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4. Description of achievement underlying the habilitation

The achievement underlying the habilitation consists of a collection of eight papers from

the period of 2007-2012 dealing with the phenomenon of Zitterbewegung (ZB, trembling

motion) in crystalline solids (semiconductors, graphene)} and relativistic quantum physics.

Introduction
The trembling motion was predicted theoretically by E. Schridinger in 1930". Describing
motion of the free electron according to the Dirac equation Schrodinger noted that, even in the
absence of external fields, motion of the relativistic electron is not rectilinear at a constant
velocity, but oscillates around the classical trajectory with the frequency close to 2moc/h and
the amplitude close to A.= A/mye. The rapid oscillations of position and velocity of the
electron are called Zitterbewegung, which can be translated as "trembling motion". Since its
discovery the phenomenon of ZB raised controversy. First, both the very high frequency of
ZB oscillations (about 10*' s7) and very small amplitude (0.00386 A) prevent its observation
in a vacuum. Second, in its original derivation the ZB oscillations describe time dependence
of the position operator, but not the velocity or the position of a particle. Therefore the ZB
was treated for many years as a kind of curiosity or an artifact in the Dirac theory. Since the
discovery of ZB in 1930 until 2005 there appeared annually a few works related to ZB, often
as a secondary thread to the main subject of the work. In this period the majority of papers
dealt with the ZB in relativistic theory for particles in a vacuum. Most important works
concerning the ZB in a vacuum, whose results are used in the analysis of ZB in crystalline
systems, simulations or wave phenomena, are:

¢ Huang’ — analysis of ZB with the use of delta packet,

o Lock® - indication of disappearance of ZB in time for a wave packet as a consequence

of the Riemann — Lesbegue lemma.

e Bamuteral’- papers dealt with various aspects of ZB in a vacuum.
Isolated papers dealing with the ZB in solids (Lurie and Cremer®, Cannnata et al.®,
Wonsowski ef al.”) did not get through the mainstream of scientific literature. A review of

these works is presented in the review article (no "6" in this presentation).
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The situation changed in 2005, when two papers suggesting the possibility of existence of ZB
in solids were published. Zawadzki® demonstrated that for the simplified Kane model one can
calculate x(r) dependence in the same way as for the Dirac equation. The main difference
between the ZB for the Dirac electron in a vacuum and the ZB for electron for the Kane
model for semiconductors is the amplitude of oscillations, which is on the order of Az= Bim’u,
where m" is the electron effective mass, and # is its maximum velocity. Assuming typical
values of m and u for semiconductors it turned out that Az ranges from several to tens of
Angstroms, and the frequency of ZB oscillations corresponds to the frequency of the infrared
light. Therefore, the ZB for electron in semiconductors can be much easier to observe than the
ZB for electron in a vacuum. The second work having an important impact on the growth of
interest in ZB was the paper by Schliemann ef al.”, in which the ZB was calculated for a wave
packet for the spin Rashba Hamiltonian. The authors showed that the necessary condition for
the existence of ZB is a non-zero initial velocity of wave packet. The frequency of ZB
oscillations calculated by Schliemann et al. corresponds to typical frequencies occurring in

semiconductors, and the amplitude of oscillations is on the order of inter-atomic distances.

A number of other works during 2006-2012 analyzed possibilities of occurrence of ZB in
semiconductors, graphene, periodic wave systems and optical super-lattices. The properties of
ZB motion were studied in various theoretical models and several experimental configurations
allowing an observation of ZB were proposed. For the one-dimensional Dirac equation the ZB

1" with the use of ion

oscillations were simulated experimentally in 2010 by Gerritsma et a
trap technique and by Dreisow er al.'' in optical super-lattices, while the wave version of ZB
oscillations was observed in 2008 in sonic crystals by Zhang and Liu'?. From a formal point
of view, the phenomenon of ZB in a vacuum for the Dirac electron and the spin-0 particles
described by the Klein-Gordon equation is similar to the ZB in crystalline solids — narrow gap

semiconductors and graphene. The collection of papers by the author and Zawadzki inchudes
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elements relevant to understanding and explanation of ZB phenomenon in a vacuum and in

crystalline solids. These works are reviewed below.

1) T. M. Rusin i W. Zawadzki

*“Zitterbewegung of nearly-free and tightly-bound electrons in semiconductors”
J. Phys.: Condens. Matter 19, 136219 (2007) | 18 pages].
DOI:10.1088/0953-8984/19/13/136219

18 citations (Web Of Science), Impact Factor = 1.886

Participation of the author: 75%.

Author’s input: participation in determining the subject, performing calculations, preparing

figures, participation in discussion of results, participation in text preparation.

The paper analyzes influence of the periodic

potential of the lattice on existence of ZB. The
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Fig. 1: ZB osciliations for a Gaussian wave matrix. It is shown that the Hamiltonian does not

packet in NFE model. Parameters correspond
to GaAs band structure.

commute with the velocity operator vi=0H./0p;,
where p; is the momentum operator in the direction i. Calculating double commutator of the
position operator and the Hamiltonian one obtains a differential equation for time derivatives

of z(t) with time-independent operator coefficients. Solving the differential equation one has
) = 2 + vyt +u AL - i*tho lexpl— 2if ¢ /7)1]BL.

The above equation uses the notation from the paper. The motion of electron consists of the
classical linear motion at a constant velocity (the first three terms) and fast oscillations
described by the fourth term. This term is very similar to the term describing the ZB
oscillations in the Dirac equation. For the NFE model the ZB oscillations have the frequency

on the order of the energy gap 2Exh and the amplitude on the order of Az, which is a




combination of the lattice constant, effective mass of the electron, and the Fourier component
of potential V,. For semiconductors the energy gap 2E, is in the range of 0.2-3 eV, which is
more than five orders of magnitude smaller than 2myc” = 1MeV in a vacuum. Typical values
of Az for semiconductors are in the range from one to tens of Angstroms, which is more than
three orders of magnitude larger than the amplitude of ZB oscillations in a vacuum
2:=0.00386 A. Thus, the characteristics of Zitterbewegung in semiconductors are more easily
measurable than in a vacuum. The motion of the Gaussian wave packet for the NFE model is
calculated numerically and oscillations of the average position are found. For the packet the
ZB oscillations have frequency close to the energy gap and amplitude on the order of the
lattice constant. It is shown that the frequency of ZB oscillations depends weakly on the width
of the packet. However, the amplitude of ZB oscillations depends on the packet parameters

and it is generally smaller than 1.

