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monothematic group of research papers presented here as a scientific achievement

4.1 Introduction and motivation

About 20 years ago the experimental research on truly quantum properties of matter entered
a new era, in which the coherent manipulation and measurement of individual quantum sys-
tems became possible. The mid-90s breakthroughs in manipulation of quantum states of single
trapped ions “:IF])] and of small numbers of microwave radiation photons trapped in a cavity ﬂa] were
recognized in 2012 by the Nobel committee. In the context of this dissertation it is important to
note that these pioneering experiments also demonstrated how interaction with an environment
leads to decoherence of quantum states of a single system E]

At the same time interest in creation of a quantum computer was spurred by two theoretical
breakthroughs: the discovery of quantum algorithm of factorization by Shor |4], and the proof
of possibility of error correction of quantum states of qubits ﬂa] These provided both the strong
practical motivation and the hope for actually achieving the goal of buliding a large-scale (multi-
qubit) device exhibiting quantum coherence.

The resulting excitement quickly affected the community of solid state physicists. Since the
classical computation is the main area of practical application of solid state physics (especially
semiconductor physics), it was natural to suggest to build a quantum computer with solid-state
devices. The most often invoked motivation was the prospect of easy scalability of such a system
(something which is not obvious with, say, trapped ions). The main obstacle in this endeavour
is the fact that, in contrast to the systems studied in quantum optics, the semiconductor or
superconductor based qubits are embedded in a condensed matter environment. Strong coupling
with many environmental degrees of freedom (lattice vibrations, fluctuating electric fields due to
moving charges, magnetic field fluctuations due to paramagnetic spins present in the material,
etc.) means that the decoherence is expected to be much faster.

The question of whether the benefits of potential scalability outweigh the drawbacks associ-
ated with the strong coupling to nontrivial environment remains still unsettled. However, from
the point of view of basic science, the research on solid-state based qubits during the last 15 years
has been quite fascinating. Most importantly in the context of this dissertation, the strong cou-
pling to an environment having rich physics can be seen as an interesting theoretical challenge,
which requires going beyond the weak-coupling and Markovian approximations.

The research described below encompasses two facets of the decoherence problem for the solid-
state based qubits. In chapter 2T will review the theory of decoherence of a spin qubit (a spin of
an electron localized in a semiconductor quantum dot) which is interacting via hyperfine coupling
with the spins of the nuclei of atoms of the host material. In this case the Hamiltonian of the
environment and of the qubit-environment coupling is known (thanks to previous theoretical and
experimental studies), and the theoretical challenge is posed by the strong qubit-bath coupling



and the slowness of the dynamics of the environment. These two preclude the use of Born-Markov
approximation (which leads to textbook Bloch-Redfield equations for Markovian dynamics of the
qubit’s reduced density matrix). In chapter £3]T will focus on an often encountered (in condensed
matter systems) situation, in which the information on the dominant source of noise affecting the
qubit is lacking. KEither the main source of noise is simply unknown, or important parameters
characterizing the environment are not available from measurements other than those of the
qubit itself. T will discuss there how, under the assumption that the bath is a source of classical
Gaussian noise, one can use the measurements of coherence dynamics to reconstruct the spectral
density of such a noise. The two parts of the dissertation are therefore complementary, but it
should be noticed that the calculations from section [£3.2] where qubit coupling to a square of
noise is considered, have a similarity to the theory of hyperfine-induced decoherence of electron
spin from section 2.4l This similarity is not accidental: below I will try to explain how the
interaction with the nuclear bath can be approximately mapped on the problem of quadratic
coupling to a Gaussian-distributed quantum variable.

4.2 From the microscopic description of the environment to calculation of
qubit’s decoherence dynamics: the case of electron spin coupled to the
nuclear bath

In this chapter I will describe a theory of decoherence of a single localized electron spin caused
by its interaction with a bath of nuclear spins. Creation of this theory was motivated by spin
echo experiments on quantum-dot based spin qubits which were conducted between 2005 and
2008, especially Refs. ﬂa, B] At that time no existing theoretical model was applicable to the
regime of rather low magnetic fields in which these experiments were conducted. The theory
presented in papers [H2] and [H3] was focused on this regime in quantum dots based on III-
V compound semiconductors. The formalism presented in these articles allowed for efficient
calculation of the spin echo signal, and it was used to predict coherence dynamics in other
experimental protocols. The predictions of papers [H2,H3| for the case of spin echo were later
confirmed by experiments ﬂ§] Furthermore, while the Ring Diagram Theory (RDT) of [H2,H3]
was relying on the assumption of large nuclear bath (technically it employed 1/N expansion,
where N is the number of nuclei appreciably coupled to the electron spin), the comparison of
RDT with exact numerical simulations of a system with N =20 spins [H4| showed that it can
describe quite well the spin echo decay due to interaction with such a rather small environment.
These results were discussed in a review paper [H5|, where the close relation between the RDT
at short times and calculation using the quasi-static bath approximation was noted.

The RDT of Refs. [H2,H3] employs an effective pure-dephasing Hamiltonian obtained from the
full Hamiltonian of the hyperfine interaction by an approximate canonical transformation. Such
an approach can be straightforwardly generalized to more complicated multi-electron systems.
The most important example of such a system is a singlet-triplet (S-T) qubit in a double quantum
dot, which has been a subject of intense experimental research since 2005 ﬂE, JE] The effective
Hamiltonian based calculation of singlet-triplet decoherence is the subject of paper [H7|, where
predictions for coherence decay are given for the S-T qubit operated in the regime of singlet-
triplet splitting larger than the typical Overhauser splitting of two-electron spin states.

Despite the fact that the RDT succesfully predicted the spin echo decay at low magnetic fields
in GaAs, doubts about the validity of the effective Hamiltonian approach were raised in works
in which the Nakajima-Zwanzig (NZ) generalized Master equation approach was employed while
using the full hyperfine Hamiltonian , ] The paper [H6] sheds some light on the relation
between the effective-Hamiltonian approach of [H2,H3| and the results obtained using the NZ
approach.

The first three sections of this chapter contain a rather detailed review of the physics of spin
qubits interacting with the nuclear bath. I hope that they provide enough background for the
subsequent three sections, in which the results of papers [H2-H7] are summarized.



4.2.1 Semiconductor spin qubits and the nuclear bath

When using a spin of a single electron confined in a quantum dot (QD) as a qubit was proposed
in 1998 ], quantum dots available then had at least tens of electrons confined in them, and
there was in fact no truly realistic idea for readout of single-spin states. Work done during the
subsequent decade changed this, and by about 2006 qubits based on single spins, and pairs of
spins in double dots, were initialized, coherently controlled, and read-out in many laboratories.
Spins confined in electrostatically defined gated quantum dots in GaAs were controlled with
time-dependent gate voltages [14], while the ones confined in self-assembled InGaAs quantum
dots were controlled optically ,iﬁ] In the following we will take the coherent control of spin
for granted, since we focus here on the interaction of the spin with its environment and the
resulting decoherence of quantum states of the qubit.

Before a single spin was actually confined in a quantum dot, it was predicted that its energy
relaxation in finite magnetic field B (longitudinal relaxation in the NMR/ESR terminology)
will be dominated by processes of phonon scattering, with the spin-orbit interaction allowing
for transitions between the Zeeman-split energy levels “ﬁ] (see also M] for a very transparent
discussion). This prediction was experimentally verified in both self-assembled [18] and gated
QDs m], with the phonon-induced processes identified by their characteristic B and tempera-
ture dependence. The phonon-induced energy relaxation could be described using the standard
Bloch-Redfield “ﬁ] approach: the spin-phonon coupling is weak, allowing for using the second-
order perturbation theory, and the autocorrelation time of the phonon bath is much shorter
than the timescale on which the spin relaxes, allowing for the use of Markovian approximation
leading to the exponential decay of the elements of qubit’s reduced density matrix. It is also
important to note that the relaxation times 77 are at least a milisecond for typical experimental
conditions. The phonon contribution to spin dephasing (transverse relaxation in the NMR/ESR
terminology) was theoretically shown to lead to dephasing time 75 = 277, showing that if
the lattice vibrations and spin-orbit coupling were the main source of decoherence, spin qubits
would remain coherent for up to a milisecond. Unfortunately, it is not the phonon bath that is
the most dangerous for spins in semiconductors. The main culprit demanded the development of
theoretical methods more complicated and interesting than the textbook Bloch-Redfield theory.

The hyperfine coupling of the electron spin to the nuclear spins and the nuclear
Hamziltonian.
Already around 2001 it was noticed that the most dangerous environment affecting the coherence
of a spin localized in a semiconductor is in fact the bath of nuclear spins coupled to the electron
by contact hyperfine (hf) interaction @@] This is especially relevant for ITI-V materials such
as GaAs and InGaAs, since neither Ga, nor In and As have any zero-spin isotopes. In the
following I will focus on the case of III-V quantum dots, but it should be kept in mind that the
spin bath is almost ubiquitous in the case of semiconductor spin qubits (also the ones in silicon
and diamond), and for all the single-spin qubits being currently investigated it is the main source
of decoherence!l

The hf coupling of a localized electron spin to nuclear spins is described by the Hamiltonian

Hy =) AS-J;, (1)

where § is the electron spin operator, J; is the operator of the i-th nuclear spin, and the contact
hf couplings A; = A, |U(r;)|?, where W(r;) is the electron envelope function at the i-th nuclear
site (with normalization to the primitive unit cell volume: [, [¥(r)[*dr = vy). The hf energies

'In the case of qubits based on more than one spin, such as the singlet-triplet qubit, the manipulation of which
relies on exchange interaction between the two electrons, the charge noise might be in fact more important in
some parameter regimes M] In any case, it is easier to suppress charge noise than remove the nuclear spins from
a typical semiconductor nanostructure.



A, for a nuclear species « are A, = %uohlysfy JQ‘UQP, where pg is the vacuum permeability,
vs and ;. are the electron and nuclear spin gyromagnetic factors, respectively, and u, is the
amplitude of the periodic part of the Bloch function at the position of the nucleus of « species
(the normalization is fm |u(r)|?dr =1). The number of nuclei interacting appreciably with the

electron is defined as
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where n, is the average number of nuclei of this species in the unit cell (i.e. in IT1I-V compounds
we have ) no,=2), and the sum over v is over all the Wigner-Seitz unit cells.

The hf Hamiltonian can be written as I:Ihf:S . fl, where we have introduced the Querhauser
field operator h = S AiJ;. In some cases (discussed below) one can neglect the quantum
dynamics of h(t) (written here in Heisenberg picture), and replace it by classical vector h. The
quantum averages measured in a given experimental setup are then replaced by classical averages
over an appropriate distribution of h. In this picture we see that the loss of coherence of the
electron spin is due to an averaging over electron precession about randomly distributed effective
magnetic fields h.

Another representation of the hf Hamiltonian which will prove useful in the following discus-
sion is

Hye = 7S + Vg, (4)
where

N PN PN 1 ~, 4 A~
Ve=h"5% + WS = (WS +h8") (5)

is the electron-nuclear flip-flop operator. Note that in this flip-flop term we find the transverse
(with respect to the magnetic field defining the z axis) components of the Overhauser field, h .

The Hamiltonian in Eq. () is very often called the central spin HamiltonianE This Hamilto-
nian is in fact integrable, and it can be diagonalized with the help of Bethe ansatz, as was first
done by Gaudin [26]. However, it has to be stressed that the integrability of the problem does
not allow for obtaining the solution for dynamics of a system with an appreciable number N of
spins, since for the calculation of central spin coherence dynamics one needs the full spectrum
of the Hamiltonian with the corresponding eigenstates. The brute-force numerical treatment of
the problem requires dealing with a Hilbert space of dimension 2V, while in Gaudin solution one
only needs to deal with ~ N degrees of freedom - but one has to solve a set of ~ N nonlinear
coupled Bethe equations for these quantities. It turns out that this task is manageable only for
N <20 (see Hﬁ] and @]), which is in fact the same as the system size which can be treated
with appropriate numerical methods for quantum state evolution @] Gaudin’s solution is also
impossible in the case of all nuclei not having the same Zeeman splitting - a situation which
exists for III-V quantum dots, and which is very important for theory of spin echo decay in this
system [H2,H3].

The Hamiltonian of the whole system (the qubit and the bath) contains also the qubit’s part:

HQ — QSZ + ﬁcontrol(t) (6)

Tt should be noted that the term “central spin problem” is often used to refer to any system in which we
have the “central” spin of interest (the qubit) which is coupled to many other spins comprising the bath. The
qubit-bath coupling does not have to be of the Heisenberg form, and the self-Hamiltonian of the bath can have
many forms. The Hamiltonian of the electron interacting with the nuclear spins in a quantum dot described here
belongs to such a generalized class of central spin problems when the dipolar interaction between the nuclear
spins is included.



where €) is the Zeeman splitting, and ﬁcontrol(t) represents the time-dependent external control
fields. Here I will only consider external controls in the form of very short pulses performing
rotations of the qubit’s state, say m or 7/2 rotations about the x axis.

