 
 

The results are in very good agreement with the theoretical predictions shown with the solid lines. In 

addition, in H1, the author has shown that in the presence of strong internal absorption, the impact 

of channel openness is negligible and the studied distributions can be approximated by exponential 

expressions (25) (insert in fig. 6 and fig. 8).  

The obtained results show that the distributions 𝑃(𝑣) and 𝑃(𝑢) of the imaginary and the real 

parts of the diagonal elements of the Wigner’s reaction matrix 𝐾̂  together with the elastic 
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enhancement factor 𝑊𝛽 can be used to determine the absorption of the system and to unique 

identification of the system's class of the time symmetry. 

The elastic enhancement factor 𝑊𝛽 is another measure, apart the Wigner’s reaction matrix, 

which can be used for the purposes of verifying the chaotic character of the system, when the 

complete spectrum of energy levels cannot be determined. The enhancement factor has been used 

in the nuclear physics research (26; 27; 28) and is defined as a ratio of the variance of diagonal 

elements of a two-port matrix 𝑆̂ to the variance of its non-diagonal elements (29). The value has 

been already studied in chaotic systems (30; 31; 32).  

In the work H2 the author has shown how to obtain the information about the number of the 

missing eigenvalues of energy in the experimentally obtained spectrum of a chaotic system. This 

knowledge is particularly valuable in the analysis of experimental results, when due to the 

degeneration and / or overlap of resonances of the studied system, it is impossible to detect all of 

them.The paper H2 presents how we can do it on the example of the matrix spectra obtained in two-

port measurements 𝑆, for three-dimensional chaotic microwave cavity. Rough walls and the slightly 

convex bottom of the cavity were decisive for the chaotic nature of the system (fig. 8). Various 

configurations of the system were achieved by rotating the scatterer (fig. 8a) placed inside and by 

changing the position of the antennas (positions 𝐴1, 𝐴2, 𝐴3 figure 8a). 

 

 

 Fig. 8 
Three-dimensional microwave resonance cavity. 

a) Picture of a closed cavity, showing the position of antennas A1, A2, A3. The insert shows the shape of the scatterer 
placed inside the cavity. 

b) Diagram of the cross section and the vertical section of the cavity. Elements (1) and (2) were decisive for the chaotic 
character of the system. 

c) Picture of the interior of the cavity 
The figure was published in H2. 

 
In the case of such a system there is no formal analogy between the Schrödinger equation for 

a three-dimensional quantum billiard and the three-dimensional Helmholtz equation. This is due  
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to the fact that the electromagnetic field cannot be described with a scalar function such as the wave 

function. Despite that, it was shown that some dependencies assumed for chaotic quantum systems, 

e.g. nearest neighbour spacing distribution (NNSD), are the same as the dependencies obtained for 

three-dimensional chaotic resonance cavities (33; 34). This encouraged the author to also study 3D 

systems.  

In order to determine the number of lost states, short and long-range correlation functions of 

the energy levels are used. First, short-range correlations are calculated. In the work in question, this 

was the nearest neighbor distribution. Figure 9a presents the NNSD (histogram) experimental 

distribution published in H2, together with the theoretical predictions for two cases: complete 

spectrum (black, solid line) and incomplete spectrum, with the lack of 11% of eigenenergies (red, 

dotted line) (35). Figure 9b shows the integrated NNSD. The number of the lost eigenstates is 

determined by the parameter 𝜑, the fraction of observed levels, with a value from the range 〈0; 1〉, 

where 1 means a complete spectrum and 0 all states are missing. According to the figure, the nearest 

neighbour spacing distribution is not very sensitive to the number of lost states (Fig. 9a,9b).  

 

 

Fig. 9 
Experimental distributions of correlation functions obtained for a three-dimensional microwave cavity. The distributions 

were obtained for 𝝋 = 𝟎. 𝟖𝟗. The results were compared with the theoretical predictions for the case of a complete 
spectrum (black, solid lines) and for the case of loss of 11% of eigenenergies (red, dotted lines). The inserts in figures b, c 
and d show the experimental distributions obtained from complete spectra of nine configurations in the frequency range 

of 7-9 GHz.  
a) Nearest neighbour spacing distribution (black bars). 

b) Integrated NNSD (black rings). 
c) Distribution of function Δ3(𝐿) (black triangles). 

d) Distribution of function 𝑆(𝑘̃) (black, empty diamonds). 

The figure was published in H2. 