The case of a strong periodic potential is analyzed for the TB model. Taking into account only
interactions between the nearest neighbors and using parameters describing CdTe it is shown,
that also for the TB model the velocity operator does not commute with the Hamiltonian. The
packet motion is found numerically and ZB oscillations of the average packet position are
obtained, having frequency close to the energy gap and amplitude on the order of one
Angstrom. The results obtained for the NFE and the TB models point out the role of the
periodic potential of the lattice in formation of ZB oscillations in crystalline solids. Finally, a
transformation analogous to the Foldy-Wouthuysen transformation is introduced for the NFE
model and it is shown that Ay is the characteristic length of a non-locality of the wave function
after the transformation. This result shows the versatility of the length Az, which replaces the
Compton wavelength A. both in the description of Zitterbewegung and the Foldy-Wouthuysen

transformation.

Key results and suggestions:

» For the simplest models of crystalline solids, both weak and strong periodic potential
leads to the ZB oscillations. This suggests the commonness of ZB phenomenon in
crystalline solids. .

* For the NFE model the equation of motion of the electron is analogous to the equation

of motion for the relativistic electron in a vacuum, which justifies the association of




oscillations of electron trajectory for the NFE model with the ZB oscillations in a
vacuum,.

¢ For a wave packet, the frequency of ZB oscillations in semiconductors is close to the
gap energy (divided by /), and the amplitude of ZB oscillations depends both on
packet width and Az, and it is on the order of a few Angstroms. Therefore, the
observation of ZB in semiconductors can be much easier than the observation of ZB in

a vaciim.

2)T. M. Rusin i W. Zawadzki

“Transient Zitterbewegung of charge carriers in mono- and bilayer graphene,
and carbon nanotubes”

Physical Review B 76, 195439 (2007) {7 pages].

DOI: 10.1103/PhysRevB.76.195439

37 citations (Web Of Science), Impact Factor = 3.172

Participation of the author; 75%.

Author’s input: participation in determining the subject, performing calculations, preparing

figures, participation in discussion of results, participation in text preparation.

The problem of Zitterbewegung is analyzed for three materials: bilayer graphene, monolayer
graphene and carbon nanotubes (CNT). Motivation to take up this subject was the recent
discovery of graphene and the fact that the Hamiltonians for electron in monolayer graphene
and CNT are similar to the ultra-relativistic Dirac Hamiltonian. Furthermore, it is expected
that the ZB oscillations in these materials are more suitable for experimental observation than
the ZB oscillations in a vacuum. In contrast to the original approach of Schrodinger, in the
present work the operator x(1) is calculated in the Heisenberg picture x(1)=¢"™ye treating
the expression for x(f) as the product of three operators. In the momentum space the
Hamiltonians for electron in graphene and CNT are 2x2 matrices of numbers, which allows

one to calculate the exponent of the Hamiltonian &

, and then the product of the operators.
The result is the operator x{¢) in form of a 2x2 matrix which, in the next step, is averaged over

the Gaussian wave packet.
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The most important result of the work is equation (5) which gives an analytical expression for

the time evolution of the Gaussian wave packet in bilayer graphene. Assuming a packet of the

width d and the initial velocity fiky,/m” one has
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Fig. 2: Zitterbewegung of electron in bilayer
graphene for a Gaussian wave packet of width
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where &=(ht/m’)"? contains the time dependence.
The above equation is so far the only analytical
model describing the Zitterbewegung of the
The

consequences for the ZB result from the above

Gaussian  packet. following  physical
equation. First, for the wave packet the ZB
disappears in time, since for high values of dboth
exponents cancel. Mathematically, disappearance
of ZB at large times is a consequence of the
Riemann-Lebesgue theorem. Second, in graphene

the ZB direction

oscillations occur in
perpendicular to the direction of the initial wave
vector kgy. For kg,=0 there are no ZB oscillations.
Third, the frequency of ZB oscillations depends
weakly on packet width d but strongly on the wave
vector kpy. Since the Hamiltonian for electron in

graphene does not contain the energy gap, which is

zero, its role is played by the distance between the states with positive and negative energies

for given kgy. Fourth, the amplitude of oscillations strongly depends on the packet width d.

Physical consequence of the above dependences is the existence of ZB only within certain

range of packet parameters, namely when the product dky, is on the order of the unity. Fifth,

for wide packet (large ), one obtains oscillations in the form xzt) ~( 1kopy)cos( égkgf). This

corresponds to the case when the wave packet is not very different from the plane wave ¢*”

*

for which the ZB oscillations do not disappear in time. In this limit the ZB motion is

described by permanent oscillations of the amplitude ( 1/kyy) and the frequency @y= hkgyz/m*.

Sixth, in the initial phase of motion the ZB disappears exponentially with the decay constant

I =hky/(m"d). For bilayer graphene the decay time of ZB oscillations is on the order of




ty=1/17 and it amounts to tens of femtoseconds. The above properties of ZB motion are of a
general nature and similar conclusions can be drawn from numerical calculations of ZB

motion for other systems.

The present calculations show that the decay time of the wave packet is much longer than the
decay time of the ZB oscillations. Thus, the spreading of the wave packet does not explain the
rapid decay of ZB oscillations. The physical mechanism causing rapid disappearance of ZB is
a growing distance between two sub-packets of positive and negative energies. Since the
initial Gaussian packet is not actually an eigenstate of the Hamiltonian, it can be decomposed
into two sub-packets, respectively, consisting of states of positive and negative energies, and
an average velocity of the two sub-packets can be calculated. It is shown that the sub-packets
are moving in opposite directions with the relative velocity Akgy/m . The ZB oscillations occur
when the sub-packets overlap with each other, that is when their average positions are spaced
apart by less than the packet width d. Therefore the ZB should disappear after time on the
order of 1y = m*d/( hkp,) = 1/I7 obtained previously. For typical values of the packet
parameters, this time is much shorter than the decay time of each sub-packets. This result
confirms guantitatively the previously known interpretation stating that ZB is a consequence

of interference between sub-packets of positive and negative energies.




The analysis of ZB motion in monolayer graphene gives similar results as for bilayer

graphene. Calculations are performed for carbon nanotubes (CNT), where the packet motion

is confined to one dimension. The curvature of the nanotube leads to quantization of motion

80
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Fig, 3: Zitterbewegung of electron in two
lowest bands of carbon nanotube of diameter
L=200 A for two Gaussian packets of different
widths d and kg,=0.

in the direction perpendicular to tube’s axis,
resulting in the "freezing" of the non-zero value of
the momentum in this direction. Therefore, the ZB
oscillations in CNT are possible even when the
initial packet velocity is zero. The ZB oscillations in
nanotubes are qualitatively different than the ZB
oscillations in graphene. Because there is only one
direction of the motion (along the tube), it is not
possible for the sub-packets to move away in the
direction perpendicular to the direction of the
motion. Therefore the sub-packets of positive and

negative energies overlap until the complete decay

of the packet. For this reason the ZB oscillations in CNT disappear very slowly in time, and

the envelope function of oscillations decays as 1"*. As a consequence, the ZB oscillations in

CNT can be observed even after a few picoseconds.