The final element of the microscopic description of the system is the Hamiltonian of the bath
itself:

Hyath = Zwa[i]jiz + Haip (7)

where w, is the Zeeman splitting of the nucleus of the « species, and ﬁdip is the Hamiltonian
of the dipolar interactions between the nuclear spins. For magnetic fields used in almost all the
experiments on spin qubits these interactions can be assumed to conserve the net z component
of the nuclear spin:

Hgip = Z bij(j;—jj_ - ijjf) ; (8)

i#j
where the summation is over the nuclei ¢ and j of the same species, and the couplings are given
by ,
by = =iy )
J

where 7;; is the distance between the two nuclei and 0;; is the angle of r;; relative to the B field
direction.

Energy scales in the Hamiltonian and their basic consequences
It is crucial to note the smallness of the energy scale of the intrinsic Hamiltonian of the bath
compared to the typical temperatures at which the experiments are conducted. For B fields used
in experiments (which rarely exceed one Tesla, and are always less than about 10 Teslas) the
nuclear Zeeman energies w, are of the order of 0.1 peV, which corresponds to about 0.1 mK. Fur-
thermore, the nearest-neighbour dipolar couplings are of the order of 0.1 peV, which corresponds
to ~ 1 nK. This means that even in the best dilution fridges, reaching temperatures ~1 mK, the
thermal equilibrium density matrix of the nuclei will be p; ~ 1. The other consequence is the
slowness of the intrinsic nuclear dynamics. In fact, it is not obvious that in a given experiment
the average over many repetitions of the cycle of qubit intialization-evolution-measurement is
equivalent to averaging over this density matrix, i.e that the time averaging is equivalent to
ensemble averaging. In other words, the ergodicity of the nuclear dynamics should not be taken
for granted when considering real experimental situations.

Let us look more closely at intrinsic nuclear dynamics. The transverse components of the
Overhauser field, h, , decorrelate on timescale of 7 ~100 us in I1I-V materials, which is set by
the broadening of the nuclear resonance lines by dipolar interactions [i.e. the spread of nuclear
energy splittings due to the 3, , b”jfjj term in Eq. ([8])]. At finite B field we also have Larmor
precession of h®Y, and in the range of B relevant for experiments on III-V QDs the period of
this precession is much shorter than 7, . Such a coherent precession of a macroscopic number of
nuclear spins has a striking impact on the dynamics of spin echo decay, see Section 24l On
the other hand, the longitudindal component of the Ovehrauser field, h*, decorrelates on a much
longer timescale 7). h* changes due to nearest-neighbour flip-flops [the first term in Eq. ()], and
the cumulative effect of many such flip-flops can be described as a process of nuclear spin diffusion
@] Given the nuclear spin diffusion constant D and the size L of the QD, we have 7, ~L?/D,
which is ~1 - 10 minutes in gated quantum dotsB The experiments give the decorrelation time
of ~10 s in GaAs @], in qualitative agreement with theory ﬂﬁ]

3The thing to note is that the gated dots are strain-free relatively to the self-assembled ones. In the latter,
the spatially inhomogeneous strain leads to local gradient of electric fields, and thus to quadrupolar splittings
of the nuclei. These splittings can strongly suppress the nuclear spin diffusion, and the longitudinal Overhauser
field dynamics in SAQDs can be even slower, with nuclear polarization in these QDs persisting for at least tens
of minutes [31)].



In the presence of the electron the k-th nucleus experiences the Knight field ~ A, the
maximum value of which is ~ A/N (for simplicity I use here the fact that in III-V materials all
Ay, are of the same order of magnitude). This quantity, which in GaAs QD with N ~ 105 is ~0.1
neV, is also the spread of Ay couplings. From time-energy uncertaintity principle we can expect
that for times much shorter than N/ A~ 10 us, the inhomogeneity of the couplings should not
have any impact on system’s dynamics, while at much longer times the exact distribution of Ay
(i.e. the shape of the electron’s wavefunction) could matter. This observation will be important
for many of the following considerations.

The last important observation is related to the mismatch of electronic and nuclear Zeeman
splittings: 221000 - w, due to the ratio of electronic and nuclear magnetons. We focus here on
magnetic field for which € is much larger than the Overhauser field felt by the electron] (which
is ~1 mT in GaAs, see below), and w, is much larger the the dipolar broadening of nuclear
spin splittings (which correponds to a field of about 0.1 mT). At such fields € > w, means
that the direct electron-nuclear flip-flop described by Eq. (B]) is energetically forbidden. Tt is
thus natural to treat the Vg term perturbatively, as it only leads to wirtual transitions, which
in the second order of perturbation theory lead to appearance of effective electron-mediated
interactions between the nuclei. An equivalent statement is that at large B the influence of h
field is strongly suppressed, with this field contributing a correction to spin splitting Nh%_ /2 and
giving a small tilt of the quantization axis away from the z direction by angle ~h  /Q.

Taking all the above into account we can safely assume that on timescales of less than a few
us the nuclear bath is static, and then we can replace tracing over the nuclear density matrix by
averaging over a classical distribution of static Overhaused fields. Since the number of nuclei N
is large, the distribution of these fields (applicable when the signal averaging time is longer than

the autocorrelation time of h*%) is Gaussian |:
1 h?
Ph)=——F+— - 1
(h) (27)3/203 eXp< 202> ’ (10)
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The standard deviation ¢ of the distribution of the Overhauser field is an important quantity:
this is the typical value of the effective field exerted by the nuclei on the electron. In gated dots
made of GaAs, o corresponds to a field of about 3 mT.

4.2.2 Electron spin decoherence due to its interaction with the nuclear bath: basic
considerations

When Q>0 we can can either completely neglect the influence of h; (or equivalently Vﬂv), or
perturbatively replace it by an effective electron-mediated inter-nuclear interaction. The latter
case will be discussed in detail in Section 2.4l Here we only focus on the fact that in both
situations we will deal with pure dephasing Hamiltonian:

H=Q5 4+ Hp+ S5V, (12)

where Hp is the bath Hamiltonian, and V is the bath operator coupling to the z component of
the electron spin. With such a Hamiltonian, the diagonal elements of the reduced density matrix
of the qubit are constant, and interaction with the environment causes only the decay of the
off-diagonal element,

PE_(t) = (+| Trsp(t) | =) (+] Trse T p(0)e ™ | =) | (13)

“This corresponds to a very reasonable, from the point of view of qubit control, requirement that the electron
spin splitting and the direction of its quantization axis is mostly due to the external B, with nuclei giving only a
small correction.




in which |£) are eigenstates of $%, j(t) is the density matrix of the total system, and Tr is the
partial trace over the nuclear degrees of freedom. Let us define the decoherence function W (t),
which for the case of free evolution of the spin is given by

S
_(¢ iH_t —iH
WFID(t) — er ( ) — <€ H_te H+t>

: (14)

where (...)=Tr; [p(0)...], and
Hy=+0Q/2+Hp+V/2. (15)

The calculation of qubit’s dephasing is now mapped on averaging (over the initial density matrix
of the bath) of a specific evolution of the bath itself: equation (I4]) can be interpreted as an
average of the evolution due to ]ELr forward in time, followed by backward-in-time evolution un-
der H_. This can be viewed as a variation of a typical structure encountered in nonequilibrium
quantum statistical mechanics @], an average over an evolution defined on a closed time-loop
contour. This structure allows for use of methods of diagrammatic perturbation theory, as we
will see in Section 4241

Inhomogeneously broadened free induction decay
In most of the experiments on single QDs, the total time of data acquisition (a cycle of qubit
intialization-evolution-readout repeated many times) is longer than a minute. This means that
the result of the experiment corresponds to averaging of the qubit’s evolution over the equilibrium
nuclear density matrix. The same situation is of course encountered in experiments on ensembles
of optically-excited self-assembled quantum dots ﬂﬁ, @] The measured dephasing of the electron
is then dominated by the ensemble averaging, and it occurs on timescale on which the bath
dynamics is irrelevant.

As already mentioned, for Q > o the effects of h, are suppressed. On the other hand,
the averaging over the h® component leads to very strong dephasing of the electron spin. Let
us focus on standard free evolution experiment (called “free induction decay”, FID, in most of
literature, in deference to old terminology of NMR), in which the electron spin is intialized in
the zy plane, it is allowed to freely precess for time ¢, and finally it is rotated again to the z axis
and subjected to a projective measurement. From many repetitions of such an experiment (with
many measurements taken for each delay t) the time-dependence of ($%¥(t)) is obtained. The
expected result is the average of precession over a Gaussian distribution of precession frequencies,
Q + h*, which reads

(S (1)) = %cos(Qt)e_(t/T5)2 , (16)

where the inhomogenous broadening dephasing time Ty = v/2/0 [with o given by Eq. (IIJ)]
is about 10 ns in GaAs QDs, which is much shorter than the timescales of nuclear dynamics
discussed in the previous section. We can see that in this case the quasi-static bath approximation
(QSBA), in which the nuclei are treated as static during each instance of spin evolution, but
their fluctuations due to their dynamics between the repetitions of the experiment are taken

into account, is justified. Such a fast Gaussian decay of spin coherence was confirmed in many
experiments ﬂa, E‘)]E@]

However, in the context of quantum computation, the dephasing due to inhomogeneous
broadening is not the fundamental obstacle. The T3 decay comes from inefficient and noisy
readout process enforcing very long data acquisition time. The apparent dephasing is only due
to our lack of knowledge about the initial value of h* - if this value was known at the beginning
of the experiment, then, provided that the experiment took less than a few minutes, there would
be much less averaging over h* involved. In fact, single-shot readout schemes (which are most
probably neccessary anyway for operation of any realistic quantum computation circuit) were
developed for quantum dots M], allowing for shortening of the experiment duration by orders of



magnitude, down to times significantly shorter than the h* autocorrelation time. Furthermore,
if we are interested in using the qubit as a quantum memory, the effects of quasi-static energy
shifts of the qubit can be removed by the application of the spin echo pulse sequence @, ]
Let us now review these methods of “looking beneath the inhomogenous broadening”.

Spin echo and its generalizations
In a spin echo (SE) experiment the spin initialization and readout are the same as in FID, but
the spin is additionally rotated by angle 7 around one of the in-plane axes at the midpoint of its
evolution, at time ¢/2. Such a pulse sequences can be written as ¢/2 — 7w — t/2. This procedure
will remove the static (on timescale of t) spread of the precession frequencies, since the evolution
of every spin during the first period of ¢/2 will be undone during the second ¢/2 period after the
pulse. This refocusing of the spins of course does not work perfectly when the bath is dynamic,
so the amplitude of the SE signal will decay with increasing t.

The multi-pulse generalizations of SE have been used in NMR for more than 60 years now
M], with the simplest example being the Carr-Purcell sequence which can be written as t/2n—
m—t/n—7m—..—m—t/n—7m—1t/2n, with n being the number of pulses. In the modern context of
protection of coherence of individual qubits, the multi-pulse echo-like procedures come under the
name of dynamical decoupling (DD) ﬁ] | (i-e. decoupling of the qubit from its environment by
driving it). Due to potential importance of various DD sequences for long-lasting protection of
qubit’s coherence, it is important for a theory of decoherence to easily take into account various
spacings of many pulses. The theory presented in Section [£.2.4] has this useful feature.

The evolution of p5_ in the case of SE (and for 7, pulse) is given by

pLo(t) = Try (+] e 2 (—igy)e 1255 (0)p% (0) M2 (i60)e 12 | =) (17)
which for the pure dephasing case is equal to
pi,(t) _ p§+(0)WSE(t) _ p§+(0) <eiH+t/2eiH_t/2efiH+t/2efiH_t/2> 7 (18)

where the decoherence function for the SE case, Wsg(t), is defined. The decoherence functions
for DD sequences with more pulses are defined in an analogous way.

Narrowed state free induction decay

While the echo experiments have been routinely performed in NMR and ESR for past 60 years,
the idea of narrowing of the state of the nuclear bath is much younger “ﬂ@], since it pertains
to measurements on a single spin, and only during the last 10 years it has become experimentally
possible to address individual spins. The idea is to pre-measure the value of h* before the FID
experiment is done. Of course this makes sense when we can assume that this h* does not
change during the gathering of data. In fact, the most natural way of measuring the narrowed
state free induction decay (NFID) is to perform the whole experiment during time much shorter
than h® decorrelation time. This was done in gated quantum dots by using a sensitive setup
for single-shot readout of spin states @] When the datapoints for various time delays between
the initilization and readout are all taken during only about 100 ms, the FID signal does not
exhibit the T35 decay. Instead, spin precession with frequency given by €2 + h* was seen, and
there was practically no decay of the oscillation amplitude visible for time delay of less than a
microsecond

SExperimentally the modification of this sequence introduced by Meiboom and Gill is usually implemented.
The difference in CP and CPMG sequences is the choice of in-plane axes about which the rotations are performed,
with the CPMG choice leading to results more robust to systematic pulse errors. This is irrelevant here, since I
consider ideal 7 and 7 /2 pulses.

6There are many other experiments showing various degrees of narrowing of nuclear field distributions in both
gated QDs (e.g. [d]) and in ensembles of self-assembled QDs [31, 35], but the example given above seems to me
to be the nicest illustration of the separation of timescales specific to the nuclear bath.
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Figure 1: a) The closed loop contour along which the operators in Eq. (I9]) are ordered. b) The
plot of the time-domain filter function f(¢;7)= fi(7) for the Spin Echo sequence. c) The same
for 2-pulse CPMG sequence. The Figure is adapted from Ref. [H3].