11 
 

However, determination of NNSD gives a clear answer to the question whether the system is 

chaotic and to which class of the symmetry at RMT it belongs. With this knowledge, it is possible to 

calculate the corresponding long-range correlation functions such as Σ2 and Δ3. The work (35) shows 

the dependence of the said functions from the parameter 𝜑. The number of the lost energy states 

can therefore be obtained by fitting the value 𝜑 so that the theoretical distribution matches the 

experimental distribution as closely as possible. Such fitting, for the function ∆𝟑 is shown in figure 9c, 

where the black and red solid lines are the theoretical curves for 𝜑 = 1 and 𝜑 = 0.89 and the 

triangles indicate the experimental data. As we can see, these functions are much more sensitive 

than NNSD to the number of lost eigenvalues. 

Another correlation function, even more sensitive to the number of missing energy levels, is 

the power spectrum of discrete and finite series 𝑆(𝑘̃). Comparison of the experimental distribution 

(diamonds) with the fitted theoretical curve (red, dotted line) shown in figure 9d confirms that 11% 

of resonances are lost in the experiment. 

 

 

Fig. 10 
Distributions of the correlation function obtained for a three-dimensional microwave cavity. The distributions were 

obtained for modified experimental data 𝜑 = 0.7. Resonances were lost in a non-random way. The results were 
compared with the theoretical predictions (red, dotted lines) and with the ones obtained using the eigenvalues of random 

matrices (green, dotted lines). 
a) Nearest neighbour spacing distribution (black bars). 

b) Integrated NNSD (black circles). 
c) Distribution of function Δ3(𝐿) (black circles). 

d) Distribution of function 𝑆(𝑘̃) (black, empty squares). 

The figure was published in H2. 
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It should be underlined that the procedure is successful even for 𝜑 = 0.5.  This was verified 

by randomly decreasing the number of experimentally identified resonances by 39 p. p (percentage 

points) and fitting the such reduced set of experimental data with the corresponding theoretical 

curves. 

Additionally, in H2 the author analysed the usability of the method for the case when the 

states are lost mostly due to the overlapping of resonances. For that purpose, the two closest 

resonances of the experimental spectrum (𝜑 = 0.89) were found and one of them was removed. 

The procedure was repeated until achieving 𝜑 = 0.7. It turned out that consistence with theoretical 

predictions was not achieved for such a case, both for short and long-range correlation functions 

(red, dotted lines – theory, modified experimental data – histogram, circles, triangles and squares in 

the figure 10). The obtained results show that the presented method is not successful when the lost 

energy states are correlated. In order to confirm this observation, eigenvalues of random matrices 

were generated and then 30% of them were removed in the same way as they were lost in the 

experimental spectra. At first, 11% of them were randomly removed. Then one of the two closest 

eigenvalues also was removed until achieving 𝜑 = 0.7. For the so-modified strings of eigenvalues of 

random matrices, correlation functions were calculated (green, dotted, lines in figure 10). The 

obtained distributions of the functions are consistent with those obtained for the modified 

experimental spectra. 

The above investigations made a constructive contribution to Vitalii Yunko's doctoral thesis 

of which I was a supporting promoter. In the chapter VIII, dr Yunko showed the results obtained for 

the smaller fractions of observed resonances than in the work of H2 (𝜑 = 0.85 and 𝜑 = 0.65, 

respectively), testing the limit of the method. 

 

 

Properties of quantum graphs resulting from their topology 

 

When studying the systems where eigenvalues were lost in the experimental spectra, the author 

became interested in the issue of the properties of quantum graph and microwave network spectra 

resulting from their topology. 

 As it turned out, by constructing quantum graphs with appropriate topology, isoscattering 

systems (systems that scatter in the same way) or systems with the number of energy eigenvalues 

lower than the value according to the Weyl’s law can be obtained. 
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Isoscattering quantum graphs 

 

The first problem related to the topology of quantum graphs researched by the author was verifying 

whether two systems can exist which scatter electromagnetic waves in the same way, despite 

different shapes. The research resulted in the publications H3, H4. 

The work H3 is entitled Are Scattering Properties of Graphs Uniquely Connected to Their 

Shapes? The prestigious journal Physica Review Letters distinguished this publication, putting the 

photograph of the experimental system described in the paper on the issue cover. The title refers to 

the famous question asked by Mark Kac in 1966: ‘‘Can one hear the shape of a drum?’’ (36). The 

question proved to be so nontrivial that the answer to it was given only almost thirty years later. In 

1992 C. Gordon, S. Webb and S. Wolpert, applying the T. Sunada theory (37) presented two two-

dimensional systems having different shapes but the same spectrum of eigenenergies (38; 39). This 

theoretical reasoning was confirmed in experiments two years later by S. Sridhar and A. Kudroli (40). 