Key results and suggestions:

¢ The ZB oscillations of a wave packet disappear in time, which is a consequence of the

Riemann-Lebesgue theorem.

e The disappearance of ZB oscillations is related to moving away by the two sub-

packets having positive and negative energies. The ZB exists only when the sub-

packets overlap in space.

¢ The ZB oscillations exist only when the product dky, is on the order of unity.

e In graphene the ZB disappears after several femtoseconds, while in CNT the ZB

oscillations can exist even for a few picoseconds.

3 T. M. Rusini W, Zawadzki

» Zitterbewegung of electrons in graphene in a magnetic field*

Physical Review B 78, 125419 (2008) [9 pages].

DOI: 10.1103/PhysRevB.78.125419
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33 citations (Web Of Science), Impact Factor = 3.322
Participation of the author: 75%.

Author’s input: participation in determining the subject, performing calculations, preparing

figures, participation in discussion of results, participation in text preparation.

The paper 1s concerned with the Zitterbewegung in monolayer graphene in the presence of a
uniform magnetic field perpendicular to the layer. The presence of a magnetic field leads to
complete quantization of the eleciron motion. Preparing the wave packet as a combination of
states having positive and negative energies (e.g. in form of a Gaussian packet), one obtains
the motion consisting of oscillations with intraband and interband frequencies, interpreted as
the ZB. In the paper the oscillations of position are calculated in the Heisenberg picture by
averaging the operators x(t) and y(1) over the wave packet |f>. To calculate average value of
the position operator <x(£)>= <f| ¢""xe™"" |f> the unity operator I=2Jn><n| is inserted two
times. Here |n>=|n ks> is the eigenstate of the Hamiltonian for electron in graphene in a
magnetic field. The calculation of <x(#)> requires an integration over the wave vectors &, and
a summation over the Landau levels in two energy bands. Calculation of the average value of
(1) proceeds in the same way. For the Gaussian wave packet in graphene the amplitudes of
motion components are analytical functions of the packet parameters and the magnetic length
L=(k/eB)"”.

Numerical calculations lead to the following

conclusions. First, for non-zero magnetic field

there are infinite number of oscillations having

intraband frequencies @,"=a,+;-a}, corresponding
to the cyclotron motion, and the interband

frequencies m,zmahﬂ-l-(o}z corresponding the ZB.

We recall that in graphene in the absence of fields

there is only one ZB frequency. Second, the

motion of the packet is sustained and it does not

o 200 400 600 800 tifs - disappear in time. Third, the structure of
Fig. 4: Zitterbewegung of averége curpent in | OScillations represents an infinite sequence of
graphene calculated for a spherical Gaussian
packet of width 4.=d,=81 A and wave vector

ko=0.035 A”! for three values of a magnetic  gscillations of atomic levels populations in
field.

events ,,collapse and revival”, as in the case of
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quantum optics. The physical reason of decay and rebirth of packet oscillations is the
confinement of sub-packets of positive and negative energies by a magnetic field, which does
not allow the sub-packets to depart too far from the center of motion (which is the center of
the classical cyclotron orbit). When the sub-packets move away the oscillations disappear,
while when they come close the ZB oscillations re-emerge. Fourth, for a given Landau level
the amplitude of components of frequencies a3’ is always smaller than the amplitude of
frequencies @,", which means that the ZB oscillations are always smaller than the oscillations
due to the cyclotron motion. Fifth, in practice, the Fourier sums are well approximated by
finite sums consisting of several to tens terms having the largest amplitudes. Sixth, the
magnetic field changes qualitatively motion of the packet and the ZB oscillations. For high
fields the motion may appear chaotic (but with well-defined frequencies), while for low fields
there are slowly vanishing oscillations with superimposed small ZB oscillations. Depending
on the intensity of a magnetic field, trajectory of the packet can take the shape of vanishing
and growing spiral or seemingly chaotic orbit. Technical difficulty in a calculation of the
packet motion in a magnetic field is the necessity of numerical calculation of the Hermite

polynomials for large n (n> 100). This requires the use of special numerical methods allowing
2.0

one to carry calculations with the accuracy of a
B=107
1 few hundreds significant digits.
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the system (because it includes states with

I | ' different energies), then during the motion it can

Fig. 5: Power spectrum of radiation emitted  PICSENCE of radiation with interband frequencies

by electron Gaussian packet of width d=81 A Z inth ol :
and &,=0.035 A-' during first 20 ps of motion a,” in the emission spectrum of the packet may be

for a magnetic field B=10 T. the evidence of existence of ZB motion with

frequency @,”. The ZB differs from the usual interband luminescence by specific dependence
of individual specﬁ‘al lines intensities with frequencies @,” for different values of the packet

parameters and magnetic field strengths.
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The paper also examines a contribution of second point K' in the Brillouin zone on the ZB
oscillations of the packet. An influence of change of the gauge for a magnetic field on the
results is discussed. An analytical approximation for Fourier sums having large number of

components is proposed.

Key results and suggestions:

¢ The motion of a Gaussian wave packet in a magnetic field consists on infinite number
of components oscillating with intraband frequencies @,"=a,+;-@,, and interband
frequencies @,"=ay,;+a),, interpreted as the ZB. In the absence of a magnetic field
there appears only one interband frequency.

¢ For graphene in a magnetic field the ZB oscillations do not disappear in time. Infinite
sequences of "collapse and revival” events appear.

¢ The character of the packet motion depends strongly on the magnetic field.

¢ An oscillating packet emits dipole radiation whose intensity and frequency depends on
packet parameters. Observation of the interband transitions and their dependence on

the packet parameters may confirm existence of ZB motion.

4)T. M. Rusin i W. Zawadzki

s»» Theory of electron Zitterbewegung in graphene probed by femtosecond laser pulses*
Physical Review B 80, 045416 (2009) |9 pages].

DOI: 10.1103/PhysRevB.80.045416

26 citations (Web Of Science), Impact Factor = 3.475

Participation of the author: 75%.

Author’s input: participation in determining the subject, performing calculations, preparing

figures, participation in discussion of results, participation in text preparation.