In order to theoretically model the “ideal” NFID experiment, one has to calculate the evo-
lution of the electron spin using Eq. (I4)), but assuming an initial nuclear density matrix 5’ (0)
describing the state with a well-defined value of h?.

Causes of decoherence in SE and NFID experiments
In these experiments the quasi-static fluctuactions of h® are irrelevant: in SE they are cancelled
by the pulse sequence, in NFID the value of h® at the beginning of electron precession is pre-
measured. The decay of coherence in these cases is then caused by two mechanisms:

1. Dynamics of h* occuring on timescale of electron spin evolution.

2. The residual coupling of the electron spin to h . Here, depending on timescale of interest,
both the quasi-static case (averaging over static h” and hY fields) and the dynamical case
(involving the actual fluctuations of nuclear spins due to the Vi term) need to be considered.

The first mechanism will be briefly outlined in Section 223l The second mechanism will be
explained in more detail in Section [£.2.4]

4.2.3 Spin decoherence at very high magnetic fields: cluster expansion theory for
dipolar dynamics of the nuclear bath

For high enoughﬁ magnetic field the Vi operator in Eq. (@) can be completely neglected, and the
only qubit-bath coupling remaining is S%h*. The h* field fluctuates then due to the presence
of inter-nuclear flip-flop terms in the Hamiltonian of the dipolar interaction, Eq. (8). Note that
under this approximation €2 simply disappears from the calculation of spin coherence: the theory
outlined in this section gives results independent of €.

All the above formulas for W (t) can then be rewritten as

W(t) = <TC exp <_i/c7:[dip(70)d70>> , (19)

"The precise meaning of what I mean by “high enough” will be explained in Section @24 where the theory
taking Vg into account will be given.
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where T¢ denotes ordering of the operators on the contour shown in Fig. [Th, 7. = (7,¢) with 7
being the time variable and ¢ =+ being the contour branch label, and Hgip(7) is the dipolar
interaction written in an interaction picture on a contour. The nuclear operators within ’;':ldip(Tc)
are given by

== 7+ . . T / Ay /

S (1e) = Jexp | FiwT £ zc/ fi(t )7dt , (20)

0

where the slightly nonstandard second term in the exponent comes from the fact that we have
introduced an interaction picture with respect to a time-dependent operator

Hy (re) = > widi + cfi(m)h?/2 . (21)
k

in which f;(7) is the temporal filter function specific to the pulse sequence (see Fig. [Ib and [Ik
for examples).

The theoretical task is now reduced to performing a quantum average of a generalized expo-
nent in Eq. (I9). A natural approach to such a problem is the linked cluster expansion, in which
the average of the exponent is rewritten as an exponent of a sum of linked (in diagrammatic
sense) terms in the expansion of W (t). Note that in any diagrammatic representation of pertur-
bation series the disconnectedness of a given diagram is equivalent to statistical independence of
the disconnected contributions. From this point of view it should be clear that the diagrammatic
linked cluster expansion is closely related to the cumulant expansion @]

The difficulty with this approach is caused to the fact that spins have neither fermionic nor
bosonic statistics, and the standard methods of many-body diagrammatic perturbation theory
do not apply here. Rather cumbersome adaptations of diagrammatic methods and Feynman rules
to the spin bath problem have to be used [52, ], and the calculation of linked clusters becomes
very complicated beyond the second order in I:Idip. This technical problem was circumvented by
development of cluster expansion methods in which one had to simply numerically obtain the
evolution of an electron coupled to given real-space cluster of nuclei and use these calculations to
construct a solution corresponding to a certain resummation of the diagrammatic linked cluster
expansion @, @] These calculations showed that the SE and NFID decay due to dipolar
nuclear dynamics can be well—describedﬁ by simply taking the two-spin clusters M@], while
the use of multi-pulse DD sequences might necessitate the calculation of dynamics due to larger
clusters @, @] The physical explanation of this result is simple: on the timescale T defined
by W (T3) =1/e the non-trivial correlations among groups of more than two nuclear spins are
not built-up yet, and irreducible dynamics of only pairs of spins in the bath has to be taken into
account. Let me note that this theory “ﬁ, 54 | has been very succesful at explaining the SE
results obtained for electron spins bound to phosphorous donors in silicon @, d]

4.2.4 Theory of spin qubit decoherence caused by interaction with the nuclear bath
at low magnetic fields

The theory of dephasing due to dipolar induced dynamics of nuclei outlined in the previous
section predicts W =exp[—(t/T» 4|§n GaAs QDs for both SE and NFID, with T ~ 10 — 50 us
(depending on the QD shape) Nj, ,@] This prediction was in very visible disagreement with
the experimental SE results available in 2008 Ej, H] This simply meant that the B fields used
in these experiments were not “high enough”, but the theory dealing with smaller B fields was
lacking. The papers [H2,H3| were written in response to this challenge.

Effective Hamiltonian and ring diagram theory
The starting point is the effective Hamiltonian H of hf-mediated interactions @, @] obtained

8By “well-described” I mean that the theory correctly captures the characteristic decay time T5 and the time-
dependence of W (t) for t comparable to this 7%, and possibly somewhat larger.
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from the full hf Hamiltonian by a canonical transformation: H = SH eA, where S is an anti-
Hermitian operator chosen to remove Vi from H. In order to obtain the lowest-order (in fo)
expression for H we use S=2 foSZ and expanding H we obtain

- N A; A A
HO =53y — 10 SIOAN AN (22)

%,J

It should be noted that the tranformation of states, ‘1[1> — 5 |1)), which in principle should

accompany the transformation of the Hamiltonian, is neglected here. Although this is a rather
standard step, and approximate justifications for taking it were given @], the influence of this
approximation on calculations of spin decoherence remains somewhat controversial (see Section
42717 for more discussion). However, we will soon see that this approximation has been highly
successful at predicting SE signal decay, and for now we close this discussion with such an
empirical argument.

The above transformation can lead to a reasonable approximation only when >0, i.e. the
small parameter controlling the applicability of the effective Hamiltonian is

o
- 23
; (23
This is clear from a classical reasoning. In the presence of h field the qubit’s quantization axis
and its splitting is perturbed. If we disregard the tilting of the axis (which is roughly equivalent
to disregarding the transformation of states above), we only have to deal with the influence of h
on splitting, which is given by

0

2

) h2
Q=/(Q+h)2 + 13 ~Qt e o (24)

where > o is assumed (with o being the estimate of the maximal value of hy). Tt is easy to
check that Eq. ([22) is simply the quantum version of the A% /2Q term appearing above.
We write now the decoherence function analogous to the one from Eq. (9]

W<t>=<Tcexp (— [ estmry <Tc>drc)>, (25)

where V is 1/2 times H®?) written in the interaction picture defined in Eq. @20). Note the
additional presence of the contour index ¢== and the filter function f;(7) in the exponent: this
is due to the fact that the hf-mediated interaction is conditioned on S?*.

Taking only the lowest-order terms in linked cluster expansion (as it can be done for dipolar
interactions within the bath, see Section B.2.3]) is not a good approximation now, because the
interaction from Eq. (22)) is coupling all the N spins. However, the long-range nature of the
interaction allows for a different kind of solution. Expanding Eq. (25) we encounter averages
of products of many Jl;t operators. For both the thermal and the narrowed nuclear density
matrix, each J,: has to be paired with J;~ in order for the average to be non-vanishing. Most
importantly, since every spin is coupled with similar strength to every other of ~ N spins, in
k-th order of expansion there are ~ N* terms with a mazimal number of distinct nuclear indices.
These are the ring diagrams, the leading order terms in 1/N expansion@ of averages appearing
in calculation of Eq. ([25). They are easy to evaluate, because taking the leading order terms
in 1/N expansion means that the nuclear spins involved in different pairings are distinct, and
as a consequence the spin operators can be assumed to commute inside the averaging bracket:
([J,;L, J;"]) =2pJ by, where p is the average polarization of the nuclear spins. In the case of p=0

®Note the close relation between this solution to the calculations of partition function of long-range Ising
model [63]. The difference in the quantum case at hand is that we have to deal with a generalized contour-ordered
exponent.
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Figure 2: Graphical representations of lowest-order ring diagrams appearing in the expansion
of W(t) and the exponential resummation of these terms. The Figure is adapted from Ref. [H3|.

considered in [H2-H4]| this simply means that the spin operators effectively commute, i.e. when
calculating the ring diagrams we can use Wick’s theorem. Furthermore, a ring diagram appearing
in the k-th order of expansion, Ry, is a linked one, and combinatorics of pairings (see Fig. 2)
leads us to

W@~1«§“NR@> (26)
~ eX A k .

k=1
The expressions for Ry have a cyclical structure (which justifies the name given to such a term)
allowing us to write

Ry = Z Tiyis (t)"'Tikh (t) ~ Tr[T(t)]k ) (27)
100 ik
where T}; is the T-matrix given by

Ta(t) = /UL IO [ ef Vi (28)

The calculation of decoherence requires then diagonalization of N x N matrix. However, in prac-
tice we can simplify the problem even more. Instead of dealing with the full T-matrix, we can
use an effective coarse-grained T-matrix, which appears when we write Eq. (7)) in the continuum
limit, replacing the sums over the nuclei by integrals over appropriate density p(A) of hf cou-
plings, and then replace p(A) by an approximate piecewise-constant function. This corresponds
to replacing the real envelope wavefunction ¥(r) by a “wedding cake” function. It is easy to
check then what number of coarse-graining steps, M, is needed to obtain a good approximation
for W (t) on a given timescale. For example, for t< N/.A, we can use M =1, and for a bath with
Ny nuclear species (N;=3 for GaAs) it is enough to use a T-matrix of dimension Nj x Nj.

Results for narrowed state free induction decay (NFID)
In the case of NFID the T-matrix is particularly simple at short times t < 1/(Ar—A;), 1/(wi—wy):

AkAl
Ti ~ (J+ 2
kl <Ja Ja> 2Q ( 9)
from which we get that
k
NatJo(Jo +1)A%t
mw=2(3 e = ()" (30)

where we have used the fact than in an unpolarized bath (JJ7)=2J,(Jo + 1). We can now
write out all the terms appearing in the exponent in Eq. (26). Then we have to note that the
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obtained power series’ define functions that can be analytically continued to any values of ¢. In

this way we obtain
—tarctannt

Wprp(t) = e i@ Hh)tE .
V14 n%t2
This result can also be obtained using a classical calculation involving averaging over a quasi-
static distribution of h; fields [H5]. We take the expression for qubit splitting from Eq. ([24) and
we obtain

(31)

& A 1 . A 1
<e—zﬂt> _ e—z(Q—l—hz)t/ e—hi/zﬁe—zthj/QdehJ— — o HQthe)t _ (32)

2 e
2mo 1 +ity

which is in fact equal to Eq. (BI) once we plug in the values of o2 from Eq. (), giving us
n=0?/Q, and we notice that cos arctannt=1//1 + n2t? and sinarctannt=nt/+/1 + n2t2. This
is an example of how performing the resummation of all the ring diagrams is a generalization of
performing Gaussian average over phase which is proportional to a square of the random variable.
We will encounter the same structure in Section

At long times, ¢ > N/ A, we have a very different solution. We obtain then the following
expression for Rf due to nuclei of species a:

AZ...A2 sin Aot sin Aogt  sin Apqt
o k k 1A 12 23 k1
= dAq... | dAg pa(A7)...pa(A 33
k naaa/ 1 / kP ( 1) P ( k) (29)2 A12 A23 Akl ( )

where Ay =(Ax — A1)/2, an= %Ja(Ja + 1) and the density of Ay couplings, p(A), is
A) =2 [ s1a = A w1 34
pa(A) = [ o ¥(r)[7]dor . (34)
vy Jv

In [H2,H3| it was discussed, based on numerical results of diagonalization of coarse-grained T-
matrices, how in the A/Q <1 limit (i.e. when B>>a few Tesla in GaAs) the Rs term dominates
the sum over all the rings Using the fact that for Ayt — co we have sinc? Ayt — TO(Apr) we

arrive at 5 9
R ~ t7292 /pi(A)A‘ldA =

2t

l6% )
T2,10ng

(35)

and the result for coherence decay at high B fields (for which this decay indeed occurs at long
times)

t
WNF[D(t>>N/.A) ~ exp <_T21 > , (36)
,long
with Tiﬁmg = Za(Tflong)*l. Note that Th1ong ~ NQ?/ A%, so that the characteristic decay

time in this regime is longer by a factor of /A than the half-decay time (~1/n~ NQ/A?) in
low fields. According to the expectations, 7% ong depends now on the shape of the wavefunc-
tion, i.e. the distribution of Ay, couplings determines now the prefactor multiplying N2 /A3 [H3].

