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Signatures of unconventional pairing in spin-imbalanced one-dimensional few-fermion systems
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A system of a few attractively interacting fermionic 6Li atoms in one-dimensional harmonic confinement is
investigated. Nontrivial interparticle correlations induced by interactions in a particle-imbalanced system are
studied in the framework of the noise correlation. In this way, it is shown that evident signatures of strongly
correlated fermionic pairs in the Fulde-Ferrell-Larkin-Ovchinnikov state are present in the system and they can
be detected by measurements directly accessible within state-of-the-art techniques. The results convincingly
show that the exotic pairing mechanism is a very universal phenomenon and can be captured in systems being
essentially nonuniform and far from the many-body limit.
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I. INTRODUCTION

One of the cornerstones of our understanding of strongly
correlated states of quantum matter is based on the theory of
superconductivity by Bardeen, Cooper, and Schrieffer [1]. In
this theory, the existence of the superconducting phase is ex-
plained following the fundamental observation by Cooper [2]
that the ground-state energy of an attractively interacting sys-
tem is significantly decreased by the collective formation of
Cooper pairs—nontrivially correlated states of two fermions
with exactly opposite momenta. Based on this idea of collec-
tive pairing, a plethora of other pairing mechanisms have been
proposed and investigated [3–5]. One of the most influential
extensions of the Cooper’s idea comes from the observation
that in the case of imbalanced systems, due to the mismatch
of Fermi spheres of different components, the formation of
correlated pairs forced by attractive mutual interactions is
inseparably connected with a resulting nonzero net momen-
tum of the pair [6,7]. This unconventional pairing mechanism
named after Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO)
has been extensively examined theoretically, mostly in the
case of various solid-state systems such as iron-based super-
conductors [8–12], heavy-fermion compounds [11,13–16], or
organic conductors [17–19]. However, it is also viewed as one
of the possible ways to understand the fundamental properties
of neutron stars [20–22], specific quantum chromodynamics
models [23], or fermionic ultracold gases [24]. The latter
example is of high importance since ultracold atomic systems,
due to their tremendous tunability, are believed to be the best
candidates for experimental observations of the FFLO state.
Unfortunately, to date, the FFLO state is ephemeral and there
are only indirect signs of this state of matter (see Ref. [25] for
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a recent review). Therefore, alternative theoretical approaches
are proposed to capture the correlations, including the usage
of bosons [26], and dynamical processes [27].

In this Rapid Communication, we show that the many-body
ground state of a few 6Li atoms confined in a harmonic trap
(in the presence of mutual attractions) possesses many char-
acteristic properties of the FFLO state which can be experi-
mentally captured. For example, if one would combine recent
progress in preparing spin-imbalanced few-fermion systems
[28] with the recently achieved development in measuring
correlations between opposite spin fermions [29], and perform
the theoretical analysis of the obtained data along the recipe
described here, then the most notable hallmark of the FFLO
phase can be observed—the direct linear relation between the
most probable net momentum of the pair q0 and the momen-
tum mismatch between Fermi surfaces �pF (see Fig. 1 with
predictions for different numbers of particles and different
spin imbalances). Concurrently it should be emphasized that,
in contrast to a recent proposal [30], our approach is based on
quantities which can be directly measured with currently used
techniques and does not require any significant modifications
to the experimental setups.

II. MODEL

Although our approach is very general and can be adopted
to different fermionic systems confined in one-dimensional
traps, we focus on a particular experimental realization—the
few-fermion mixture of 6Li atoms achieved currently almost
on demand in Heidelberg [28]. From a theoretical point of
view, the system can be well described with the second-
quantized Hamiltonian of the form

Ĥ =
∑

σ

∫
dx �̂†

σ (x)

(
− h̄2

2m

d2

dx2
+ 1

2
mω2x2

)
�̂σ (x)

+ g
∫

dx �̂
†
↑(x)�̂†

↓(x)�̂↓(x)�̂↑(x), (1)
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FIG. 1. The most probable FFLO momentum q0 as a function of
the Fermi momenta mismatch �pF. Different points correspond to
a different number of particles and different imbalances. An exact
description of each point is given in Fig. 4 in the Appendix. For
clarity we do not show the point q0 = �pF = 0 corresponding to the
balanced scenario (N↑ = N↓). The gray dashed straight line guiding
the eye corresponds to phenomenologically predicted relation q0 =
�pF . Visible deviations from this prediction are ramifications of the
finite number of particles and simplifications explained in the main
text.

where ω ≈ 2π × 1.488 kHz is the frequency of the external
harmonic trap, m is the mass of a 6Li atom, and g is the
effective one-dimensional interaction strength [31]. The latter
can be experimentally tuned by changing an external magnetic
field and particularly it can become negative (effectively at-
tractive interactions) [32]. In the following, we assume that
g is fixed by the external magnetic field B = 1202 G (see
Table III in Ref. [32]). If one expresses all quantities in natural
units of the harmonic oscillator, i.e., energies in h̄ω = 9.86 ×
10−31 J, positions in

√
h̄/mω = 1.06 μm, and wave vec-

tors in
√

mω/h̄ = 0.95 μm−1, then the assumed interaction
strength corresponds to g = −1. The fermionic field operator
�̂σ (x) annihilates a σ -component fermion at a position x and
obeys standard anticommutation relations {�̂σ (x), �̂†

σ ′ (x′)} =
δ(x − x′)δσσ ′ . For further convenience, we introduce den-
sity operators in the position and momentum representa-
tions, ρ̂σ (x) = �̂†