The research in the area of quantum graphs related to Mark Kac’s question was started by  

B. Gutkin and U. Smilansky (41). The subject was continued in a series of papers (42; 43; 44; 45) 

 

 

Fig. 11 
The experimental setup for measuring the spectrum of four-element scattering matrix 𝑆̂ of two microwave networks of 

different shapes and the same spectrum of determinant of matrix 𝑆̂.  
a) and c) Diagram and photograph of six-vertex network, respectively (network I)  

b) and d) Diagram and photograph of four-vertex network, respectively (network II). 
e) Photograph of the four-vertex network connected to the Vector Network Analyzer. 

The figure was published in H3. 
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In the papers (44; 45), the authors developed the Sunady theory, presenting the method of 

obtaining a pair of quantum graphs with different topologies but the same spectrum. Channels 

connecting the graphs with the external world are their important elements.  

The author is the first who experimentally verified this method. For that purpose, 

appropriate microwave networks were prepared. One network was a six-vertex network with five 

arms (network I). The other network had four vertices and four arms (network II). The networks 

differed also in terms of boundary conditions at the vertices. The first one had two vertices with 

Dirichlet boundary conditions and the other had only one such vertex. The graph diagrams and the 

photographs of the networks prepared in our laboratory were included in the paper H3 and are 

shown in figure 11a, b and 11c, d. above. 

For both systems, two-port spectral measurements of the four-element scattering matrix 𝑆̂ 

were made (fig. 11e).  

 

 

Fig. 12 
Experimental spectra of the determinant of four-element scattering matrix 𝑆̂. 

a) Amplitude of determinant of matrix 𝑆̂ obtained for the six-vertex network (network I, red circles) and the four-vertex 
network (network II, blue solid line). 

b) Phase of determinant of matrix 𝑆̂ obtained for the six-vertex network (network I, red circles) and the four-vertex 
network (network II, blue solid line). 

c) Amplitude of determinant of matrix 𝑆̂ obtained for the six-vertex network (network I, red circles), in which Neumann 
boundary conditions were changed into Dirichlet boundary conditions at one of the vertices and the four-vertex network 

(network II, blue solid line). 

d) Phase of determinant of matrix 𝑆̂ obtained for the six-vertex network (network I, red circles), in which Neumann 
boundary conditions were changed into Dirichlet boundary conditions at one of the vertices and the four-vertex network 

(network II, blue solid line) 
The figure was published in H3. 



15 
 

 

Next, the author calculated the determinants of both spectra. Within the frequency range 

0.01-1.7 GHz, both the amplitudes |𝑑𝑒𝑡 (𝑆̂(𝑣))
(Ι)

| = |𝑑𝑒𝑡 (𝑆̂(𝑣))
(ΙΙ)

| (fig. 12a) and the phases of the 

determinants 𝐼𝑚 [𝑙𝑜𝑔 (𝑑𝑒𝑡 (𝑆̂(𝑣))
(Ι)

)] = 𝐼𝑚 [𝑙𝑜𝑔 (𝑑𝑒𝑡 (𝑆̂(𝑣))
(ΙΙ)

)] (fig. 12b) are identical. The red 

points in figure 12 mark the spectra of the determinant of the scattering matrix for the six-vertex 

network (I) and the blue solid line marks the spectra for the four-vertex network (II). 

In addition, the spectrum of the first network (I) was measured after changing the boundary 

condition at one its vertices. The Neumann boundary condition was replaced by a Dirichlet boundary 

condition. Following that, the networks cease scattering in the same way (fig. 12c and 12d). 

 

Fig. 13 
Experimental spectra of the scattering matrix elements 𝑆̂ for the six-vertex network (network I, red circles), and spectra 
obtained from the spectrum of the four-vertex network (network II) using the transformation matrix 𝑇 (blue solid line).  

The figure was published in H4. 