Results for the decay of spin echo signal

The first thing which should be noted is the fact that in a homonuclear system, or a system in
which the flip-flops between nuclei of distinct species are forbidden by Zeeman energy mismatch
at very high B fields, the application of SE sequence completely removes the influence of the
second-order effective Hamiltonian from Eq. (22]). It is easy to check that when the interaction
term in the Hamiltonian commutes with the Zeeman term, the product of operators under average
in Eq. (I8) is equal to unity, and thus Wgg(t) =1. This means that H® can lead to SE decay
only at low magnetic fields, at which the inter-species flip-flops start to occur.

0T have since then analytically obtained the expression for the sum of all the Ry at long times, but this result
remains unpublished. The analytical formula confirms the results of numerical calculations from [H2,H3].
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Figure 3:  Spin echo decoherence function Wgr(t) in GaAs. The dots are obtained in the
A/N < wqg, 1/t limit, when W (t) =[1 + $Ro(¢)]"!, while the solid lines are the results of the
calculation with the T-matrix large enough to guarantee convergence. The differences between
the two approaches on a us time-scale are visible for the smaller dot (upper panel, N =10°), but
are negligible for the larger one (lower panel, N =105). The figure is adapted from [H2].

Using the above-described formalism it is easy to derive the T-matrix and expressions for Ry
for the case of SE. At short times and for moderate B fields, for which wy; > Ay, we have the
coarse-grained matrix of N; x N; dimension:

- AdAg 26 . t
Top = (1 — 008)\/Gal5/Talts ;QB w—zﬁe“"aﬁt/2 sin® waTﬁ ) (37)
«

In GaAs we have Ny =3, and a simple calculation of eigenvalues of 3 x 3 matrix leads to the
following solution for decoherence function

1
Wep ~ , 38
T IR (38)
where P2
4 t
B .4 Wap
Ry(t) = ;ﬁ W%nangaaag sin” — = . (39)

Note that this solution is a result of nontrivial resummation of Rj of all orders. In the second
order of linked cluster (cumulant) expansion we have W (¢) ~exp(—3Ra(t)) (which is the solution
given in @]) The fact that only Ry appears in Eq. (38)) is due to the fact that higher-order Ry
can be expressed in terms of Ry under the above approximations.

In Fig. Blthere are examples of Wsg(t) calculated for two GaAs QDs of different sizes (N =10°
and 10%). At B < 0.1 T the signal shows a practically irreversible decay ot timescale of a
microsecond, consistent with SE measurements performed at such low fields ﬁ] At slightly
higher B fields one can see the quasi-periodic behavior of the signal. This is somewhat accidental
and specific to GaAs, in which the Larmor frequencies of the three isotopes are approximately
commensurate. This oscillatory character of the SE signal was the main prediction of [H2,H3|.
Almost two years after the appearance of [H2] as a preprint online this prediction was confirmed
by experiments on double quantum dots made of GaAs [S].

While the presentation above is focused on general quantum-mechanical theory of decoherence
due to hf-mediated interactions, the most striking features of the SE signal (which appear at
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short times, ¢ < N/A) can be derived using a semiclassical approach @] At these short
times one can obtain Eqs. (88)) and (B9) by treating the Overhauser fields coming from distinct
nuclear species as classical vectors precessing about the external B field direction. The classical
effective Hamiltonian is of the second order in h, and h,, which explains the nonlinear mixing
of frequencies of precession of distinct nuclear species. Again, this underlines the fact that the
RDT applied to H®? is a quantum-mechanical generalization of performing Gaussian averages
over phases proportional to a square of a random field. Technically, it is the 1/N approximation
that leads to “Gaussianization” of the nuclear bath.

4.2.5 Comparison of RDT results with the exact numerics in a system of 20 nuclear
spins and dynamics of spin echo signal at very low magnetic fields

Before the predictions of RDT for the SE case were confirmed experimentally, we had performed
exact numerical simulations aimed at checking the accuracy of the RDT [H4]. The numerical
simulation of a system of an electron and N =20 nuclear spins was done using the Chebyshev
polynomial based method @] In the parameter regime in which the RDT was expected to work,
i.e. for 0 <1, we found a good agreement between the exact numerical simulation (taking a few
hours of computing time), and the RDT calculation involving only a diagonalization of 20 x 20
matrix. An example of this agreement in shown in Fig.d where the exact calculation is compared
to RDT using the lowest-order hf-mediated interaction (discussed in detail above), the next order
interaction appearing in expansion of Heg with respect to Vi (see [H3] and [H4] for details), and
the “pair-correlation approximation” (PCA) or Ref. @], which amounts to keeping only Ry in
the linked cluster expansion. Note that the oscillations of the SE signal due to nonzero w,g in
a heteronuclear system are invisible now. This is because the condition of wyg > Ay, which is
fulfilled in a wide range of B fields in real QDs, and which is necessary for the appearance of a
prominent oscillation, is broken here. The RDT is however working very well as long as § < 1.
Furthermore, the qualitative statement that the SE decay is much stronger in a heteronuclear
system compared to a homonuclear system, is seen to hold even at § =1 (i.e. for Q=1 in the
units used in these calculations), see Fig. [0l

The results of numerical simulations show that at low B fields (for 6 > 1), the SE signal in
a homonuclear system exhibits pronounced oscillations with frequency corresponding to Larmor
precession frequency w of the nuclei (see the solid lines in Fig. Bl). A similar effect is known in
the literature under the name of Electron Spin Echo Envelope Modulation (ESEEM) @@],
and it appears in the presence of anisotropic hyperfine interaction beteween the central spin and
the bath spins, i.e. terms of the form S#J*. Although such terms are absent in the Hamiltonian
used in the calculations, one can argue that they effectively appear at low Q. Let us focus now
on regime of § < 1, in which the oscillation is already visible (see the 2=2.5 result in Fig.[). As
discussed before, the random Overhauser field leads to tilting of the electron precession axis away
from z direction by an angle proportional to §, which leads to a rapid suppression of coherence
signal by a factor of 1 — 2. This “visibility loss’ can be clearly seen in Figures @ and [l The
physical picture is then the following: the electron spin is precessing with frequency ~ §2 about
the tilted 2’ axis, and this precession is so fast that the influence of the electron spin on the
nuclear spins averages out to zero, and the nuclear spins are simply precessing with frequency w
about the original z axis. If we then rotate the coordinate system so that the 2’ direction is the
electron spin quantization axis, from the original AS?.J% Overhauser term we will obtain also the
effectively anisotropic term ~ 5% J*'. In this way the anistropic hf interaction is dynamically
generated during the evolution of a central spin strongly coupled to a nuclear spin bath.

The above semiclassical explanation suggests that the w oscillation should appear in a simpli-
fied model in which all the hf couplings Ay, are taken to be the same, all equal to A=.A/N. This
corresponds to a box-shaped wavefunction of the electron. Such a “box” model can be solved
exactly under the assumption of the presence of only a single nuclear spin species. The hf Hamil-
tonian is then given by AS-J, with J=3", Jj being the operators of the total spin of the N nuclei.
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Figure 4: Comparison between the exact (solid line) results for SE signal and the analytical
calculations: RDT with the 2nd and 3rd order effective Hamiltonian, and PCA (see text). The
units are such that Y, AZ =1 (with randomly chosen A, given in [H4]), which means that the
unit of Q is 1/8, and the unit of time is T3 /+/8. The 20 nuclei are divided in three groups
(numbering 10, 6, and 4 spins) corresponding to distinct nuclear species with w, = 0.02526,
0.0354, and 0.045. One can see that the agreement between the RDT calculation employing the
2nd order hf-mediated interaction and the exact result is very good for €2 >> 1. The figure is
adapted from [H4|.

We can then use the basis of eigenstates of J? and J*. In the case of J,, =1/2 these are the Dicke
states well known from quantum optics @] |V, 4,m) for which J? |v;,4,m)=3(j + 1) |vj, 4, m)
and J* |y;, j,m) =m|v;, j,m), and where 7; is the quantum number specifiying the way in which
N spins were added to obtain a state with a given j. The hf Hamiltonian is diagonal in this
«; index, and we only need to know the degeneracies D; of subspaces associated with given j.
These are given by [69]

N! 2j +1
(N/2— (N2 +j)IN/2+j+1°

D; = (40)
The exact solution is possible because the hf interaction is coupling only pairs of states, |+, v;, j,m)
and |F,7;,j,m £ 1), where the first quantum number corresponds to o, eigenvalue of the central
spin. The time dependence of the SE signal can thus be obtained by solving for the dynamics in
all the two-dimensional subspaces

N2 oG
Wse(t) =Y > QD_]\]/fjm(t) ; (41)
i=0m=—j

17



0 100 200 300 400 500 600
t

Figure 5: Comparison of the spin echo decay in a heteronuclear bath (dashed lines, parameters
as in Fig. ) and a homonuclear bath (solid lines) with all the bath spins having w=0.0354. The
figure is adapted from [H4].

where f;n(t) is constructed from matrix elements of the evolution operator in two-dimensional
subspace, see [H4| for the full formula The results obtained in this way are in very good
agreement with the results of exact numerical simulations even for Q < 1, see [H4]. We will
revisit the box model in the context of NFID in Section A.2.7]

4.2.6 Effective Hamiltonian theory of dephasing of two-spin states in double quan-
tum dots

Many experiments on spin control in gated QDs are conducted using double quantum dots
(DQDs) containing two electrons. Such a DQD is tuned to (1,1) charge state (with (nz,ng)
denoting the number of electrons in the left (L) and the right (R) dot), and it is possible to
achieve full coherent control in the subpace of singlet (S) and unpolarized triplet (Tp) states
“E] This two-dimensional subspace forms a logical singlet-triplet (S-T') qubit ﬂa, @, |. In fact
the first spin echo measurement in GaAs was done using a DQD ﬂa], and the RDT predictions
for SE dynamics at low B fields were confirmed in a DQD E] In this section I will outline
the necessary modifications of the previously discussed single-spin theory necessary in the two-
electron DQD case, and I will discuss predictions for hf-induced dephasing of superpositions of
singlet and triplet states in the regime of large singlet-triple splitting, which has been addressed
experimentally only very recently , ﬂ]

The physics of spin state initialization, manipulation, and readout in DQDs is very rich M],
and here let me just mention the basic elements needed to set up a theory of hf dephasing in
a relevant logical qubit subspace. The qubit is most naturally initialized in the S state (but
creation of superpositions of S and Ty is also possible by adiabatic tuning the system into the
ground state of the hyperfine Hamiltonian “ﬂ]), and the projection on S is also the most natural
measurement. The S-Tj splitting, Agr, is controlled by voltages applied to the two dots. These
voltages change energy offset between the single-electron states in the dots, thus affecting the
second-order virtual tunneling processes which lower the singlet energy with respect to the triplet

" Such a simple solution is impossible in the heteronuclear case, in which we have the hf Hamiltonian given by
> o AaS - Jo. Then, during the evolution starting from a given |0.) [], [ja,Ma) state the relevant subspace is a
higher-dimensional space of fixed 0./2 4+ > ma.
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energy (this process can be thought as related to superexchange, only with doubly-occupied state
in one of the dot playing the role of the intermediary state), and they can also influence the overlap
between the orbitals in the two dots, thus affecting the direct exchange contribution to the S-Tj
splitting. The rotations between S and Ty states require the presence of controlled gradient of
the z component of the magnetic field. Very often it is the difference of the average z component
of the Overhauser field in the two dots (when the nuclei in the two dots were previosly polarized
by some means) which is used for qubit manipulation m, @]

We are interested in the subspace spanned by the lowest-energy orbitals in the two dots,
under the constraint of (1,1) charge occupation. The four states in this subspace are the singlet,
[S)=ts ® (1) — |11))/v2, and triplet states [Ty.0,-) = s @ [11) , (11) + [11))/v2, and |11).
The orbital parts 15/as are symmetric and antisymmetric combinations of W, (r) and Wg(r)
states, which are the single-electron ground state orbitals of the potentials for the L. and R dots.
The hf interaction is given by

f{hf = ZAamsl . JZ'VQ(S(I‘l — Rz) + ZAa[i]SZ . JZ‘VO(S(I'Q — Rz) s (42)

where S;9 are the spin operators of the two electrons at positions ry 9, and J; are the spin
operators of nuclei at site R;. Projecting Hamiltonian ([@2) onto the {S,Ty,T,T_} basis, we
obtain @ @] the total electronic and hf Hamiltonian:

A B; 7+ B;
—Agt 01 0 0 OA o0 ch\@ Jim D \Cf
ﬁ —|—I:I _ GT 0 0 0 59 0 Zz 7%‘]:_ Zz \/%JZ_
et nf = _ T Bi - Ciy :
0 0 ur 0 -3 \/_Ji > \/— 0L 0
0 0 0 pr DI VDD % 0 —op

(43)
In the above Hamiltonian B;=3(AF — AR) and C;=1(AF + AR) with A" = A, | W1 R ()2,
the total effective field gradient is 6, the total average field is p, and the terms corresponding
to fluctuations about these average values are 5é52i Bi(I7 — (I7)) and op=)_, C;(I7 — (I7)).
We derive then an effective Hamiltonian in the S-Ty subspace, valid when the coupling to
|T'+) states (given by the typical magnitude of the transverse Overhauser field difference between
the dots, o ) is much smaller than the energy splitting between S, Ty and the polarized triplets:
01 < |Agt £ prl,|pr|. Using the appropriate canonical transformation one derives a set of
somewhat complicated second-order hyperfine terms affecting both the S-Ty energy splitting,
and the mixing of S and 7p. Let me summarize here the main results without giving all the
rather boring details.