The paper considers a possibility of observation of ZB in monolayer graphene in the presence
of a magnetic field illuminated by a short laser pulse. The p-type doped monolayer graphene
sample is placed in a magnetic field B < 40 T perpendicular to the surface. It is assumed that
the Fermi level is in the valence band at n = -3 or lower Landau level and the initial state of
the electron is n = -7 (e.g. pumped earlier by cw laser or excited thermally). The pulse (of
duration on the order of few femtoseconds) creates the wave packet containing states of

positive and negative energies. As a result of the excitation, the final state of the electron is a

12




combination of states with n = £ 2, n = -/ and n = 0, forming the packet containing

a0n 50 00 a6 1meditss e w3 o 8 m 1S
. i : AT

components with energies 2"ha -hw, 0, and
- +2"”h@ The amplitudes of packet components are
calculated approximately, treating the laser electric
field as a perturbation. The resulting packet is not a

Gaussian packet considered in previous works; its

el

shape depends on pulse parameters and strength of a
magnetic field. After a time interval longer than the

pulse duration the packet evolves in time, and its

motion includes components of the intraband
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frequencies (e.g. @‘= a» - @), and the interband
Fig. 6: Oscillations of dipole moment of wave  frequencies (e.g. o= w+ wy) corresponding to the
packet created by a short laser pulse in . _
graphene in a magnetic field. Pulse ZB oscillations. Because the electron wave packet
arameters according to paper 4", R .
parame g topap has a non-zero oscillating dipole moment, the
trembling motion of the electron can be observed indirectly by measuring radiation emitted by
the packet. In the paper it is assumed that the radiation is emitted by a single electron and

effects of radiation by many electrons are not considered.

Two methods of measuring the dipole radiation emitted by the packet are proposed. The first
method proposes to measure the power of emitted radiation as a function of two model
parameters: the strength of a magnetic field and the duration of laser pulse. Doing an
experiment with two varying parameters one can isolate the ZB from other effects in real
graphene samples. The second method is to measure the time dependence of luminescence
(Time-Resolved Luminescence). In this method the light emitted by the sample passes
through two filters: the time gate opened during time 7 and the frequency filter that selects
frequencies around a central frequency ay. Then the intensity of radiation passing through the
two filters is measured as a function of the gate opening time 7. This dependence is calculated
theoretically for typical filter parameters and it is shown that the described method allows one

to identify the ZB oscillations in graphene samples in a magnetic field.
Altention is paid to the influence of scattering effects in real graphene samples on the

character of ZB oscillations. In particular, the scattering between electrons in graphene gives

rise to a small (several meV) energy gap in the band structure and to a broadening of the
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Landau levels. The appearance of a non-zero energy gap does not affect significantly the ZB

oscillations. On the other hand, the broadening of energy levels leads to complex frequencies

of oscillations: @, 2 @, —i I, where 7}, is the decay constant for a given . As a result, under

certain simplifying assumptions, the amplitude of ZB oscillations decays exponentially in

time and after about 400 fs the oscillations practically disappear. In this case, the decay time

of oscillations depends only on sample parameters.

Key results and suggestions:

¢ Ultra-short pulse laser illuminating the monolayer graphene in a magnetic field creates

the electronic packet, which includes components oscillating with cyclotron and

interband frequencies. The latter are interpreted as the ZB.
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Fig. 7: Calculated power spectrum of

radiation emitted by a wave packet created by
short laser pulse, for three opening gate times

T in Time Resolved Luminescence method.

Oscillating electron packet has a non-
zero dipole moment varying in time,
which  emits the electromagnetic
radiation.

The ZB oscillations can be measured, in
principle, with the use of "Time-
Resolved Luminescence" technique.
Electron scattering in real graphene

samples causes broadening of the

Landau levels, leading to an exponential
decay of ZB oscillations.

In the paper, the radiation from a single

electron is calculated and effects of radiation by many electrons are not considered.

S)W. Zawadzkii T. M. Rusin

»Nature of electron Zitterbewegung in crystalline solids*

Physics Letters A 374,3533-3537 (2010,
DOIL 10.1016/].physleta.2010.06.028

6 citations {Web Of Science), Impact Factor = 1.963

Participation of the author: 50%.

Author’s input: performing calculations for the quantum model, preparing figures,

participation in discussion of results, participation in text preparation.
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For many models of the energy band structure of solids, such as the two-band k-p model, the
simplified Kane model, the Dimmock model for lead salts, graphene, the spin Rashba
Hamiltonian, the ZB oscillations are obtained using the formalism similar to that used for the
calculation of ZB of the relativistic electrons in a vacuum. The similarity between the two
formalisms, however, does not necessary means that one deals with the same physical reason
of ZB in crystalline solids and in a vacuum. It is shown that the ZB oscillations in solids occur
as a result of the periodic potential of the lattice. The paper shows that the ZB oscillations are
related to the varying electron velocity in strong and weak areas of the periodic potential
within the unit cell. For models of the band structure of solids, the periodic potential does not
appear explicitly and its presence is in some sense "hidden" in the matrix elements of the
momentum operator and the energy gap. On the other hand, for the relativistic electron in a
vacuum there is no periodic potential and the ZB oscillations are a result of the two-band
structure of the Dirac Hamiltonian. Therefore, despite of formal similarities, the ZB

oscillations in crystalline solids have a different nature than the ZB in a vacuum.

The analysis of effect of the periodic potential on ZB begins with a simple classical model.
The potential is assumed in shape of a saw with triangular teeth. If the total electron energy is
greater than the maximum value of potential, the electron moves along the saw and its
velocity periodically increases and decreases. This motion can be described by assuming that
the electron is moving at a constant average velocity with the instantaneous velocity
oscillating around the mean value. Rapid oscillations of the electron velocity correspond to

the ZB oscillations in the crystal lattice.

The model described above qualitatively explains the nature of ZB motion in crystalline
solids. However, one should also guantitatively compare the description of ZB oscillations
caused by the periodic potential with the velocity oscillations obtained in the matrix k-p
method. Such comparison could be made for the Kronig-Penney Hamiltonian. For this model,
one can directly calculate oscillations of the packet velocity. One can also expand the Kronig-
Penney Hamiltonian in terms of the Luttingera-Kohn (LK) functions and obtain an
approximate k-p Hamiltonian in the form of a finite matrix describing n energy bands. Then
one can calculate an average value of the velocity operator for the k-p method and compare

the results with those obtained directly from the Kronig-Penney model.
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The scheme described above is applied to two lowest energy bands for one-dimensional

Kronig-Penney model in the vicinity of the edge of the first Brillouin zone. The resulting k-p

Hamiltonian, which in this case is a 2x2 matrix, does not commute with the velocity operator,
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Fig. 8: Electron velocity in a periodic
potential. Solid lines: Kronig-Penney model,
dashed lines: two-band k-p model. Inset:
energy band structure in two models for k =

wa. Wave packet is centralized at k =0.75 /a.

which leads to the ZB oscillations. The initial
wave packet is expanded in the LK functions;
contributions from higher energy bands are
neglected. Since the eigenfunctions of the Kronig-
Penney Hamiltonian are given analytically, one
can calculate matrix elements of the momentum
operator between the LK states, value of the
energy gap and all elements of the 2x2
Hamiltonian matrix. It is shown that for the
Gaussian packet centered close to the edge of the
Brillouin zone, the motion of the packet calculated
for the two-band model is very close to the motion
of the packet calculated directly for the Kronig-

Penney model. This result justifies the claim by the

authors that the ZB oscillations in crystalline solids are related to the oscillations of

instantaneous electron (packet) velocity due to variation of the periodic potential. In both

cases, the instantaneous velocity of the electron oscillates around the average velocity. It is

also shown that the average electron velocity calculated for the two-band model is very close

to the average velocity obtained for the Kronig-Penney model. The analysis of small

differences in the values of velocities for the Kronig-Penney model and the two-band model is

carried out.

