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We consider the many-body ground state of polarized fermions interacting via zero-range p-wave forces
in a one-dimensional geometry. We rigorously prove that in the limit of infinite attractions spectral
properties of any-order reduced density matrix describing arbitrary subsystem are completely independent
of the shape of an external potential. It means that quantum correlations between any two subsystems are in
this limit insensitive to the confinement. In addition, we show that the purity of these matrices quantifying
the amount of quantum correlations can be obtained analytically for any number of particles without
diagonalizing them. This observation may serve as a rigorous benchmark for other models and methods
describing strongly interacting p-wave fermions.
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Motivation.—Over the last two decades, there has
been growing interest in the properties of one-dimensional
systems composed of particles confined in trapping poten-
tials,which are described bygenericHamiltoniansof the form

H ¼
XN
i¼1

�
−
1

2

∂
2

∂x2i
þ VðxiÞ þ

XN
j¼iþ1

Uðxi − xjÞ
�
; ð1Þ

where VðxÞ and UðxÞ are the trapping and interacting
potentials, respectively. In particular, in the light of experi-
mental progress with ultracold atomic systems, much effort
has been devoted to a better understanding of properties of
systems of bosons and two-component fermionic mixtures
interacting via s-wave zero-range interactions,UðxÞ ¼ gδðxÞ
(for general reviews see Refs. [1–5]). In contrast, despite
the growing experimental activity [6–11], relatively little
theoretical attention has been paid to one-component systems
of polarized fermions interacting via zero-range p-wave
forces [12–18]. In one-dimensional geometry, they are
represented by the following differential operator:

UðxÞ ¼ −
gF
2

∂⃖

∂x
δðxÞ ∂⃗

∂x
; ð2Þ

where gF is the effective p-wave interaction strength. One of
the fundamental results on p-wave fermions in one
dimension, following observation by Girardeau [19], was
given in [20]. It was rigorously proven that, independently of
the trapping potential, for any gF the many-body ground
state Ψðx1;…; xNÞ of the Hamiltonian (1) can be derived
directly from the many-body ground state ΨBðx1;…; xNÞ of
one-component s-wave bosonic system obtained for
interaction strength g ¼ −2=gF via antisymmetrization

transformation of the form Ψðx1;…; xNÞ ¼ Aðx1;…; xNÞ
ΨBðx1;…; xNÞ, where Aðx1;…; xNÞ ¼ Πi<jsgnðxi − xjÞ.
This mapping turned out to be exceptionally useful for
systems confined in a homogenous box potential where
Bethe ansatz can be exploited [18,21]. Although, in principle,
the transformation gives a route to determine the ground-state
wave function of p-wave fermions from the corresponding
bosonic system,due to its nontrivial structure there is nodirect
mapping of different properties between these systems.
Particularly, mutual correlations encoded in reduced density
matrices cannot be deduced from correlations in bosonic
counterparts.
The mapping is particularly convenient in limiting

interaction strengths. For example, the wave function of
bosonic gas in the Tonks-Girardeu limit (g → þ∞) can be
easily obtained from the many-body wave function of
noninteracting fermions expressed as symmetrized Slater
determinant of N single-particle orbitals determined by
potential VðxÞ. This observation triggered a progress in
better understanding of strongly repulsive bosonic systems.
On the opposite, the ground state of infinitely strongly
attracting p-wave fermions (gF → −∞) is mapped from the
noninteracting ground state of bosonic system, i.e., it
depends only on one function ϕðxÞ being the lowest
eigenstate of a single-particle Hamiltonian. In this limit
the many-body ground-state wave function of p-wave
fermions has a form