Uncoupled dots
At Agr=0 the two dots are uncoupled, and the electron spins are independent. It is then more
convenient to rewrite the Hamiltonian in the basis of |+ X) = %(\S> +17o)) = {ITl), {1) } states.

The resulting Hamiltonian is of the pure dephasing form:

~ (Vi + 01 + 60)(|[+X) (+X| — |- X) (= X]) . (44)
where )
Vi = Sy 2 (AFAF — AFAD (T, +J7 T (45)
2,]

The initialization of the S state at Agp = 0 can be then viewed as initialization of superpo-
sition of |£X) states which are then subjected to pure dephasing due to the first-order and
second-order hyperfine terms. In a free evolution experiment (w1th long data acquisition time)
the ensemble coherence will decay in Ty ~ 1/0, due to the 60 termﬂa @] (0, is the standard
deviation of the difference of 10ng1tud1na1 components of the Overhauser fields in the two dots).
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On the other hand, in a Hahn echo experiment ﬂa, ] the influence of &0 is removed, and the
signal decay is due to Vi from Eq. (@3)). Since this interaction is a sum of two commuting terms
from two uncoupled dots, the appropriately defined S-T decoherence function is a product of
the two single-dot decoherence functions |8, 164]. This observation establishes the correspondence
between single-spin Hahn echo decay ﬁ] due to hf-mediated interactions described in previous
sections, and the Agr =0 singlet-triplet Hahn echo decay ﬂa, ] The theory from [H2,H3] applies
to this case, with the only modification being the replacement of W (t) function by a product of
two such functions corresponding to single-spin dephasing in each of the dots.

The case of Agt > 0, no interdot field gradient
At Agt > 0,0, we consider the decoherence of a superposition of |S) and |7p). In the absence
of the effective interdot field gradient 61 we can perform another canonical transformation and
arrive at an effective Hamiltonian diagonal in {S,Tp} basis. The main observation is that the
terms linear in the Overhauser field, which were the cause of very fast 75 decay for a single spin,
are strongly suppressed by finite Agr. The dephasing of a S-Tj superposition occurs due to the
second-order terms which are suppressed by 1/Agt or 1/ur. The investigation presented in [H7]
showed that in GaAs and Si DQDs there are two potentially important channels of hf-related
dephasing. The first is due to the fIAf'Z term (with 7, being the third Pauli matrix in the basis
of {S,Ty}), in which
J p— B;B;J;J; = o6” 46
A——A—ST;zyij——A—ST- (46)
As discussed before we can treat 6= (hj — h%)/2 as a Gaussian random variable, and we obtain
the relevant decoherence function Wy (t) by evaluating the Gaussian integral:

L arctan(nat)

1 902 e2
Walt :/ e o2 2WtAstgg = ——

(47)

where we have defined n4 = 02/Agr. The characteristic decay time scale Ty is defined by
|[Wa(Ta)| =1/e, giving us

2 2

e“Ast  e“*NpAgr
Ty = = 48

A o2 n2 A% (48)

where Np = (N, ! + ngl)*1 and np <1 is the factor accounting for possible narrowing of the
distribution of the Overhauser field difference.

The second important dephasing channel is due to a term Vgg |S) (S|, which comes from the
virtual flip flops between S and Ty:

3 Ag . _
Vss = ﬁ N BB JT; = e Y (AFAY + ARAT — AFAT — ARAL) IS, (49)
Hr =28 55 i
with vss = Agr/4(u% — AZp). Since this is the second-order hf-mediated inter-nuclear flip-
flop interaction, it can be treated with the RDT. The calculations are very similar to the ones

discussed previously in the case of NFID of a single spin (but note that now we do not have to
assume any narrowing). At short times we obtain

- (t - 1/ ) e~ arctan(nggt) (50)
SS Wap) ® —F———= >
1+ (ngst)”

where

Nss — |USS|(Z akA% + Z akA%)

keL keER
= 2|”$S|(”iL + Ji,R) = 2|USS|03 . (51)
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These equations should be compared with Eq. (BI]) obtained before. The characteristic decay

timescale is . ) )
Tyg = Ve —1%:2m‘NT_A2ST‘ ‘ (52)

2vss 07 AgTto n
The main thing to notice here is that these two mechanism have opposite dependence on
Agt. Dephasing due to H A 1s weaker at larger Agr, since this term in the effective Hamiltonian
comes from the second order contribution of the ¢ term (mixing of S and Tp), which is sup-
pressed by finite Agr. On the other hand, the Vg term is enhanced at larger Agr. This term
is a sum of two contributions, corresponding to two different second-order virtual transitions,
one involving |7 ) and the other |7_). At Agt =0 there is a destructive interference between
these paths, and Vgg disappears, while at Agr — |pr| the strength of this interaction increases
due to the small energy denominator for one of the virtual transitions. As a consequence of this
contrasting behavior of the two dephasing mechanisms, there dephasing time has a maximum at

Agt ~ 0.64pr (assuming o) =0).

The case of Agr > 0 with the interdot field gradient
In the presence of a finite field gradient f1 > o, one needs to obtain the new eigenstates
that account for the Op-induced mixing of S and Tj, and then to re-derive the pure dephasing
Hamiltonian in the new eigen-basis. The mixing of S and T} states means that the electron spin
density in each dot does not vanish anymore. As such the linear longitudinal Overhauser field,
59, leads to dephasing between the eigenstates, similar to what happens to single spin qubits.
Indeed, if 61 > J, the eigenstates approach the product states again, so that we recover the case
of dephasing of two independent spins.

Although there are many terms present in the transformed effective Hamiltonian, the analysis
of their influence given in [H7| shows that for almost all possibly relevant values of parameters
the S-T' coherence time for 1 > o, is given by

. 1 V2  V2Agr

20m = |sin2y| 0. 40,07

(53)

where we used the mixing angle defined by tan 2y = —KLSTF. When ~ approaches 7/4 (i.e., 67>

Agr), Tz*ﬂT approaches the T ~ 1/0, for a single spin in a QD. One can see than that the use
of substantial 7 gradient, while allowing for full control over the S-Tj qubit, leads to strong
inhomogeneous dephasing similar to the case of a single spin.

This inhomogeneous broadening is of course removed by the echo sequence, which in the
case of S-Tjy superposition is effected by tuning Agt to zero at the mid-point of the evolution
for a time in which the 67 term rotates the qubit by w. The calculations of the resulting echo
signal decay due to the presence of the second-order hf terms (such as Vgs) are given in [HT7].
The calculated signals again exhibit characterstic oscillations due to the presence of multiple
nuclear species. However, the comparison of calculations with the recent experiments on such
singlet-triplet echo “ﬁ] shows that the hf-induced dephasing is not the dominating source of
decoherence. It appears that classical charge noise leading to fluctuations of Agr is limiting
the coherence time of superposition of S and Ty states. The characteristics of this noise, which
acts locally on a nanoscale structure forming the qubit, can only be read out from the measured
coherence dynamics of the qubit. In Chapter A3 T will discuss how such a characterization can
be achieved.

4.2.7 Comparison of the RDT with the Nakajima-Zwanzig generalized Master
equation approach

While the RDT predictions for spin echo decay were quickly confirmed experimentally, giving
strong support to this theory, the existing NFID measurements @] are not detailed enough to
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allow for quantitative comparison with other theories. Such a comparison would be interesting,
since the theory of NFID decay based on Nakajima-Zwanzi ﬁﬂ generalized Master equation
(GME) approach, which has been developed since 2004 l é |, gives predictions at moderate
values of (2 which are distinct “E] from the predictions of RDT [H2,H3|. It is important to note
that in this theory one uses the full hf Hamiltonian, and performs the expansion explicitly in
powers of the flip-flop term, V. This has to be contrasted with the RDT, which is based on
the effective Hamiltonian, and the expansion is in powers of the electron-mediated interaction.
The paper [H6] was written with the aim of shedding some light on relation between these two
approaches.

The calculations from [H6] are much more technical (and, in my opinion, much less transpar-
ent) than the linked cluster and 1/N expansions used in derivations of RDT. The main problem
is that the NZ approach does not have any simple connection to a well-known diagrammatic
perturbation theory technique, and one has to painstakingly generate the expansion order by
order, with only the 4th order expansion being carried out exactly in the literature, and with
partial results for higher orders briefly discussed in “ﬁ] This should be contrasted with the
structure of RDT which allowed for infinite-order resummation of the linked cluster expansion.
Because of the technicality of derivations from [H6], below I will focus only on the important
qualitative conclusions of this paper.

The long-time dynamics (both in NZ theory and in RDT) is crucially affected by the shape
of the wavefunction. We have decided to focus on the short-time regime, in which this shape
should be irrelevant. We have thus worked on NFID within the box wavefunction (uniform hf
coupling, A = A = ﬁ) model. In this case, as I discussed previously for the SE, it is possible
to derive an exact solution, in which W(t) is expressed as a sum over ~ N oscillatory functions,
all of which can be obtained from analytical diagonalization of 2 x 2 matrices.

The NZ approach is based on separation of the total density matrix into a relevant and
“irrelevant” part “ﬁ, @] P = prel + Pirrel- In applications where one considers the dynamics of
a system coupled to a bath, p,.; is typically a density matrix describing the degrees of freedom
of the system. This partition is implemented by introducing projection superoperators P and
such that

Pp=pret, Qp=pwr, P+Q=1, PQ=0. (54)
The Liouville equation for p can then be transformed into an exact equation for the evolution of
Prel-

Pp(t) = —iPLPp(t) — i /0 St — )Pt | (55)

where

S(t) = —iPLQe *R'QLP. (56)

The Liouvillian superoperator L implements the evolution of the total system and is defined to
act on an arbitrary operator O according to LO = [H,O]. The superoperator S is referred to
as the memory kernel, or sometimes as the self-energy (although I consider the use of this term
inappropriate for the reasons explained below).

The operator P used in “ﬂ b @] was deﬁned by

Pp=p;(0)®Tryp=p;0)® pe . (57)

It is however crucial to note that this is not the only possible choice. It is possible to instead
define P as a sum over many projection operators which project onto various subspaces of the
nuclear bath state space, and the choice of P can strongly influence the convergence properties
of the resulting theory “:73 @] In fact, we will see in a moment that in the context of the box
model that the choice made in Eq. (IBZ) is far from ideal. For now we will use the choice from

(11, 12, 74].
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Calculating the expectation value of ST operator (which is proportional to W*(t)) we arrive

at
d

Z(5T(0) =i (ST(1)) - Z/o dt'S(t — t')(ST(t)), (58)

where €2, = Q) + h7, where h? is the value of the longitudinal Overhauser field in the narrowed
state. The memory kernel is now a function instead of an operator:

B(t) = —iTr [STPLQe R'QLPS pr(0)] . (59)

Eq. (B8)) is an integro-differential equation which can be solved by performing a Laplace trans-
form, after which the equation becomes algebraic with the solution

sty = [ e sty = S (60

The solution in the time domain is then obtained by computing the Bromwich inversion integral,

+ 1o ti o+

) =g [ dsel(sT o), (61)
211 y—ico

where the contour defined by the real number v must be chosen such that it lies to the right of

all the poles of (ST (s)). Therefore, solving for (ST (¢)) requires solving for the Laplace transform

of the memory kernel:

S(s) = /0 e S (r) = —iTy [S*PLQH;,LQLPSPJ(O) : (62)

iLQ
Computing X(s) exactly is a difficult perturbative problem, because there is in fact no diagram-
matic representation of terms which appear in perturbative expansion (thus calling ¥(s) the
“self energy” is inappropriate, since real self-energy is defined as a sum over properly defined
irreducible diagrams). Following “ﬂ, E, ﬂ] we have proceeded by expanding the memory kernel
in powers of the flip-flop interaction Vi. The details of this very cumbersome expansion (carried
out to the 4th order) are given in [H6|. Here I will simply present Figure [6] in which the 4th
order NZ solution is compared with the exact box model solution. The disagreement is very
clear.

However, it was shown in Ref. ﬂﬂ] that the standard projection operator is far from being the
best possible choice for the Hamiltonian which exhibits a significant degree of symmetry. When
symmetries are present, one can instead replace P with a series of so-called correlated projection
(CP) operators which project onto invariant subspaces of state space, enabling one to expand
the reduced density matrix for the system as a sum of matrices, each capturing the components
of the state lying in a particular subspace. In the uniform coupling model it is natural to define
the operators II;,, on subspaces of fixed j and m. We choose now the projector P as

~ - 1 i 1
Pp=3 Toy(jmp) ® 5-Mjm =D 52" © 5-Tjm. (63)
im J jm J

The ﬁgm are a set of matrices which sum to give the reduced density matrix for the electron spin:

N/2  NJ2

=X A= Y Dt (o1

m=—N/2 j=|m|

A shown in [H6|, even only in the 2nd order of expansion with respect to Vi, the NZ theory
using these correlated projectors gives results in very good agreement with the exact solution,
see Figure [1
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Figure 6: Exact solution of the uniform coupling model vs. NZ GME result for A = 2, and
h* = 0. The time unit 7=4€, N/.A2. The plotted quantity z(t)/zg is equal to W*(t) evaluated
in the rotating frame in which the fast precession due to magnetic field splitting is absent. The
Figure is adapted from Ref. [H6|.
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Figure 7: Exact solution of the uniform coupling model vs. NZ GME result with correlated
projectors result for A = Q and h* = 0. The Figure is adapted from Ref. [H6].