Key results and suggestions:

¢ Despite of a formal similarity between the ZB in solids and the ZB in a vacuum, the

nature of this phenomenon is different in the two cases.

» The Zitterbewegung of electrons in crystalline solids occurs because of the periodic

potential. The electron slows down and speeds up depending on the value of periodic

potential at various points in space.
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e Numerical calculations for the Kronig-Penney model and an approximate two-band

k-p model confirm the above thesis.

6) W. Zawadzkii T. M. Rusin

»wLitterbewegung (trembling motion) of electrons in semiconductors: a review”
J. Phys.: Condens. Matter 23, 143201 (2011) [ 19 pages].

DOL 10.1088/0953-8984/23/14/143201

16 citations (Web Of Science), Impact Factor = 2.546

Participation of the author: 50%.

Author’s input: review of literature, participation in selection of discussed papers, preparing

figures, participation in text preparation.

The paper reviews the research on the Zitterbewegung phenomenon in semiconductors and
other periodic systems at the beginning of 2011. Results of approximately 70 works on the
Zitterbewegung in solids, atomic systems, models of transport and wave phenomena are
collected and systematized. The paper, based mostly on works of the authors, describes and
explains the main aspects of problem of Zitterbewegung: operator-like approach introduced
by Schrodinger, wave packet oscillations, importance of the interference between states of
positive and negative energies, main results for graphene and other simple systems, role of the
periodic potential in the ZB in solids and possibilities of observation of ZB. In addition, the
results for the ZB in theory of transport in solids, in wave phenomena and in relativistic
systems are systematized. A separate section deals with the simulation of ZB in atomic and
ionic systems as well as in optical superlattices. The paper stirred a great interest and has been
downloaded more than 500 times from the IOP website. In early September 2012 it was
selected by the editors as one of the IOP major works in years 2010-2011, to which the free

internet access is provided by the IOP.

7) T. M. Rusin i W, Zawadzki

»Zitterbewegung of relativistic electrons in a magnetic field and its simulation by
trapped ions*

Phys. Rev. D 82, 125031 (2010) [20 pages].

DOI:10.1103/PhysRevD.82.125031

11 citations (Web Of Science), Impact Factor = 4,964
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Participation of the author: 75%.

Author’s input: participation in determining the subject, performing calculations, preparing

figures, participation in discussion of results, participation in text preparation.

The paper analyzes the trembling motion of a Dirac electron in a homogeneous magnetic
field. This problem was considered in 1985 by Barut and Thacker* who obtained equations of
motion for the Dirac electron in a magnetic field using the proper time formalism. The results
have complicated algebraic structure and predict an existence of two frequencies of the
cyclotron oscillations and two frequencies of the ZB oscillations. When the splitting of the
cyclotron levels in a magnetic field exceeds the energy gap 2mgc? (i.e. B > 4.4x10° T), two of
the four frequencies become imaginary and the electron motion includes two components
diverging exponentially in time. This result is qualitatively different from the results of the
author and Zawadzki for an electron in graphene in a magnetic field (paper 3" of the current
presentation). The motion of electron in graphene consists of an infinite number of
components with cyclotron frequencies and interband frequencies (the ZB oscillations),
without any singularity in the whole range of magnetic fields. In the limit 2mgc® = 0 the
Hamiltonian of electron in graphene is similar to the Hamiltonian of the two-dimensional
Dirac electron. Thus, for 2msc’ - 0 the time dependence of position of the relativistic
electron should be similar to that of electron in graphene. However, in this limit the results of
the two models are significantly different. This discrepancy has prompted the author and

ZawadzKi to re-examine the problem of ZB of the relativistic electron in a vacuum.

The first part of paper analyzes time evolution of generalized creation and annihilation
operators A” and A for the Dirac electron in a magnetic field. The position operators X and ¥
are linear combinations of A* and A. Calculating twice the commutator of A*(z) and A(r) with
the Hamiltonian one obtains differential equations for time derivatives of A™(t) and A(t). The
solutions of these equations give time dependence of A*(1), A(t), X(t) and Y(1). They are
analytical functions of operators H, A*(0) and A(0) and have no singularity for any value of a
magnetic field. The results are formal exact solutions of the equations of motion for the
electron in a magnetic field at the operator form. The oscillations of position result from the
interference of the four sub-packets, not two as in the zero-field case. The motion of the
relativistic electron consists of an infinite number of components with intraband

frequencies @i = (Byv1 i - Eni)/h describing the cyclotron motion, and an infinite number
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of components with interband frequencies @,kzzz (Bivire + Eui)/h describing the ZB
oscillations. For a given Landau level n the amplitudes of cyclotron motion are larger than the
amplitudes of ZB oscillations. For high magnetic fields the amplitudes of both components
are comparable. For a low fields the amplitudes of cyclotron components exceed those of ZB
components by many orders of magnitude. Therefore it seems impossible to observe the ZB

of electron in a vacuum at magnetic field intensities available at present.

Further the paper shows calculations of time

evolution of the Gaussian packet for the Dirac
electron in a magnetic field. The average values of

the position operators <x(1)> and <y(t)> are

= calculated in the Heisenberg picture. The unity

Be2¢10"T operator =X |n><n| is inserted twice, where
{g@) ln>=|n.ky k, £5> is the eigenstate of the relativistic
3.0
J} electron in a magnetic field, described by five
o 8221071 k .. Quantum numbers. The summations over the
.5 0.0 6.5 exitie (k1 00 G2

quantum numbers g s and the integration over k,
Fig. 9: Trajectories of the Dirac electron are performed analytically, the summation over the
prepared in form of a Gaussian packet

calculated for four values of a magnetic field

in 3D. Packet’s parameters are given in paper
9’7".