 

An important result of the H3 work is the experimental verification of the transplantation 

relationship: 

𝑆̂(𝑣)(ΙΙ) = 𝑇−1𝑆̂(𝑣)(I)𝑇, 

where 𝑇 = [
1 −1
1 1

]. Thanks to this relationship if the elements of the matrix 𝑆̂ of one network are 

known, it is possible to calculate the elements of the scattering matrix for the second network. In 

figure 13 the author presents the spectra of the scattering matrix elements 𝑆̂ obtained as a result of 

(5) 
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transformation of the four-vertex network scattering matrix (II) (blue solid line). The red points mark 

the spectra of elements 𝑺̂  of the six-vertex network ( I ). As we can see, the spectra are 

indistinguishable with very high accuracy . 

In the paper H4 the author has shown the results for isoscattering networks within a broader 

frequency range 0-3 GHz. A higher frequency, i.e. smaller wave length, leads to a significant increase 

of sensitivity to any imperfections of the measurement system. Elimination of such imperfections 

poses a huge challenge for the experimental researchers. 

In the paper H4 the author considers the significant local features characterising both graphs, 

such as poles of matrix 𝑆̂ and structures of the resonances. It was demonstrated that the presented 

graphs are isopolar. This means that they have the poles of the determinant of the scattering matrix 

in the same points of the complex frequency plane. We should note that isopolar graphs do not need 

to be isophasic ones, i.e. graphs which have the same phase spectrum. However, when a graph is 

isophasic, it is also isopolar. In the paper H4, the coordinates of the position of the pole of matrix 𝑆̂ 

on the complex plane were determined. The positions are related to the eigenvalues of the wave 

vector, which are the solutions of the telegraph equation. Eigenvalues of the wave vector, as the 

equivalent of eigenenergies of quantum graphs can be written as 𝑘𝑙 =
2𝜋

𝑐
(𝑣𝑙 + 𝑖∆𝑣𝑙) where ∆𝑣𝑙 is 

the half-width of the resonance and the coordinates of a scattering matrix pole are: (𝑣𝑙 , Δ𝑣𝑙). 

The author compared full widths of resonances of the experimental spectrum ∆𝑣𝑒𝑥𝑝 with the 

calculated pole positions (𝑣𝑐𝑎𝑙, ∆𝑣𝑐𝑎𝑙) and obtained 〈
∆𝑣𝑒𝑥𝑝

2∆𝑣𝑐𝑎𝑙
〉 = 0.99 ± 0.13, which confirms the high 

quality of the experiments performed. In H4, there is also an analytical formula for calculating all four 

elements of the scattering matrix 𝑆̂ derived by Adam Sawicki. 

 

Weyl and non-Weyl quantum graphs 

  

Another subject of the author’s research connected to the graph topology was related to the 

possibility of obtaining the non-Weyl graphs H5. According to Weyl’s law, density of graph 

eigenvalues 𝜌 =
𝜋

ℒ
 when their number tends to infinity. ℒ = ∑ ℓ𝑖𝑖  is the sum of graph arm’s length. 

Therefore, the density remains unchanged as the function of frequency and depends only on the 

total length of the graph ℒ. For closed graphs (graphs that do not have channels connecting them to 

the external world) the number of eigenvalues in the range of (0, 𝑅) is given by the expression (46): 

𝑁(𝑅) =
ℒ

𝜋
𝑅 + 𝛰(1), 

where Ο(1) is the function, which tends to 1 for 𝑅 → +∞. 

(6) 
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In the case of microwave networks, the number of resonances in the frequency range (0, 𝑣) can be 

written as: 

𝑁(𝑣) =
ℒ

𝜋
𝑣 + 𝛰(1). 

Connecting the channels makes the graph an open system. One could expect that such change does 

not affect the number of energy levels but only their width. However, according to E. B. Davis and  

A. Pushnitski (47), this is not always true. It was proven that there are graphs, for which the number 

of energy levels is smaller than the number predicted with the formula 7. Such graphs are referred to 

as non-Weyl graphs in contrast to the graphs for which the equation 7 is satisfied, referred to as 

Weyl graphs. In the paper (47) demonstrated that there is a simple topological condition for making 

possible such a distinction. A graph becomes a non-Weyl graph only when there is a vertex, on which 

the number of graph arms and the number of channels opening the system is the same (vertex 1 in 

fig. 14b). This vertex is called a balanced vertex. In the papers (48; 49) it was verified that this 

condition determines the creation of a non-Weyl graph also for various boundary conditions at other 

vertices and in the presence of magnetic field.  

In the paper H5 the author presents the experimental results for the pair of microwave 

networks designed and prepared by him. The only difference between them was the points of 

channel connections. Vector analyzer cables acted as channels (fig. 14c and d). As it is shown in figure 

14, one of the networks has a vertex connecting two internal arms and two analyzer cables (vertex 1 

in panels b and d) - balanced vertex. 