Let us finally compare the exact box model solution with the RDT solution. The short-time
NFID result from Egs. (31) and (B2) turns out to be practically indistinguishable from the exact
result - the RDT results in Fig. [ would lie exactly on top of the other lines. The only difference
between the RDT and the exact (or second-order NZ-CP) calculations is the lack of a very small-
amplitude (~ §2) oscillation on top of the envelope shown in the Figures here. The analytical
relation between the RDT solution and the exact solution is discussed in [H6].

These results show that the regime of low magnetic fields is very hard to access by the
standard N7 theory. With lowering of €2, the decoherence time is expected to become shorter.
On the other hand, there has to be a timescale at which the time-energy uncertainty principle
allows one to disregard the exact shape of the wavefunction (i.e. the details of distribution of
hf couplings). The simplest guess for this timescale is N/ A, and RDT calculation agrees with
this guess. The NZ calculations from [12] suggest that at low fields and long times, t > N/ A,
RDT fails at correctly describing the NFID decay. We have shown that, on the other hand,
the standard NZ theory carried out to finite order of expansion in Vg, must fail at describing
the nontrivial short-time dynamics of NFID at low 2. The two theories seem therefore to be
complementary, and the regions of parameters (magnetic fields and timescale) in which neither
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is fully controlled should be further investigated with other methods. Finally, let me note that
the considerations on the possible reasons for failure of the standard NZ method in the box case
contained in [H6], led us to the conclusion that the so-called time-convolutionless generalized
master equation “E] is a better approach to the central spin problem. Recently we published
a paper [79] in which this method was used to calculate NFID at short times for a polarized
nuclear bath, with zero-polarization result reproducing the RDT formulas.

4.3 From coherence measurements to effective description of the environ-
ment: noise spectroscopy with qubits

Until now we were focusing on a theory of decoherence in the situation in which the microscopic
(and nontrivial) Hamiltonian of the bath is known. However, very often the only information that
we have about the local environment of the qubit comes from the measurements of the qubit’s
dynamics. Of course usually we can make some guesses about the nature of the environment.
In the case of solid-state based qubits there are, for example, many known sources of charge
noise such as fluctuating electric dipoles omnipresent in insulating materials, or charge traps.
Their presence is expected, but their detailed properties (the number of sources close to the
qubit, characteristic timescales of fluctuations etc) are sample-dependent. Also, very often it is
simply not known what is the relevant bath: it could be phonons, charge fluctuations, magnetic
field fluctuations caused by magnetic impurities, etc. Finally, the qubit is affected by its local
environment, (the effective size of which depends on the time-scale of interest, with the remote
parts of the environment not having a large influence at short times), which often cannot be
characterized with independent methods. All these are motivations for trying to invert the
problem of qubit-environment interaction: instead of calculating the qubit’s decoherence due to
the dynamics of a given bath, we will try to learn something about the unknown environment
by analyzing the measurements of qubit’s decoherence.

Of course we must assume something about the environment. While qubit’s relaxation @,
@, @] is affected by bath fluctuations with frequencies ~Q (the qubit’s energy splitting), the
dephasing of the qubit is typically dominated by low-frequency environmental fluctuations. When
the bath temperature is larger than the energy scale of these low-energy excitations, the two-
point correlation functions of the bath degrees of freedom have classical behavior @] Below we
will focus on environment-induced dephasing of the qubits, and we will assume that the influence
of this environment can be mapped on qubit’s interaction with a source of classical noise £(t).
Furthermore, we will assume that this noise is stationary and (in most cases) that it has Gaussian
statistics, i.e. it is fully characterized by its two-point correlation function, C'(t —t') = (£(t)(t)),
or, equivalently, by its spectral density defined by

o
S(w) = / Clt)etdt (65)
o

In [H1] we focused on the case of qubits based on superconducting circuits, for which the strong
influence of classical charge and flux noise had been already widely recognized. However, later
it became clear that the domain of applicability of this approach is much wider. For example,
DQD based spin qubits are strongly affected by charge noise (voltage fluctuations on the gates,
fluctuations of local electric fields caused by charge traps) when singlet-triple splitting Agr is not
zero. Even single-spin qubits turned out to be affected by charge noise: fluctuating electric fields
affect the position and the shape of the electron’s wavefunction, which leads to spin dephasing via
spin-orbit coupling or because the Overhauser field felt by the electron becomes time-dependent
due to such fluctuations (which lead to time-dependence of Ay couplings).

Below I will present the overview of results of [H1] and [HS8] for, respectively, the cases of
linear coupling to the noise (i.e. v1£(t)é, coupling) and the quadratic coupling (i.e. v2€2(t)5.).
These are the two situations most often encountered in experiments.
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4.3.1 Linear coupling to classical noise

For a Gaussian process £(t) the average over the realizations of the process is a Gaussian func-

tional integral
~ [Dlelesn (-3 [an [ dngeic - tmew) . (66)

where C~! is defined by

/C—l(t — e —t)dt" =6t —t') . (67)

We focus on the dynamics of the off-diagonal element of qubit’s density matrix when the qubit
is subjected to a sequence of ideal 7 pulses leading to Dynamical Decoupling (DD) of the qubit
from the environment @l] The decoherence function is then given by

W (t) = (e~ ir JEWf)dt'y (68)

where f;(t') is the time-domain filter function characterizing the DD sequence that we have
already encountered (see Fig. [Il for examples). The Gaussian average can be easily performed
using the standard methods, and we obtain

dw
27T

Sl =2 [~ L

0 s w

Wt) = e XO with y(t) = o2 /0 (69)

where f;(w) is the Fourier transform of f,(#) with respect to t'. The filter function F(wt) =
%2] fi(w)|? encapsulates the influence of the pulse sequence on decoherence @] In terms of
times t; at which the pulses are applied (with to=0 and ¢, 11 =t) we have

1| <& 4 4 2
_ 5‘ Z(_l)k(ezwtk+1 - ezwtk) ] (70)
k=0
In the case of free evolution of the qubit we have

t
Frip (wt) = 25in’ % , (71)

R

where in the second expression we assumed that the integral is dominated by low-frequency part
of S(w) (i.e. by S(w) with w up to ~1/t), and then we extended the limit of integration again
to co. o2 above is the total power of the v1£(t) noise. The above calculation is self-consistent
if the resulting 7% time is so short that the total noise power is indeed well approximated by
integral of S(w) up to 1/75. Note that the resulting decay is the not due to fluctuations which
occur during qubit’s evolution, but due to slow fluctuations which occur between the repetitions
of the qubit’s intialization-evolution-measurement cycle. We thus again ancounter the case of
inhomogeneous broadening which can be described using a quasi-static bath approximation.
The case of 1/f type noise will be relevant below, so let us mention that for S(w) o< 1/w the
T3 time acquires a logarithmic dependence on the low-frequency (infrared) cutoff of the noise:
x(t) < t?In 1/wpt. In most cases in which such noise appears, no sign of intrinsic infrared cutoff
has been found, and the cutoff wy is in fact given by the inverse of the total data acquisition

time: woa1/Tys. For noise with S(w) oc 1/w? with 3>1 we have then Ty o 1/T Nz,

which leads to

0 g 92gin2 wt 2 d 242
xrip(t) = v%/ —wS(w) sm” =5 ~ / wS( ) = 02
0 0

T w? 2 T
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As discussed before, the application of the echo sequence removes the quasi-static shifts of
qubit’s frequency. Formally we have
. g wt
Fsp(wt) = 8sin T (73)
and one can see, after plugging the above into Eq. (69) that the contribution of low-frequency
noise to x(t) is strongly suppressed, even for 1/w” noise, provided that 3 < 2.

Multipulse DD sequences act as even more efficient high-pass filters of the environmental
noise. In [H1] we have analyzed the dephasing under the influence of the classical CPMG se-
quence, the periodic application of pulses (PDD), the sequences based on concatenations of the
echo sequence (CDD developed in ]), and the UDD sequence proposed by Uhrig ], which
fulfills the following optimality condition: for n applied pulses the first 2n 4+ 1 terms in time
expansion of x(t) about t=0 are zero, and F(wt) o (wt)?**2 for wt < 2. For comparison, CPMG
sequence with even (odd) n > 1 gives the frequency filter F(z)oc2® (2%) for z< 1. Interestingly,
this difference between low-frequency suppression for even and odd n in this sequence was shown
to have measurable consequences for 1/w” noise with g > 2 @] (see the description of research
not included in the habilitation thesis).

The main results of [H1| for the case of Gaussian noise are

e The “optimal” UDD sequence gives the best protection against dephasing only when the
noise spectrum has a hard high-frequency cutoff w. (with S(w) exponentially suppressed
for w > w.). This is due to the fact that in UDD the ultra-efficient suppression of low-
frequency noise is possible at the cost of actually enhancing (compared to other sequences)
the influence of high-frequency noise. This is related to the existence of the sum rule for the
filter function: | F(wt)/w?dw = . In order for UDD to show a superior performance in
coherence protection the timescale of interest must fulfill ¢ <2n/w.. When this condition is
not met (i.e. when the ultraviolent cutoff is irrelevant for coherence dynamics), the CPMG
sequence was found to be the most efficient among the considered ones.

e For the noise with hard cutoff, and in the case of having good data at timescales t < 2n/we,

one can use UDD to obtain the moments of noise spectrum: xupp(t) ~ 22 M, where
My, = [w?S(w)dw.

e For CPMG sequence, the filter function F'(z =wt) can be approximated at large n by a
periodic train of peaks of width 27/¢, height 2n, and distance between the peaks given
by 27n. With this observation it is easy to show that for S(w) o 1/w?® one has x(t)
t0+1 /nB. This relation was later used to characterize a previously unknown noise source
in an experiment on a singlet-triplet qubit @]

Furthermore, the case of non-Gaussian Random Telegraph Noise (RTN) was considered in
[H1]. Comparison of numerical simulations with theory based on Gaussian approximation showed
that with increasing n the decoherence under the DD sequence becomes more similar to the
prediction of a Gaussian theory (in which only the first spectral density of RTN is used). In [H1]
this observation was supported by analytical calculation of the 4th cumulant of flitered RTN,
i.e. the x4 term in expansion of In W (t) = —xa2(t) — x4(t) + ..., which showed that the ratio of
X4/X2 remains < 1 on a timescale which is increasing faster with n than the coherence decay
timescale T5 defined by x2(7%)=1. A more intuitive explanation of this feature was later given
in [H8] (see below).

As somewhat embarassing fact should be mentioned here. As discussed above, in [H1]| it was
noted that the CPMG filter function in frequency space looks like a series of delta-like peaks at
large n, and this feature was in fact used in calculations. However, one simple consequence of this
was only noted later by other researchers @, @] in many cases (especially for monotonically
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decreasing S(w)) it is enough to keep only the contribution of first of these peaks in expression

for x(t):
4%t s
H~ =15 (5 . 74
x() = s (X (74
This observation leads to the most practical recipe for performing real spectroscopy of S(w)
by application of CPMG sequences, and fitting the measured coherence for various n and ¢ to

Eq. (7).

4.3.2 Quadratic coupling to classical Gaussian noise: qubit at the optimal working
point

One often encounters the case in which the coupling to the noise is quadratic:
1 X
H=[Q+ v ()6 (75)

where € is the controlled qubit splitting, and wvs is the coupling constant. Such a H arises when
2 has an extremum as a function of an external noisy parameter B,(t'), i.e. 9Q/0B;|B,-p, =0.
Then, for B, tuned to By, i.e. at an Optimal Working Point (OWP) of the qubit, the noise £(t’) o
B(t') — By enters quadratically into Eq. (73]). If we also consider transverse noise, i.e. v,&,(t')6,
term, then for v,&, < Q we again arrive in the lowest order at Eq. (75) with vy = v2/2Q. At
such an OWP the influence of noise is suppressed, and the qubit dephasing time is longer than
in the case of linear coupling to the noise. The theoretical challenge is posed by the fact that
while £(t) is assumed to be a Gaussian process, its square is not Gaussian-distributed: the &2(t)
process has nontrivial correlators beyond the two-point correlation function.