Landau levels and the integration over k, require
numerical calculations. Numerical procedures with
very high precision of calculations are used
(hundreds of significant digits). To avoid accidental symmetries, an elliptical Gaussian packet
of non-commensurable main ellipse axes is considered. It is assumed that at the beginning the
spinor describing the wave packet has one or two non-zero components. In three dimensions
the motion of the packet has evanescent character, in two dimensions the motion is persistent
and, similarly to the motion of an electron in graphene in a magnetic field, it does not
disappear in time. Time evolution of individual position components are calculated for
different values of a magnetic field and packet parameters. Trajectories of the packet are
calculated and optimal corbinations of model parameters leading to the ZB oscillations are
found: high magnetic fields (the cyclotron energy on the order of 2myc”), comparable scales of
dy, dy, d; (packet widths in three directions), the magnetic length L=(eB/h )”2 and inverse of
kox. An interesting result is the dependence of the packet trajectory on a magnetic field. For

low fields (in this problem a field B=2x10" T is considered as low) the packet trajectory is a
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classical cyclotron orbit. For fields exceeding the Schwinger field B=4.4x10° T the trajectory
of the packet becomes an irregular and vanishing spiral. For low fields the ZB still exists but
its amplitude is many orders of magnitude smaller than the amplitude of cyclotron motion and

the 7B oscillations are not visible.

The rest of paper deals with the possibility of

(3=~ 1000Hz p
i A1 simulation of ZB for the Dirac Hamiltonian with

position {1}
- @
o

the use of atomic ions in the so-called atomic

j — ppE— traps. The inspiration of this part of paper is an
N ¥ty =21 2,

i
IR
1)
I

= e Iy experiment of Gerritsma et al. m, who simulated
2 S . . I
g U the one-dimensional Dirac Hamiltonian and
b
observed the Zitterbewegung oscillations for the
- =2 1 2000 H
] - /% /1 wave packet. This paper proposes a simulation of
= ; . the Dirac equation for an electron in a magnetic
P i 2+1 DE c
- L 13

1 i i " i

os 65 10 s 2o 2s cmy fleld in two dimensions. Assuming parameters of

Fig. 10: Calculated motion of a wave packet the magnetic trap from the work of Gerritsma et al.
for two-dimensional simulation of Dirac 16

equation in ion traps **Ca* for three values , the ZB oscillations of the wave packet are
of simulated of energy gap hg2 . .

gy eap calculated for different values of simulated
magnetic fields. The obtained results confirm the possibility of simulation of ZB in the

proposed system.

Key results and suggestions:

¢ The motion of the Dirac electron in a magnetic field consists of an infinite number of
oscillations with cyclotron frequencies and an infinite number of oscillations with
interband frequencies interpreted as the ZB. In three dimensions the oscillations
disappear in time, in two dimensions the oscillations are permanent presenting
sequences of the "collapse and revival” events.

* The obtained results describe motion of the electron (packet) for any magnetic field
strength. The motion has no singularity in the whole range of magnetic fields.

¢ In the low-field limit the amplitude of ZB oscillations is many orders of magnitude
smaller than the amplitude of cyclotron oscillations, so for low fields the ZB

oscillations are invisible.
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¢ The equations of motion for the position operators of the Dirac electron in a magnetic
fields are solved exactly and analytically.
¢ ]t is possible to simulate the ZB for the two-dimensional Dirac Hamiltonian in a

magnetic field using the technique of atomic ions in magnetic traps.

8) T. M. Rusin i W, Zawadzki

»Zitterbewegung of Klein-Gordon particles and its simulation by classical systems*
Phys. Rev. A 86, 032103 (2012) [15 pages]

DOI: 10.1103/PhysRevA.86.032103

0 citations (Web Of Science), Impact Factor =2.878

Participation of the author: 75%.

Author’s input: participation in determining the subject, performing calculations, preparing

figures, participation in discussion of results, participation in text preparation.

Existence of the Fermi sea and related many-body effects (e.g. electron-hole creation) present
practical difficulties in an observation of ZB for relativistic electrons in a vacuum. These
problems do not occur when one deals with the ZB for bosons, because in this case there is no
Fermi sea and other effects associated with the fermion’s statistics. The paper analyzes the ZB
of the charged spin-0 bosons described with the use of Klein-Gordon (KG) equation. This
problem was considered in the literature for the ZB in the operator form in the absence of a

magnetic fietd' !4

. The present paper deals with new aspects of ZB phenomenon for the KG
equation: motion of the Gaussian wave packet, disappearance of oscillations, comparison of
ZB in Hamiltonian and wave formalisms, analysis of ZB in a magnetic field and a possibility

to simulate ZB in mechanical systems.

In the literature, the KG equation appears in two forms: as a second order differential
equation with respect to time, similar to the wave equation but with an additional term
including the mass of particle, and as a first-order equation with respect to time, resembling
the Schrodinger equation, in which the Hamiltonian operator is a 2x2 matrix. The Klein-
Gordon model allows one to calculate ZB oscillations by using either the Heisenberg
equations of motion or in terms of the wave formalism. The specific feature of KG equation is

a difficulty in the definition of the position operator for spin-0 particles. For this reason the

" R. F. Guertin and E. Guth, Phys. Rev. D 7, 1057 (1973).
" M. G. Fuda and E. Furlani, Am. J. Phys. 50, 545 (1982).
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present paper considers properties of the velocity and of the cwrrent operators, which are well

defined in the KG formalism.

At the beginning the paper analyzes the motion of a free spin-O particle by calculating the
velocity operator in the Heisenberg picture. Then the average value of the velocity operator
over a Gaussian wave packet is obtained. For the KG model the ZB oscillations arise from the
interference of two sub-packets involving states of positive and negative energies. The sub-
packets move in the direction parallel to the direction of the initial wave vector of the packet,
but with different velocities, resulting in a disappearance of ZB oscillations in time. Let us
recall that for graphene the sub-packets move in a direction perpendicular to the direction of
the initial wave vector of the packet. An unexplained feature of the motion of spin-0 particle
indicated in the paper is a possibility of exceeding the speed of light by the particle at high

momenta. There is no such feature in the Dirac equation; it is shown that the velocity of the

Dirac electron can not exceed the speed of light

" ! o for any value of momentum.
i:féfé;;::
7 02 The next issue analyzed in the paper is a
2 eSOt comparison of ZB oscillations of the wave
% packet in the Hamiltonian representation with
" | \z the packet motion described in the wave form of
'i‘:""tﬂsom “\} \:E the KG equation. The transformation from the
oo 7 \l\\\\& wave form to the Hamiltonian form is equivalent
20 30

to the conversion of a second-order differential
Fig. 11: Time evolution of abselute value of equation into a set of two first-order equations

one-dimensional Gaussian wave packet for . ) L .
wave KG equation. Packet separates into two ~ With appropriate initial conditions. One should

sub-packets moving with different velocities. also  transform  the packet in the wave
representation to the packet in the Hamiltonian form. Performing the two above mentioned
transformations and calculating the average value of the current operator in the two
representations one obtains the same result. The equivalence of the two approaches takes

place for average values of the current and velocity operators.