Ψðx1;…; xNÞ ¼
YN
i¼1

�
ϕðxiÞ

YN
j¼iþ1

sgnðxi − xjÞ
�
: ð3Þ

It suggests that knowledge of the ground-state function
ϕðxÞ is necessary to determine any properties of p-wave
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fermions in the limit of strong attraction gF → −∞. Thus,
to get quantitative predictions, typically one assumes that
external potential is uniform [22] or parabolic [23,24]. We
show in the following that this kind of assumption is not
needed if any internal correlations between subsystems are
considered.
Internal correlations.—The most general object encod-

ing internal correlations in any many-body system of
indistinguishable particles is the whole set of p-particle
reduced density matrices (p-RDM) [25–27]. They are
obtained by considering the subsystem of p particles
and by integrating out remaining part from the density
matrix

ρðpÞðxp; x0pÞ ¼
Z

dqpΨ�ðxp; qpÞΨðx0p; qpÞ; ð4Þ

where xp ¼ ðx1;…; xpÞ and qp ¼ ðxpþ1;…; xNÞ. Utilizing
the known form of the many-body ground-state wave
function (3) it is straightforward to show that p-RDM
can be written as

ρðpÞðxp; x0pÞ ¼ Pðxp; x0pÞN−p
Yp
i¼1

ϕðxiÞϕðx0iÞ

×
Yp
j¼iþ1

sgnðxi − xjÞsgnðx0i − x0jÞ; ð5Þ

where

Pðxp; x0pÞ ¼
Z

dzϕ2ðzÞ
Yp
i¼1

sgnðxi − zÞsgnðx0i − zÞ: ð6Þ

From the physical perspective, it is extremely useful to
represent any p-RDM in a diagonal form as

ρðpÞðxp; x0pÞ ¼
X
k

λðpÞk ukðxpÞu�kðx0pÞ; ð7Þ

where eigenvalues λðpÞk and eigenorbitals ukðxpÞ fulfill the
integral eigenequation

Z
dx0pρðpÞðxp; x0pÞukðx0pÞ ¼ λðpÞk ukðxpÞ: ð8Þ

Eigenvalues λðpÞk directly determine quantum entanglement
between parties after dividing the system into p and N − p
particles. They are also used to identify different structures
of the many-body states, such as p-order coherence and
fragmentation [28,29] or off-diagonal long-range order to
indicate the collective formation of pairs (p ¼ 2) [30] or
triples (p ¼ 3) [31,32]. It is also clear that if the eigenvalues
are known for any p, complete knowledge of internal
correlations in the system can be extracted. There are a

plethora of different quantities describing correlations.
In the following, we use one of the simplest—the partici-
pation number defined as KðpÞ ¼ 1=Tr½ðρðpÞÞ2� [33]. This
number, being the inverse of the quantum purity PðpÞ ¼
Tr½ðρðpÞÞ2� ¼ P

k ðλðpÞk Þ2, can be viewed as an effective
number of eigenorbitals decomposing the reduced density
matrix ρðpÞ. It is worth mentioning that, although these
quantities are introduced purely on theoretical grounds,
there are experimental paths to capture them [34,35].
Universality of p-wave fermions.—It is clear that the

ground function ϕðxÞ enters to the expression of any
p-RDM in a very nontrivial way. Therefore, one suspects
that their spectral properties are strongly related to the
external potential VðxÞ. This reasoning is also very intuitive
since in other one-dimensional systems we observe a strong
influence of external confinement on internal entangle-
ment. Particularly, it is true for the Tonks-Girardeu gas of
infinitely repulsively interacting bosons. In contrast to this
intuitive picture in the following we rigorously show that

eigenvalues λðpÞk are completely independent of the confine-
ment for arbitrary p, while corresponding eigenorbitals
ukðxpÞ obtained for different confinements are related via a
straightforward, analytical transformation.
To present reasoning as clearly as possible, let us first

show the universality of the decomposition for the 1-RDM.
In this case, expression (5) simplifies to the known
form [22]

ρð1Þðx; x0Þ ¼ ϕðxÞϕðx0Þ

×

�Z
dzϕ2ðzÞsgnðx − zÞsgnðx0 − zÞ

�
N−1

:

ð9Þ

Now, let us consider the cumulative distribution function
FðxÞ built from the single-particle distribution ϕ2ðxÞ
defined as

FðxÞ ¼
Z

x

−∞
dzϕ2ðzÞ: ð10Þ

By performing a simple change of variables ξ ¼ FðzÞ
[dξ ¼ ϕ2ðzÞdz], y ¼ FðxÞ, and y0 ¼ Fðx0Þ and making a
transformation ukðxÞ ¼ ϕðxÞvk½FðxÞ� one finds that the
original eigenproblem

Z
dx0ρð1Þðx; x0Þukðx0Þ ¼ λð1Þk ukðxÞ ð11Þ

is uniquely transformed to another ϕ-independent eigen-
problem

Z
1

0

dy0ρð1Þ0 ðy; y0Þvkðy0Þ ¼ λð1Þk vkðyÞ; ð12Þ
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where

ρð1Þ0 ðy; y0Þ ¼
�Z

1

0

dξsgn½F−1ðyÞ − F−1ðξÞ�

× sgn½F−1ðy0Þ − F−1ðξÞ�
�
N−1

:

Now, we can utilize the fact that the distribution (10)
and its inverse are growing functions of their arguments
{sgn½F−1ðaÞ − F−1ðbÞ� ¼ sgnða − bÞ}. This simplifies
expression further to manifestly ϕ-independent form

ρð1Þ0 ðy; y0Þ ¼
�Z

1

0

dξsgnðy − ξÞsgnðy0 − ξÞ
�

N−1

¼ ð1 − 2jy − y0jÞN−1: ð13Þ

It is quite easy to show that the proposed transformation
preserves the inner product between orbitals,

Z
dxukðxÞuk0 ðxÞ ¼

Z
dxvk½FðxÞ�vk0 ½FðxÞ�ϕ2ðxÞ

¼
Z

1

0

dyvkðyÞvk0 ðyÞ: ð14Þ

Importantly, the original density matrix ρð1Þðx; x0Þ has

exactly the same eigenvalues λð1Þk as the transformed density

matrix ρð1Þ0 ðy; y0Þ. All that means that the task of solving the
original eigenproblem (11) can be always reduced to the
simpler task of solving the universal ϕ-independent eigen-
problem (12). Consequently, the spectral properties of the
1-RDM (9) do not depend on the ground function ϕðxÞ,
ergo they do not depend on the shape of the external
potential VðxÞ.
Essentially, the proof for higher p-RDMs is very

analogous. The transformation of variables from xp to
yp should be performed on all vector elements simulta-
neously, i.e., yp ¼ FðxpÞ and y0p ¼ Fðx0pÞ. After that
(utilizing again monotonicity of the cumulative distribu-
tion) the original eigenproblem (8) is transformed into the
form

Z
1

0
dy0pρ

ðpÞ
0 ðyp; y0pÞvkðy0pÞ ¼ λðpÞk vkðypÞ; ð15Þ

with the transformed p-RDM being independent on the
ground function ϕðxÞ

ρðpÞ0 ðyp; y0pÞ ¼ P0ðyp; y0pÞN−p

×
Yp
i¼1

Yp
j¼iþ1

sgnðyi − yjÞsgnðy0i − y0jÞ; ð16Þ

where

P0ðyp; y0pÞ ¼
Z

1

0

dξ
Yp
i¼1

sgnðyi − ξÞsgnðy0i − ξÞ:

The transformation between eigenorbitals is also analo-
gous, ukðxpÞ ¼ ½Πp

i¼1ϕðxiÞ�vk½FðxpÞ�. The rigorous argu-
mentation presented above shows that eigenvalues of any
p-RDM calculated for strongly attractive p-wave fermions
have universal values and are completely independent of
the shape of an external potential.
Minimalistic example.—The proven universality has not

only fundamental meaning but brings also practical con-
sequences since it provides the universal upper bounds on
multicomponent correlations forced by interactions in any
one-dimensional p-wave fermionic system. To illustrate
that, let us consider the simplest system of N ¼ 2 fermions
confined in two very different potentials, i.e., pure para-
bolic trap, VðxÞ ¼ x2=2, and a deep double-well trap,
VðxÞ ¼ x2=2þ 4e−x

2=2. In these cases, the ground-state
wave function can be easily obtained numerically for any
interaction strength gF (via mapping from two-boson
solutions). Simultaneously, all correlations between par-
ticles are encoded in corresponding 1-RDM which can be
quite easily diagonalized numerically on a dense grid for
any interaction strength gF [24].
Of course, in the noninteracting case, the ground-state

wave function is provided by a single Slater determinant
of the two lowest single-particle orbitals. Thus, the
1-RDM has only one nonzero doubly degenerated eigen-
value equal to 1=2 [Fig. 1(a)]. Then, along with increasing
attractive interactions, other single particle orbitals start to
contribute to the ground state, their eigenvalues become
nonzero, the participation number grows monotonically
[Fig. 1(b)], and the state becomes entangled [36,37].
It is clear that for a given interaction strength the number
Kð1Þ depends also on the shape of an external potential
(red and green curves for parabolic and double-well
potentials, respectively). In the limit of infinite attractions
(gF → −∞), however, corresponding eigenvalues of
1-RDM become exactly the same and the participation
Kð1Þ saturates on the universal value. Concurrently,
corresponding 1-RDMs are completely different and have
significantly distinct spatial shapes [see Fig. 1(c)]. It turns
out that in this case, all the spectral properties of the
1-RDM can be found analytically, i.e., one can find exact
solutions of the eigenproblem (12). All the eigenvalues of

ρð1Þ0 ðy; y0Þ are doubly degenerated and equal to λð1Þk ¼
½2=πð2k − 1Þ�2, while corresponding eigenorbitals

have a form vðþÞ
k ðyÞ ¼ ffiffiffi

2
p

sin½ð2k − 1Þπy� and vð−Þk ðyÞ ¼ffiffiffi
2

p
cos½ð2k − 1Þπy�. It means that the dominant eigenvalue

λð1Þ1 and the participation Kð1Þ saturate at 4=π2 and 3,
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respectively (horizontal dashed lines in Figs. 1(a)
and 1(b). They agree with previous results obtained for
box potential [18]. Let us mention here that in the case
of two bosons confined in these potentials, 1-RDM
is no longer universal. In the limit of infinitely strong
repulsions, the two largest eigenvalues are (0.7735,
0.1712) and (0.5847, 0.4127) (participations 1.583 and
1.952) for the harmonic and the double-well potential,
respectively.
High-order correlations.—The proven spectral uni-

versality of reduced density matrices may be also utili-
zed when higher-order correlations (encoded in higher
p-RDMs) are considered. For some purposes, it does not
even require solving the universal eigenproblem (15). For
example, thanks to (16), one can straightforwardly show
that the purity PðpÞ may be expressed as a pure polynomial
multiple integral of the form

PðpÞ ¼
Z

1

0
dyp

Z
1

0
dy0pP0ðyp; y0pÞ2ðN−pÞ

¼ ð2pÞ!
Z

1

0

dy1

Z
1

y1

dy01

Z
1

y0
1

dy2

Z
1

y2

dy02…

…

Z
1

y0p−1

dyp

Z
1

yp

dy0p

�
1þ 2

Xp
i¼1

ðyi − y0iÞ
�2ðN−pÞ

: ð17Þ

In principle, it means that in the limit of infinite attractions,
the purity can be calculated analytically for anyN and p (of
course, independently of the shape of an external potential).
In practice, calculating this kind of integral is arduous and
can be performed only with symbolic calculus software. As
an instructive example, in Fig. 2 we show the participation