Let me mention here a very interesting connection between the theory presented in this
chapter and the previously discussed effective-Hamiltonian based theory of hf-induced spin qubit
decoherence. The Hamiltonian given by Eq. (73 also appears when longitudinal &, noise is of
intrinsically low-frequency character (and thus its influence of linear term in &, is completely
removed by DD), while the transverse £ noise has components at higher frequencies, and its
influence is furthermore suppressed by large energy splitting €. This is exactly the case for
a spin qubit coupled by hyperfine interaction to a nuclear bath at finite magnetic field: as
it was previously discussed, longitudinal fluctuations of the nuclear Overhauser field are much
slower than its transverse fluctuations. The theory presented below can be viewed as a classical
counterpart of the RDT presented before. Note that the crucial approximations of RDT (1/N
approximation in the absence of nuclear spin polarization) were leading to Gaussian decoupling
of nuclear spin correlators, i.e. the RDT was a theory of decoherence due to quadratic coupling
to quantum Gaussian variable (the transverse Overhauser operator). Unsurprisingly then, the
resummation of ring diagrams (or cumulants) will appear immediately below when we consider
dephasing due to quadratic coupling to classical Gaussian process.

The decoherence function in the quadratic coupling case is given by

W(t) = <exp (—i /0 t f(t’)v2§2(t’)dt’>> . (76)

The average over noise can be performed using the linked-cluster (cumulant) expansion, building
on seminal papers @@] in which free evolution dephasing at an OWP was considered. We
write

W(t) = eXp (i #Rk(f)) — e~ 2 k2 Xk (t) , (77)

k=2
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with the linked cluster (or ring diagram) contributions

Ry, :2k_1/ft(tl)dtl---/ft(tk)dtkc(tw)"'c(tkl) ) (78)
N 2k_1/%S(wl)---S(wk)ﬁ(wm)---ﬁ(wkl) 7 (79)

where tp =t — t;, and wy =wp — w;. Now we have to calculate all the terms in the cumulant
expansion, not only the second one, as was the case for linear coupling to Gaussian noise.

In [H8| solutions for the above problem were given in two cases. For noise with non-singular
spectrum at low frequencies (i.e. noise having a well-defined autocorrelation time) it was argued
that at large n the dephasing at relatively short timescales can be described using a Gaussian
approximation (i.e. keeping only Ry (t) in the expansion above). The second case is that of 1/ f”
noise, for which the Ry can be resummed, provided that the quasi-static (low-frequency) noise
is stronger than the high-frequency noise (which is the case for f>1).

In the first case we can give the following explanation why with increasing n the noise
affecting the qubit should become better described within the Gaussian approximation. While
the phase ¢(t) :fg £2(¥')dt’ is not Gaussian-distributed except at very long ¢, the filtered phase,
op(t) = [ fi(t)E2(#)dt', can be viewed as a sum over n + 1 contributions, with signs chosen in
such a way that correlated contributions mostly cancel each other. If the correlation time of
£2(t) process, t., is finite, then for ¢/n < t. <t the DD filtering suppresses the dephasing, while
the correlations exist only among small subsets of contributions to ¢;. The latter observation
allows us to invoke the Central Limit Theorem, leading to Gaussian distribution of ¢ at large n.
This applies to any non-Gaussian noise with finite ¢., so it also explains in an intuitive fashion
the result given in [H1], where the influence of RTN (which is non-Gaussian) was shown to be
well-described by Gaussian approximation at large n.

In this approximation we have W (t)=e %) with

) = [ Sl (50)

which is the same as Eq. (69), only with S(w) replaced by the spectral density of &2 process,
given by

door (81)

So(w) = /S(wl)S(wl - w)
At large n one can then use Eq. (7)) to perform spectroscopy of this quantity. In [H8] the
accuracy of the Gaussian approximation was checked using an example of Ornstein-Uhlenbeck
noise with correlation time t.. For number of pulses n, evolution time ¢, and correlation time
t. fulfilling the above conditions the results of numerical simulations confirmed the accuracy of
Gaussian approximation when ¢ <7T5.

On the other hand, for noise with ill-defined ¢, or simply for ¢t <. (which has to be physically
indistiguishable from the former case), we can obtain a very different solution when the noise is
dominated by low-frequency fluctuations. We can write then that during a single evolution, the
noise contribution to qubit’s splitting is £2(t) z&ff +2& 6 (t) +0E%(Y), with & ¢ being the quasi-
static shift changing between measurements (i.e. coming from noise spectrum for wy < w < 1/t),
and with 6£(¢') being the high-frequency component. The low-frequency cutoff is wg =~ 1/T)y,
with Ths being the total data acquisition time. Since typically T is orders of magnitude larger
than ¢, for noise with spectral weight concentrated at low w we have (§?f> > (6€2), and the

™

dominant noisy term is 2§ 76£(t’) (note that the influence of the quasi-static shift §ff is removed
by the DD sequence). This amounts to an observation that in the presence of 1/f% noise the

position of the OWP is not well defined: for T, > t we average over evolutions of qubits operated
in the neighborhood of an OWP.
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W(t)

Figure 8: Decoherence due to OU noise at an OWP for CP sequence with n =1, 2, and 4.
Symbols are the results of numerical simulation. For each ¢ the averaging time was Ty = Mt
with M = 10%, so that the resulting 08 was well approximated by the total power of the OU
noise. With coupling vaod = 10°/t., the coherence decay in the presented time range is due to
1/w? tail of S(w). The solid lines are obtained using Eq. (84)). For n=4 the dotted line is the
Gaussian approximation, and the dashed line is W(t) ~ t3/2 asymptotics from Eq. (86). The
figure is adapted from [HS].

The essence of the calculation below is separate averaging over these slow and fast fluctua-
tions. The first average is over ¢, which is treated as a static Gaussian variable with standard
deviation given by

) 1/t Aﬁ
o5 = S(w)dw/m ~# ————— . (82)
0 /wo (8- wi ™!
where S(w) = Ag/|w|® with 8> 1 was used. The second average over high frequencies is also
Gaussian, and it reads:

W(e) = (e [ = iv [ A6 20803 [ ann [ deafilt) fltocig(e)]), - (3)

In Eq. (83) the second term is expected to dominate when o2 > (0¢2)t, i.e. when Ty >t. The
calculation of the average involving only this term can be done by coming back to Eq. (78], into
which we plug in C(t)=(5¢(¢)d€(0))ne + o3, and keep only the terms with the maximal power of
00, i.e. the ones in which every second C(ty;) is replaced by US. The resulting sum over all Ry
can be in fact performed [H8|, and the result is

W)= . (34)

\/1+ 40202 Rh(t)

where R} is given by the familiar formula:

Ry= [CIRPs@ (%)

In Fig. [§ this Equation is compared with the results of numerical simulations of dephasing due
to noise with S(w)ox1/w? and a low-frequency cutoff at wy <1/t (actually an OU noise strongly
coupled to the qubit causing dephasing for t <t.=wy 1).
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For large n we can use Eq. (74) to relate R4(t) to S(nx/t). When S(wanm/t)oc1/w? in a
wide frequency range we have

W(t) ~ (To/t) 3 fort>Ts (86)

where the characteristic decay timescale fulfills

_p-1
B+l

Ty ~n" /Ty, where ’y:% and 7 (87)

These results show how the analysis of time dependence of decoherence at an OWP can be used
to perform spectroscopy of 1/ f-type noise.

Finally, let me note that the similarity of Eq. (84) to Eq. (B8] is not accidental. The result
concerning the echo decay for a spin qubit interacting with a nuclear bath has a structure
analogous to a square of Eq. (84) because in that case we had to average over two independent
Gaussian variables (z and y components of the Overhauser field).
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a) Bibliometric data (from October 20th, 2014)
Number of published scientific papers: 34
Citations with autocitations excluded: 929 (according to Web of Science)
Cumulative impact factor: 150.47
H-index: 17 (according to Web of Sciece)

b) Research not included in the habilitation thesis

5.1 Research done before obtaining the PhD title

While earning my Master’s degree at the Warsaw University, working under supervision of pro-
fessor Witold Bardyszewski, I have developed a theory of light absorption in disordered semi-
conductors, with special focus on the absorption in heavily-disordered p-type materials such as
GaMnAs. Elements of this theory were later used in the paper:

K. Dziatkowski, k.. Cywinski, W. Bardyszewski, A. Twardowski, H. Saito, and K. Ando, Influ-
ence of disorder on the optical absorption in semiconductors: Application to epitaxially grown
III-V compounds, Phys. Rev. B 73, 235340 (2006).

During my graduate studies at UCSD I worked on two topics: (1) non-equlibrium electron
dynamics and ultrafast light-induced demagnetization in ferromagnetic semiconductors and met-
als, and (2) spin diffusion in planar metal-semiconductor structures with applications for possible
spintronic devices.

Research on topic (1) was done in collaboration with an experimental group of professor
Junichiro Kono from Rice University in Texas. I have developed a theoretical model of ultrafast
decay of magnetization caused by strong photoexcitation in (ITI,Mn)V magnetic semiconductors.
The papers [D1,D2,D4| were the result of this collaboration. Paper [D3] contains a detailed
description of theory of light-induced demagnetization in materials in which the sp-d model of
ferromagnetism is applicable.

The research on topic (2) was done in close collaboration with dr Hanan Dery, who was
a postdoc working with my advisor. We have worked together on theory of spin transport
in realistic structures consisting of iron and GaAs, with special attention devoted to possible
spintronic devices based on such structures. In [D5] we presented an easy to use theory of spin
diffusion in layered structures of magnetic metals metals and semiconductors, which we latter
applied in our investigations of multi-terminal spintronic devices: a three-terminal spin transistor
[D6], a device converting the circular polarization of absorbed light into an electrical signal [D7],
a three-terminal system in which magnetization dynamics of one of the ferromagnetic electrodes
is sensed electrically [D8], and a five-terminal reprogrammable logic gate [D9]|. An invited review
[D10] summarized these works.

[D1] J. Wang, C. Sun, J. Kono, A. Oiwa, H. Munekata, ¥.. Cywinski and L.J. Sham, Ul-
trafast Quenching of Ferromagnetism in InMnAs Induced by Intense Laser Irradiation,
Phys. Rev. Lett. 95, 167401 (2005).

[D2] J. Wang, C. Sun, Y. Hashimoto, J. Kono, G.A. Khodaparast, L. Cywinski, L.J. Sham,
G.D. Sanders, C.J. Stanton, H. Munekata, Ultrafast Magneto-Optics in Ferromagnetic 111-
V' Semiconductors, J. Phys.: Condens. Matter 18, R501 (2006).

[D3| L. Cywinski and L.J. Sham, Ultrafast demagnetization in the sp-d model: a theoretical
study, Phys. Rev. B 76, 045205 (2007).
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[D4] J. Wang, b. Cywinski, C. Sun, J. Kono, H. Munekata, and L.J. Sham, Femtosecond
demagnetization and hot hole relazation in ferromagnetic GaMnAs, Phys. Rev. B 77,
235308 (2008).

[D5] H. Dery, L. Cywinski and L.J. Sham, Lateral diffusive spin transport in layered structures,
Phys. Rev. B 73, 041306(R) (2006).

[D6] H. Dery, L. Cywinski, and L.J. Sham, Spin transference and magnetoresistance amplifica-
tion in a transistor, Phys. Rev. B 73, 161307(R) (2006).

[D7] H. Dery, L. Cywinski, and L.J. Sham, Spintronics for electrical measurement of light
polarization, J. Appl. Phys. 100, 063713 (2006).

[D8| L. Cywinski, H. Dery, and L.J. Sham, FElectric readout of magnetization dynamics in a
ferromagnet-semiconductor system, Appl. Phys. Lett. 89, 042105 (2006).

[D9] H. Dery, P. Dalal, L. Cywinski, and L.J. Sham, Spin based logic in semiconductors for
reconfigurable large scale circuits, Nature 447, 573 (2007).

[D10] .. Cywinski, H. Dery, P. Dalal, and L.J. Sham, Electrical expression of spin accumulation
in ferromagnet/semiconductor structures, Mod. Phys. Lett. B 21, 1509 (2007).

5.2 Research done after obtaining the PhD title: works closely related to the
topic of this thesis

Five papers below are quite closely related to the topic of this thesis, but they are not included
in the main cycle of papers, since I cannot claim to be a leading author of them.

In [A1] we considered a specific model of fermionic bath causing dephasing of superconducting
qubits: a bath of so-called Andreev fluctuators. Such a bath consists of many carrier trapping
centers localized in an insulating material in the proximity to the superconductor. Pairs of centers
become charged and discharged due to transfer of Cooper pairs between the condensate and the
insulator. The resulting charge noise causes pure dephasing of a superconducting qubit of the
Cooper pair-box type. In this paper we used the Keldysh technique to derive the decoherence
function W (t) for any possible sequence of pulses affecting the qubit, and linked-cluster expansion
of the second order was employed. At this level of approximation it was possible to map the
interaction with the bath on interaction with noise having spectral density closely approximated
by 1/f form.

Paper [A2] is an experimental work on dynamical decoupling of a singlet-triplet qubit made
of a GaAs double quantum dot. Using methods of [H1] (with some further improvements specific
to the case of 1/w” noise with 3>2) I was able to reconstruct the spectral density of noise from
the CPMG results with n=2, 4, 8 16, and 32 pulses. The reconstructed S(w)oc1/w?% allowed
for succesful prediction of decay timescale for the spin echo (n =1) and the CPMG sequence
with n=3.

In [A3] we have used the insights from [H6|, and we applied the time-convolutionless master
equation technique to the NFID problem. Starting froom the full hf Hamiltonian we re-derived
the RDT result at short times and zero bath polarizations, and we obtained a nontrivial gener-
alization of this result to the case of polarized nuclear bath. A new, previously never discussed
in the literature, kind of oscillations, appearing in NFID signal for large bath polarization, was
predicted there.