The following part of paper considers the packet motion for the KG equation in a
homogeneous magnetic field. The motion consists of a sum of components with cyclotron

frequencies and a sum of components with interband frequencies. In the low-field limit the
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motion reduces to the classical cyclotron motion, while at high fields the motion resembles
irregular oscillations. For high magnetic fields the ZB components give significant
contribution to the motion, while for low fields (in respect to the Schwinger field for the
particle of mass m) their contributions are negligible. Calculations are carried out for an
elliptical Gaussian packet and trajectories of the packet experience continuous transition from
the cyclotron motion for low fields to the irregular vanishing spirals at high fields. Finally, the
equation of motion for the current density operator in a magnetic field is solved exactly and

analytically in the Heisenberg picture.

The last part of paper considers simulation of ZB

subibit shaet

#3
o
i

phenomenon by other physical systems. The

i
fed
3

method mentioned above (see paper "7") for the

simulation of the Dirac equation with ion traps is

not useful for the Hamiltonians containing higher

. . . . 2
Varisnce {in units of .7 )
o
L

powers of the momentum operator. Therefore, the

paper proposes to simulate the phenomenon of ZB

by other systems. A simple model described by

the KG equation in the wave form was proposed

by Morse and Feschbach'®. n this model, the

Fig. 12: Variance of packet shape in

mechanical model simulating ZB for KG metal string (for example, the piano string) is
equation. Solid line: total variance, dashed ) )
li?ne: non-oscillating part of variance. For attached in the x-y plane to a thin sheet of rubber.

meodel in paper “8” there is A.=4.47 mm and

If the string is stretched in x direction and prepared
£,=2.37 % 10°%. g prep

in a shape of a Gaussian function in the y direction
then, after releasing the string, it begins to oscillate in the y direction in a way described by
the wave KG equation. It its shown that the variance of string’s shape performs oscillations
similar to the ZB oscillations of the relativistic spin-0 particle. For typical parameters of a
piano string and a rubber, the frequency of oscillations is on the order of 13 kHz, which is in

the range accessible to the human ear.

Key results and suggestions:

'>P. M. Morse and H. Feshbach Methods of Thearetical Physics (McGraw-Hill, New York, 1953).
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s The Zitterbewegung for the charged spin-0 particles is a result of the interference of
two sub-packets consisting of states having positive and negative energies, moving
with different velocities in the direction parallel to the initial direction of the packet.

» The average values of the velocity or current operators calculated for the wave packet
in the Hamiltonian formalism are equal to the average values of velocity or current
obtained for the wave formalism. The agreement of the two formalisms takes place for
mean values.

¢ For low magnetic fields the motion of charged spin-0 particles is described by the
cyclotron motion and the ZB components are negligible. For high magnetic fields the
ZB components are comparable to the cyclotron components.

¢ The equation of motion for the free KG particle allows, theoretically, a possibility of
exceeding the speed of light by a particle. The cause of this feature in the KG theory is
unclear. There is no such possibility for the Dirac equation.

o The ZB oscillations can be simulated by a simple mechanical model. Under suitable
conditions the variance of shape of an oscillating string simulates the ZB oscillations

of spin-0 particles in a vacuum.

Summary

At present the understanding of the Zitterbewegung phenomenon is as follows:

1. The Zitterbewegung occurs when eigenvalues of the Hamiltonian form at least two energy
bands. Then the Hamiltonian / does not commute with the velocity operator v; =6H/ép;,
(where p is particle’s momentum). In this case, even in absence of external forces, the
velocity of particle varies in time. Then, in addition to the rectilinear uniform motion,
there appear also oscillations of particle’s velocity and position.

2. The ZB appears frequently in systems having two energy bands separated by a gap, e.g.
for the Dirac Hamiltonian, the Klein-Gordon equation, the two-band k-p model for
semiconductors. The ZB phenomenon also exists for systems with more energy bands
(e.g. the models of Kane, Kronig-Penney etc.) or for systems with two energy bands and a
zero energy gap (e.g. for graphene),

3. The ZB is revealed by an existence of motion components oscillating with the interband
frequency. Usually the amplitude of ZB is small, so one can imagine ZB as small

oscillations around the classical trajectory of the particle.
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10.

Il

For the wave packet, the ZB occurs as a result of the interference between the sub-packets
containing states having positive or negative energies. When the sub-packets move away
from each other and cease to overlap, the ZB oscillations disappear.

For a majority of cases the ZB oscillations of a wave packet disappear in time.
Mathematically, it is a consequence of the Riemann-lebesgue theorem. Physical
processes responsible for the decay of ZB are: sub-packets moving away from each other,
packet’s spreading in time, broadening of energy levels and effects of radiation associated
with an oscillating dipole moment of the packet.

In some cases the ZB oscillations do not disappear in time (e.g. packet’s motion in
graphene in a magnetic field or motion of the Dirac electron in a magnetic field in two
dimensions). Then there appear sequences of the type "collapse and revival”.

A physical reason for the occurrence of ZB in crystalline solids is the presence of a
periodic potential of the lattice, which alters the instantaneous velocity of the moving
particle. In formalism of the k-p matrix, the periodic potential does not appear explicitly
but is "hidden” in the matrix elements of momentum and in the energy gap. Physical
"trace” of the periodic potential in the k-p matrix formalism is the lack of commutation
between the Hamiltonian and the velocity operator.

The reason for ZB in a vacuum is the presence of two energy bands in the Dirac and the
Klein-Gordon Hamiltonians. Therefore the ZB in a vacuum has a different nature than the
ZB in crystalline solids. However, mathematically, the phenomenon of ZB in a vacuum
and in solid state can be described using similar formalisms.

The Zitterbewegung occurs also in wave phenomena, when the system is periodic and the
dispersion aXk) consists of at least two bands. The oscillations of the average velocity or
average position of the wave packet having frequencies on the order of the energy gap
correspond to the electron ZB in a vacuum or in crystalline solids.

In the absence of a magnetic field the amplitude of ZB oscillations in a vacuum is on the
order of the Compton wavelength A.. In crystalline solids Az plays the same role as 4, in a
vacuum and it can be on the order of tens of Angstroms. For a wave packet the amplitude
of oscillations depends on the packet width and it is usually smaller than A;.