 

 

Fig. 14 
a) and c) diagram and photograph of the network simulating a Weyl graph, respectively. 

b) and d) diagram and photograph of the network simulating a non-Weyl graph, respectively. 
The figure was published in H5. 

 

(7) 
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The total length of the network ℒ = 0.999 m. For this length, according to the Weyl law, there 

should be 13 resonances in the frequency range 0.3-2.2 GHz and this is the number of resonances 

(fig. 15a) obtained for the network shown in figure 14c. After connecting both channels to the first 

vertex (fig. 14d), the number of detected resonances drops to 11. This number is consistent with the 

equation given in the work (50), which allows to calculate the number of the resonances of the non-

Weyl graph with the length  ℒ. In this equation the length of the shortest arm connect to the 

balanced vertex (vertex 1) appears. In this case, this is the arm ℓ2 at the vertex 1 and the number of 

the resonances for this non-Weyl network is determined by the equation: 

𝑁(𝑣) =
ℒ−ℓ2

𝜋
𝑣 + 𝛰(1). 

The equation was additionally verified for a pair of other networks with longer arms ℓ1 and ℓ2. The 

arms were elongated by 0.076 m. As expected, 15 resonances were obtained for Weyl network and 

12 resonances for non-Weyl network (fig. 15b and d). The obtained results were confirmed by 

numerical calculations. The red arrows in figure 15 indicate the resonance positions obtained by 

means of numerical simulation. 

It should be emphasised that the preparation of the vertex that makes a network a non-Weyl 

system turned out to be a difficult experimental challenge. A slight deviation from its symmetry 

caused that the graph remained a Weyl graph. The construction of such a properly operating system 

is therefore a significant achievement, not only from a research perspective but also from a practical 

point of view. 

 

 

Fig. 15 
Experimental spectra obtained for networks simulating Weyl and non-Weyl graphs. 

a) Spectrum obtained for the channel connection ensuring a Weyl network. 
b) Spectrum obtained for the channel connection ensuring a non-Weyl network. 

c) Spectrum obtained for the channel connection ensuring a Weyl network after arm elongation ℓ1 and ℓ2. 
d) Spectrum obtained for the channel ensuring a non-Weyl network after arm elongation ℓ1 and ℓ2. 

The figure was published in H5. 

(10) 
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Summary 

 

The series of papers that constitutes grounds for the author’s application concerning the 

research on the properties of chaotic microwave and quantum systems can be divided into two 

groups.  

The first group comprising of papers H1-H2 regarding the problem related to the analysis of 

spectra obtained in the experiments, i.e. the inability to detect all energy levels in the studied range 

and therefore, the difficulty in correctly describing the studied systems. In the paper H1 the author 

presented the distributions of Wigner’s reaction matrix and reflection coefficient, for microwave 

networks that simulate quantum graphs with broken symmetry relative to time inversion, which can 

be helpful in describing the systems even with strong absorption. The obtained results confirm with 

high accuracy the theoretical predictions. The author was the first one to experimentally verify, for 

GUE systems, the possibility of replacing precise formulas describing the said distributions with 

approximate exponential formulas. In addition, the two-port measurements were performed which 

allowed to detect that in the case of very high internal absorption the impact of opening channels on 

the system characteristics is negligible. 

The paper H2 contains a description of the procedure for verification, whether the spectrum of 

the studied system is a complete spectrum. For incomplete spectra, the procedure allows to 

determine the number of the lost energy eigenvalues. The author tested the method with GOE 

systems in a broad range of the number of lost states. It was verified that the proposed method is 

also successful for three-dimensional systems. What is particularly important, the author 

demonstrated that the procedure can be only used in case of random loss of eigenstates.  

The second group of papers H3-H5 concerns the research on the dependence of quantum graph 

properties on their topology. In the papers H3-H4 the author presented the experimental research of 

two microwave networks with the same spectrum of the determinant of the four-element scattering 

matrix despite completely different topology. It was demonstrated that the networks have the same 

position of the poles of the scattering matrix and the coordinates of the poles correspond to the 

position and half-width of resonances. The author demonstrated the significance of ensuring 

appropriate boundary conditions at graph vertices. In the paper H5 the author described an 

experiment in which a microwave graph that does not fulfil Weyl’s law was constructed. The 

existence of the non-Weyl graph was confirmed to be related to the graph topology. The author 

demonstrated that the number of energy eigenvalues in such a graph is related to the length of  

a specific arm. 