In papers [A4,A5] a real-space cluster expansion technique was used to calculate the coherence
decay of an electron spin coupled to a spin bath consisting of spins of other electrons. This is
the case in which the inter-bath coupling is of the same strength as the qubit-bath coupling,
which necessitates consideration of large clusters of spins. Proper averaging over many states of
the bath is also more complicated that in the previously considered case in which the qubit-bath
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coupling was dominating over the intrabath couplings: now many bath spins have a nontrivial
influence on dynamics of a few-spin cluster, since the dipolar interactions with these “outside”
spins strongly influence the energy splittings of the spins within the cluster. In [A4] the spin
echo decoherence of electrons bound to phosphorous donors in silicon was considered, and the
nontrivial dependence of the T5 time on the concentration of both the electronic spins and the
nuclear spins was predicted (this prediction was later confirmed in experiments @]) In [A5] we
described the theory in more detail, and gave more predictions for both donors in Si and NV
centers in diamond.

[A1] R.M. Lutchyn, L. Cywinski, C.P. Nave, and S. Das Sarma, Quantum decoherence of a
charge qubit in a spin-fermion model, Phys. Rev. B 78, 024508 (2008).

[A2] J. Medford, L. Cywinski, C. Barthel, C.M. Marcus, M.P. Hanson, and A.C. Gossard,
Scaling of Dynamical Decoupling for Spin Qubits, Phys. Rev. Lett. 108, 086802 (2012).

[A3] E. Barnes, L. Cywinski, and S. Das Sarma, Nonperturbative Master Equation Solution of
Central Spin Dephasing Dynamics, Phys. Rev. Lett. 109, 140403 (2012).

[A4] W.M. Witzel, M.S. Carroll, A. Morello, .. Cywinski, and S. Das Sarma, Electron spin
decoherence in isotope-enriched silicon, Phys. Rev. Lett. 105, 187602 (2010).

[A5] W.M. Witzel, M.S. Carroll, L. Cywiniski, and S. Das Sarma, Quantum Decoherence of the
Central Spin in a Sparse System of Dipolar Coupled Spins, Phys. Rev. B 86, 035452 (2012).

5.3 Research done after obtaining the PhD title: works on other topics

In 2009-2010 I worked on theory of silicon double quantum dots. We analyzed how the multi-
valley structure of the bottom of conduction band in Si affects the performance of singlet-triplet
qubits [Sil,Si2], and we calculated the dependence of exchange coupling on parameters of the
two dots [Si3].

[Sil] D. Culcer, L. Cywinski, Q.Z. Li, X. Hu, and S. Das Sarma, Realizing singlet-triplet qubits
in multivalley Si quantum dots, Phys. Rev. B 80, 205302 (2009).

[Si2] D. Culcer, L. Cywinski, Q.Z. Li, X. Hu, and S. Das Sarma, Quantum dot spin qubits in
Silicon: Multivalley physics, Phys. Rev. B 82, 155312 (2010).

[Si3] Q.Z. Li, k. Cywinski, D. Culcer, X. Hu, and S. Das Sarma, Ezchange coupling in sili-
con quantum dots: theoretical considerations for quantum computation, Phys. Rev. B 81,
085313 (2010).

Starting from 2010 I have also been involved in research on CdTe self-assembled quantum
dots doped with Mn ions. In [Mnl]| I proposed a theory of optical orientation of a single Mn
spin localted in an optically excited dot. I have also participated in theoretical interpretation of
experiments on dynamics of many Mn spins in a nonresonantly excited quantum dot [Mn2,Mn3].

[Mn1] L. Cywiniski, Optical orientation of a single Mn spin in a quantum dot: Role of carrier
spin relazation, Phys. Rev. B 82, 075321 (2010).

[Mn2| E. Klopotowski, L. Cywinski, P. Wojnar, V. Voliotis, K. Fronc, T. Kazimierczuk, A. Gol-
nik, M. Ravaro, R. Grousson, G. Karczewski, and T. Wojtowicz, Magnetic polaron forma-
tion and exciton spin relazation in single Cdy_,Mn, Te quantum dots, Phys. Rev. B 83,
081306(R) (2011).
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[Mn3] L. Ktopotowski, L. Cywinski, M. Szymura, V. Voliotis, R. Grousson, P. Wojnar K. Fronc,
T. Kazimierczuk, A. Golnik, G. Karczewski, and T. Wojtowicz, Influence of exciton spin

relazation on the photoluminescence spectra of semimagnetic quantum dots, Phys. Rev. B
87, 245316 (2013).

I have also provided some theoretical help in experimental work on recombination of “dark”
excitons in CdTe quantum dots free of Mn ions (in which the nominally optically inactive states
actually couple to light due to the presence of heavy-light hole mixing).

[X1] T. Smoleriski, T. Kazimierczuk, M. Goryca, T. Jakubczyk, L. Klopotowski, ¥.. Cywinski,
P. Wojnar, A. Golnik, and P. Kossacki, Radiative lifetime of dark excitons in self-assembled
quantum dots, Phys. Rev. B 86, 241305(R) (2012).

Starting from 2011 T have also spent a part of my time doing research on topological insu-
lators (essentially a subclass of narrow-gap semiconductors exhibiting band inversion caused by
strong relativistic corrections to the band structure). In [TI1] we theoretically proposed how the
bandstructure characteristic for a strong topological insulator can be created in a heterostruc-
ture of PbTe and PbSnTe. In experimental works [TI2,TI3| I have contributed to the analysis
of the results and their interpretation. More interesting of the two is [TI3|, where we proposed
a congsistent interpretation of nonlocal transport measurements in a two-dimensional topological
insulator.

[TT1] R. Buczko and L. Cywinski, PbTe/PbSnTe heterostructures as analogs of topological in-
sulators, Phys. Rev. B 85, 205319 (2012).

[T12] K.A. Kolwas, G. Grabecki, S. Trushkin, J. Wrobel, M. Aleszkiewicz, L. Cywiriski, T. Dietl,
G. Springholz, and G. Bauer, Absence of nonlocal resistance in microstructures of PbTe
quantum wells, Phys. Status Solidi B 250, 37 (2013).

[T13] G. Grabecki, J. Wrobel, M. Czapkiewicz, L. Cywinski, S. Gierattowska, E. Guziewicz,
M. Zholudev, V. Gavrilenko, N. N. Mikhailov, S. A. Dvoretski, F. Teppe, W. Knap,

and T. Dietl, Nonlocal resistance and its fluctuations in microstructures of band-inverted
HgTe/(Hg,Cd)Te quantum wells, Phys. Rev. B 88, 165309 (2013).

c) awards

e 2013, Stefan Pierikowski award of the Polish Academy of Sciences in the field of Physics
and Astronomy.

e 2012, Ministry of Science and Higher Education fellowship for an outstanding young
researcher for years 2012-2015.

e 2001, Leonard Sosnowski prize awarded for “Outstanding student in Solid State Physics”.

d) Principal Investigator in the following grants

e 08/2013—: OPUS IV grant of the Polish National Science Center (NCN). Title: Dynamics
of entanglement of localized spins in semiconductors with application to environmental
noise spectroscopy

e 01/2011-12/2011: Iuventus Plus grant of the Polish Ministry of Science and Education.
Title: Izolatory topologiczne oparte na heterostrukturach p"o"lprzewodnik"ow IV-VI
(Topological insulators based on heterostructures of IV-VI semiconductors).
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e 10/2009-11/2012: Homing grant/award for returning researcher of the Foundation for
Polish Science. Title: Spin in semiconductor nanostructures: ferromagnetism in
semiconductors with nano-scale magnetic inhomogeneities and coherent properties of
single spins in quantum dots.

e) Participation in research projects

e European Union Innovative Economy Grant No. POIG.01.03.01-00-159/08, “InTechFun”
(2009-2011).

e ERC Advanced Grant “FunDMS” (“Functionalization of Diluted Magnetic
Semiconductors”) (2009-2011).

e Grant of the Polish National Science Center (NCN). Title: Magnetic quantum dot
molecules with CdMnTe quantum dots (2012-2014).

f) Invited talks at conferences

1. Talk at Quantum Technologies Conference V in Krakéw, September 7th-12th 2014. Title:
“Spectroscopy of environmental noise via measurement of decoherence of qubits”.

2. Talk at the 42nd General Meeting of Polish Physicists in Poznani, 8th-13th September
2013. Title: “Dekoherencja spinu elektronu oddziatuj"acego ze spinami j"adrowymi w
kropce kwantowej”.

3. Talk at the 2nd Polish-German workshop on the optical properties of nanostructures,
Miinster, March 14th-16th 2012. Title: “Theory of optical orientation of a single Mn spin
in a CdTe quantum dot: resonant vs nonresonant excitation”.

4. Talk at the 17th International Winterschool on New Developments in Solid State Physics
“Mauterndorf 2012”, Mauterndorf, Austria, February 12th-17th 2012. Title: “Spin echo
decay of semiconductor spin qubits”.

5. Talk at the Joint Polish-Japanese Workshop “Spintronics - from new materials to
applications”, Warsaw, November 15th-18th 2011. Title: “Decoherence in a sparse system
of dipolarly coupled spins: application to isotope-enriched silicon”.

6. Invited talk at the 39th International School and Conference on the Physics of
Semiconductors “Jaszowiec”, Krynica, June 2010. Title: “Dephasing of electron spin qubits
due to their interaction with nuclei in quantum dots”.

7. Invited talk at the APS March Meeting 2010 in Portland, March 15th 2010. Title:
“Electron spin dephasing by hyperfine interaction with nuclei in quantum dots”.

8. Talk at the Canada-Japan-Poland International Symposium on Semiconductor, Magnetic,
and Photonic Nanostructures, Wroctaw, October 5th-7th, 2009. Title: “Pure dephasing of
the spin of the electron confined in a quantum dot: the role of hyperfine-mediated
interactions”.

9. Talk at the Spintronic Device Round Table panel session at 5th International School and
Conference on Spintronics and Quantum Information Technology (Spintech), Krakow,
July 2009. Title: “Spin logic in hybrid structures”.

10. Invited talk at the APS March Meeting 2008 in New Orleans, March 10th 2008. Title:
“Ultrafast Photoinduced Demagnetization in (III,Mn)V Ferromagnetic Semiconductors”.
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g) Collaborations with international and Polish institutions

Rice University, Houston, Texas (USA) - collaboration with prof. Junichiro Kono and his
PhD student Jigang Wang concerning the dynamics of optically induced ultrafast
demagnetization in InMnAs and GaMnAs. This collaboration resulted in publications
[D1,D2,D4]. '

Ames Laboratory (USA) - collaboration with prof. V.V. Dobrovtiski concernirfé modeling
of spin qubit echo signal decay in low magnetic field. This collaboration resulted in
publication [H4].

Sandia National Laboratories (USA) - collaboration with dr Wayne Witzel concerning
theory of decoherence of an electron spin qubit interacting with an electron spin bath.
This collaboration resulted in publications [A4,A5].

Condensed Matter Theory Center, University of Maryland at College Park (USA) -
collaboration with prof. Sankar Das Sarma and dr. Edwin Barnes concerning decoherence
of spin qubits. This collaboration resulted in publications [H6,A3].

Institute of Physics, Polish Academy of Sciences - collaboration with dr. Lukasz
Klopotowski concerning research on dynamics of exciton spin and the spins of Mn ions in
CdMnTe quantum dots. This collaboration resulted in publications [Mn2,Mn3].

Institute of Physics, Polish Academy of Sciences - collaboration with prof. Ryszard
Buczko concerning theory of topological insulators. This collaboration resulted in
publication [TI1].

Institute of Experimental Physics, Faculty of Physics, University of Warsaw -
collaboration with Tomasz Smolenski and prof. Piotr Kossacki concerning research on
photoorientation dynamics of Mn spins and optical activity of dark excitons in CdTe
quantum dots. This collaboration resulted in publication [X1].

Harvard University (USA) - collaboration with prof. C. M. Marcus and his PhD student
J. Medford concerning noise spectroscopy in double quantum dots based on GaAs. This
collaboration resulted in publication [A2].

University at Buffalo, SUNY (USA) - collaboration with prof. Xuedong Hu and his PhD
student Jo-Tzu Hung concerning theory of decoherence of sinlget-triplet qubits in double
quantum dots. This collaboration resulted in publication [H7].

Institute of Physics, Polish Academy of Sciences - collaboration with professors

G. Grabecki, J. Wrébel, and T. Dietl concerning research on transport properties of
two-dimensional topological insulator realized in a quantum well of HgTe/CdHgTe, and
on transport properties of PbTe/PbEuTe quantum wells. This collaboration resulted in
publications [TI2] and [TI3].

Institute of Physics, Wroctaw University of Technology - collaboration with dr. K. Roszak
concerning theory of entanglement dynamics of a few spin qubits interacting with nuclear
baths.

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw - collaboration
with P. Szarikowski and prof. M. Trippenbach concerning theory of entanglement decay of
two qubits interacting with a source of classical noise.
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