KðpÞ
∞ calculated analytically in this limit for p ¼ 1;…; 4

(different colors) and p ¼ N=2 (solid black line) as
functions of the number of particles N. The latter gives
the upper limit for all lower-p participations. In this way we
determine rigorously, the amount of correlation that can be
obtained in systems of strongly interacting p-wave fer-
mions regardless of the shape of the trapping potential. It is
evident that the number of eigenorbitals contributing
significantly in the decomposition (7) grows rapidly with
N and p signaling a quick boost of quantum correlations.
We find that depending on p, the participation changes

from linear (Kð1Þ
∞ ¼ 2N − 1) to exponential-like (numerical

fit provides approximate dependence KðN=2Þ
∞ ∼ 2N).

Final remarks.—In principle, the identified universality
holds for any number of particles. However, since
the gap to excited many-body states decreases with grow-
ing N, for sufficiently large particle numbers experimental

FIG. 1. Spectral properties of 1-RDM for the system of N ¼ 2
p-wave fermions confined in a parabolic trap (red) and double-
well potential (green). (a) The two largest eigenvalues (doubly
degenerated) as functions of interactions. For finite interactions,
spectral decomposition depends on the shape of external trap-
ping. However, in the limit of infinite attractions, all eigenvalues
saturate on corresponding universal values (dashed lines, here
4=π2 and 4=9π2). (b) Participation number Kð1Þ as a function of
interaction. Depending on external potential, the number grows
monotonically with different slopes. However, independently of
confinement, it always saturates at the universal value (dashed

line at Kð1Þ
∞ ¼ 3). (c) 1-RDM in the position domain ρð1Þðx; x0Þ

obtained in the limit of infinite attractions gF → −∞ for two
different confinements. Although these two density matrices are
substantially different, due to the universality proven, they have
exactly the same eigenvalues.
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FIG. 2. Universal participation number KðpÞ
∞ calculated for four

of the lowest p-RDMs and different numbers of particles N
(different colors). The solid black line corresponds to the
participation obtained for the bipartition of the system
(p ¼ N=2). For convenience, in all the cases, we display the

difference between KðpÞ
∞ and its value for a noninteracting system,

KðpÞ
0 ¼ N!=p!ðN − pÞ!.
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observation of the universality may be challenging. This
obviously depends also on the shape of confinement.
Universal features of quantum correlations are direct

consequences of the form of the ground state (3).
Therefore, the reasoning can be easily applied to any state
having such a representation, using an appropriate cumu-
lative distribution. Unfortunately, excited states of the
system under study do not necessarily have such a
representation. Therefore, the question of whether their
correlations manifest any universality remains open and
requires further investigation.
Finally, let us also mention that our results suggest that the

universality can be used as a tool to indicate states that cannot
be achieved as a many-body ground state. For example, as
noticed previously in a two-particle system, the participation

Kð1Þ never exceeds universal value Kð1Þ
∞ ¼ 3. If this is true,

one can immediately argue that states with larger Kð1Þ,
potentially interesting from the quantum information point
of view, are not achievable as the ground state of N ¼ 2
p-wave fermions independently on interaction strength and
shape of the confinement. One of such states is the entangled
Slater-rank-two state [36–38] build as an equal superposition
of two distinct Slater determinants (the participation Kð1Þ for
this state is equal to 4). Since the universal behavior is
formulated for any p-RDM, similar reasoning can be also
applied for higher-order correlations when a larger number of
particles is considered. In fact, for a given number of particles
N, considering all possible upper bounds derived for different
p significantly reduces the space of many-body states
attainable in the interacting ground state of p-wave fermions.
From this point of view, deeper studying of all limitations
forced by recognized universality may bring a better under-
standing of different p-wave fermions systems also for finite
interactions.

The work by T. S. was supported as part of a project
funded by the Polish Ministry of Education and Science on
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