The microwave networks and cavities prepared and studied by the author simulate quantum 

graphs and billiards which are used for the studies on quantum wires, dots and other systems. The 
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experimental research performed by the author therefore contributed to the broadening of 

knowledge concerning the properties of these and other quantum systems, what is important, 

including but not limited, to the perspective of their future use.  
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5. Presentation of other scientific and research (artistic) achievements 

 

M. Białous, V. Yunko, S. Bauch, M. Ławniczak, B. Dietz, L. Sirko, 2016, Power spectrum analysis and 

missing level statistics of microwave graphs with violated time reversal invariance, Phys. Rev. Lett. 

117, 144101 

 

The paper contains a description of the procedure for verification whether spectrum of the 

studied system is a complete spectrum. For the first time, this was done for a system with broken 

time reversal symmetry (GUE). It was the first experimental test for systems which simulate quantum 

graphs. 

 
M. Białous, V. Yunko, S. Bauch, M. Ławniczak, B. Dietz, L. Sirko, Long-range correlations in 

rectangular cavities containing point-like perturbations Phys. Rev. E 94, 042211 (2016). 

 

Spectral power of discrete and finite series 𝑆(𝑘̃) for rectangular microwave resonance cavity 

with two antennas was established in the paper. The antennas acting as scatterers caused that the 

system simulated a quantum billiard in the transient area between a regular and a chaotic system. 

The results were compared with numerical calculations, in which the antennas were accounted for as 

point scatterers. The comparison demonstrated compliance with the experimental results and that 

such a system can be treated as a semi-Poisson system. 

 

M. Ławniczak, M. Białous, V. Yunko, S. Bauch, L. Sirko, 2015, Experimental investigation of the elastic 

enhancement factor in a transient region between regular and chaotic dynamics, Phys. Rev. E 91, 

032925 

 

In this work, the author was the first to experimentally analyse the elastic enhancement factor 

for the system in the transition region between the regular and chaotic systems. He showed that this 

coefficient can be a good measure of the degree of chaoticity of the system. The obtained results 

were compared with the experimental results obtained for a chaotic system with similar absorption, 

as well as with the results of numerical calculations based on the random matrix theory.  
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M. Ławniczak, M. Białous, V. Yunko, S. Bauch, L. Sirko, Numerical and Experimental Studies of the 

Elastic Enhancement Factor for 2D Open Systems, Acta Phys. Pol. A 128, 974 (2015) 

 

In this work, the author continued to analyse the elastic enhancement factor for the system in 

the transition region between the regular and chaotic systems. The obtained experimental results 

were compared with numerical calculations as function of the absorption not only for the regular 

system, where 𝜅 = 0, but also with the results of calculations for 𝜅 = 2.8, i.e. 𝑊𝛽=1(𝛾, 𝜅 = 2.8) 

(𝜅 → ∞ for chaotic systems and 𝜅 = 0 for regular circuits). The comparison of results shows that the 

author’s calculations correspond to the experimental results within the limits of experimental error, 

therefore indicating that the enhancement factor is a good measure of the chaoticity of  

a system.  

 

M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Experimental investigation of microwave networks 

simulating quantum chaotic systems: the role of direct processes, Phys. Scr. T147, 014018 (2012). 

 

In this paper it was demonstrated that the distribution of the elastic enhancement factor as the 

function of system absorption does not depend on the so-called ‘direct processes.’ Such processes 

are related to the imperfect coupling of the experimental setup to the measured systems. The 

experiments were performed for microwave networks simulating quantum graphs with and without 

broken time reversal symmetry.  

 

M. Ławniczak, A. Borkowska, O. Hul, S. Bauch, L. Sirko, Experimental determination of the 

autocorrelation function of level velocities of microwave networks simulating quantum graphs, Acta 

Phys. Pol. A 120, 185 (2011). 

 

In the paper the authors present the experimental distribution of the autocorrelation function of 

energy levels obtained for a hexagonal microwave network simulating a quantum graph with time 

reversal symmetry. 

 

M. Ławniczak, Sz. Bauch, O. Hul, L. Sirko, Experimental investigation of the enhancement factor and 

the cross-correlation function for graphs with and without time-reversal symmetry: the open system 

case, Phys. Scr. T143, 014014 (2011). 

 

The use of the cross-correlation function in distinguishing symmetry classes defined in RMT was 

presented in the paper. The authors demonstrated that the removal of the effect of direct processes 