In a magnetic field, the packet motion consists of many components of intraband
frequencies corresponding to the cyc]ofron motion and many components of interband
frequencies corresponding to the ZB. For a given Landau level n the amplitude of ZB

oscillations is always smaller than the amplitude of cyclotron motion. For the Dirac
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electrons and spin-0 Klein-Gordon particles in high magnetic fields, amplitudes of both
motion components are comparable. For low fields the amplitude of ZB oscillations is
many orders of magnitude smaller than the amplitude of cyclotron motion. For the
electron in graphene in a magnetic field the amplitudes of ZB oscillations are comparable
to the amplitudes of cyclotron oscillations in the whole range of fields.

12. The ZB oscillations can be simulated in other systems: ion or atomic traps, optical super-
lattices, mechanical models. In all of these systems one can simulate the ZB oscillations of
the packet in more suitable experimental conditions than in a vacuum. However, so far the
electron ZB in solids has not been observed. The difficulty is that one either to observe the

motion of a single electron or would need to prepare many electrons oscillating in phase.

3, Discussion of other scientific achievements

T. M. Rusin i W. Zawadzki
»Quantum theory of symmetric screening in the Hartree approximation”
Phys. Stat. Sol. (b) 243, 12861295 (20006).

Participation of the author:75%.

An interaction of two electric charges in the electron gas in the Hartree approximation is
considered. In the standard approach it is assumed that one charge (e.g. ion of a donor)
polarizes the electron gas, and the second charge moves in the screened potential of first
charge without disturbing the potential (i.e. the second charge is assumed as an arbitrary small
test charge). The described approach is conceptually inconsistent when both charges are of the
same absolute magnitude, as in the theory of screened donor. In this case, the concept of the
test charge is incorrect because both charges polarize the electron gas in the same way. In the
paper, the energy of interaction between the charges is calculated symmetrically, i.e. taking
into account the polarization of the electron gas by both charges. Including all contributions to
the energy, in particular the change of energy of screened electron gas, and calculating in a
self-consisted way the screened potential derived from the two charges, the obtained results
are identical to these in the "classical” approach (which assumes the existence of the test
charge). The paper shows a sequence of cancellations of individual contributions to the
energy, which finally leads to the known results. One can sumunarize by saying that in the

textbooks the correct result is obtained using an incorrect method.
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T. M. Rusin i W. Zawadzki

“Non-locality of Foldy-Wouthuysen and related transformations for the Dirac equation”
Phys. Rev. A 84, 062124 (2011).

Participation of the author: 75%.

Foldy and Wouthuysen'® (FW) have shown that for the Dirac equation in the absence of
external fields it is possible to separate exactly the states with positive and negative energies.
In the real space, the kernel of FW transformation is a non-local operator and the measure of
non-locality is A.. This work deals with further analysis of the non-locality of FW
transformation and a similar transformation proposed by Moss and Okninski'’ (MO). The
following results are obtained. In the absence of external fields the kernel of MO
transformation is given by the Dirac delta function and the Bessel function K;(r). The kernel
of FW transformation is expressed by the Dirac delta function and a function vanishing
exponentially with the distance. Second moments of transformation kernels for the MO and
FW transformation are calculated and it is shown, that the variances of both kernels are on the
order of A°. A widening of the Gaussian packet for the MO and FW transformations is
computed numerically. The variances of transformed Gaussian packet for both
transformations are calculated analytically in terms of special functions. In the limiting case
of wide packets the variance of the packet after the MO or FW transformations remains
unchanged (i.e., V=3/2 d°), but for a narrow packets the variances of transformed packet tend

to V=772 4.

T. M. Rusin i W. Zawadzki

“Non-locality of energy separating transformations for Dirac electrons in a magnetic
field”

J. Phys. A: Math. Theor. 45 315301, (2012).

Participation of the author: 80%.

Properties of the Moss and Oknifiski'’ (MO) transformation for the Dirac Hamiltonian are

analyzed. This transformation separates exactly states with positive and negative energies also

‘L. L. Foldy and S. A. Wouthuysen, Phys. Rev, 78, 29 (1950).
'"R. E. Moss and A. Okninski, Phys. Rev. D 14, 3358 (1976).
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for non-zero magnetic fields. The following results are obtained. The non-locality of
transformation kernel in a direction parallel to the magnetic field is on the order of J. and it
weakly depends on the field intensity. The non-locality of the transformation kemel in the
direction perpendicular to the field strongly depends on field intensity. For low fields the non-
locality is close to A, it reaches a maximum for the Schwinger field B=4.4x10° T, and for still
larger fields it is on the order of the magnetic length L=(#/eB)"?. Thus at high fields it
decreases with a magnetic field. The MO transformation of a Gaussian packet is calculated for
high fields, and a variance of the transformed packet is analyzed as a function of the initial
packet width and field intensity. The largest relative widening of transformation kernel is

obtained for narrow packets and a magnetic field close to the Schwinger field.

T. M. Rusin i W. Zawadzki

“Green function of electron in monolayer graphene in a magnetic field”
J. Phys. A: Math. Theor. 44, 105201 (2011).

Participation of the author: 80%.

The Green function operators for monolayer and bilayer graphene in the presence of a
magnetic field at the K point of the Brillouin zone are calculated analytically. In both cases
the Green functions are 2x2 matrices. For example, for a monolayer graphene the (2,2)

element of Green function matrix is (notation from the paper is used)

gg (p.p.E)= E F(’" E? )WEZJrO.S,O (r2 )’

where: @is the cyclotron frequency, L is the magnetic length, p is a two-dimensional position
vector, =( pp) 2L, yis a gauge-dependent phase factor, E=E/h® is a dimensionless
energy, /{z) is the gamma function, W), (z) is the Whittaker function in the standard notation.
The paper provides numerical examples of the obtained Green functions and discusses the

Grreen function at the K’ point of the Brillouin zone.
T. M. Rusin i W. Zawadzki

Chapter: ,,Zitterbewegung (trembling motion) of electrons in graphene”

In monograph “Graphene Simulation”, edited by Jian Ru Gong, InTech, 2011.
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I[SBN: 978-953-307-556-3
E-book is available on: http://www.intechopen.com/articles/show/title/zitterbewegung-
trembling-motion-of-electrons-in-graphene

Participation of the author: 70%.

This is a chapter of the book published electronically and in the paper form. It reviews the
results of the authors for the phenomenon of ZB in graphene. The paper also contains a new
result: exact and analytical solutions of the equations of motion for the operators aft) and a™(1)
for graphene electron in a magnetic field. The electron motion consists of many components
with intraband as well as interband frequencies (the ZB oscillations). The solutions are
obtained at the operator form without introducing the wave packet as in paper "3" of the
present work. After averaging the equations of motion over the wave packet, the same results

as those in paper “3” are obtained.
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