σ (x)�̂σ (x) and π̂σ (p) = �̂†
σ (p)�̂σ (p), where

�̂σ (p) = ∫
dx �̂σ (x) exp(−ipx/h̄) is a Fourier transform of

the field operator �̂σ (x).
To perform appropriate calculations for a given number

of particles N↑ and N↓, we express the Hamiltonian (1)
as a matrix in the Fock basis of many-body eigenstates of
the noninteracting system {|Fi〉}. The basis is given as a
set of products of different Slater determinants of N↑ and
N↓ harmonic potential orbitals chosen appropriately for each
component. Since the Hilbert space grows exponentially along
with the number of particles and number of single-particle
orbitals, we restrict ourselves only to these Fock states which
have a noninteracting energy lower than some properly chosen
cutoff. As shown recently, as long as we are interested in the

many-body ground state of the system, this approach can be
applied effectively for any trapping potential and any number
of particles [33–37]. The resulting matrix representation of
the many-body Hamiltonian (1) is diagonalized using the
Arnoldi method [38] and the many-body ground state |G0〉 is
found as its decomposition coefficients in the noninteracting
basis {|Fi〉}.

III. RESULTS

Pairing between opposite component fermions, even if
actually present in the system, is very resistant to detection.
In principle, it requires experimental access to all possible
two-particle measurements, i.e., a complete two-particle
reduced density matrix (2RDM) is needed. Recently, there
were many attempts to measure interparticle correlations in
different scenarios [39–44] but all of them give access only to
the diagonal parts (two-particle density profiles) rather than a
complete 2RDM. Therefore some other theoretical framework
is needed to capture the mutual correlations. Fortunately, it
was argued [45–48] that higher-order correlations induced
by interactions can be extracted from pure diagonal parts of
2RDM by an appropriate subtraction of spurious correlations.
Spurious correlations arise also in the absence of interactions,
independently of the quantum statistics, and depend only
on single-particle densities. In the case of a two-component
mixture of distinguishable fermions, the so-called two-point
noise correlation G is a convenient tool to unravel the quantum
correlations from the trivial background [37,45,49,50].
It is defined respectively in the position and momentum
representation straightforwardly as

Gρ (x↑; x↓) = 〈ρ̂↑(x↑)ρ̂↓(x↓)〉 − 〈ρ̂↑(x↑)〉〈ρ̂↓(x↓)〉, (2a)

Gπ (p↑; p↓) = 〈π̂↑(p↑)π̂↓(p↓)〉 − 〈π̂↑(p↑)〉〈π̂↓(p↓)〉. (2b)

Note that in the noninteracting limit (g → 0), the noise cor-
relations (2) identically vanish. Therefore they can be inter-
preted as quantities measuring the amount of two-body corre-
lation in the system forced purely by interactions. Importantly,
it should be emphasized at this point that exactly this kind of
correlation was captured experimentally very recently [29] in
an optical lattice and can be applied to continuum systems as
well.

In Fig. 2 we plot noise correlations (2) for the system with
N↑ + N↓ = 10 particles and different imbalances �N = N↑ −
N↓. Without losing generality, in the following, we consider
only non-negative imbalances �N � 0. In the balanced case
�N = 0 [Figs. 2(a) and 2(f)] the Fermi spheres for both com-
ponents are exactly the same and the standard Cooper-pairing
mechanism occurs in the system [51]. Consequently, when
the noise correlation is considered, the pairing mechanism
is manifested by a strong anticorrelation of the fermions’
momenta—strong enhancement of the probability of finding
fermions with exactly opposite momenta p↑ = −p↓ is clearly
evident. This picture is substantially changed when the parti-
cle imbalance is introduced to the system [see Figs. 2(g)–2(j)].
It is quite evident that in these cases the antidiagonal enhance-
ment of correlations is split into two ridges which are pushed
out from the line p↑ + p↓ = 0. It means that in contrast to the
balanced scenario the most probable outcome of the two-point
momentum measurement is that paired fermions have nonzero
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FIG. 2. The noise correlation Gρ (Gπ ) in the position (momen-
tum) domain is presented in the left (right) column. (a)–(e) At-
tractive interactions enhance the probability of finding particles of
two species in the same position for different configurations of
N = N↑ + N↓ = 10 particles. (f) Simultaneously, the momenta are
anticorrelated for the same number in both components N↑ = N↓.
(g)–(j) Whenever the particle imbalance �N 
= 0 is introduced, there
is a visible shift in momentum that corresponds to the net momentum
of a correlated pair.

net momentum q0 = p↑ + p↓ 
= 0. It is also very clear that the
total momentum q0 monotonically increases with the imbal-
ance �N , which is one of the clearest signatures of FFLO-like
pairing. Moreover, in the balanced case (�N = 0), all mo-
menta (below maximal Fermi momentum) are accessible for

FIG. 3. Distribution of the net FFLO momentum Q(q) for the
system of N = 10 particles and subsequent particle imbalances
�N = 0, 2, 4, 6, 8. Clear maxima in momenta correspond to the
most probable net momentum q0 of the correlated pair for a given
imbalance. Inset: The most probable net momentum q0 as a function
of the Fermi momenta mismatch �pF. Results for different particle
numbers N are aggregated in Fig. 1.

fermions and they almost equally contribute to the collective
pairing mechanism [notice an almost flat distribution along
the antidiagonal for �N = 0 in Fig. 2(f)]. However, when
the system is imbalanced, particles with smaller momenta do
not contribute to the formation of pairs with net momentum
q0 [the empty region in the middle of the noise correlation
Gπ for �N > 0 in Figs. 2(g)–2(j)]. This kind of formation of
correlated pairs is another well-known property of the FFLO
mechanism [25,49].

In the next step we aim to find the most probable net
momentum of the pair q0 as a function of the imbalance �N .
For this purpose, we introduce the filtering procedure giving
us the possibility to quantify the occurrence of different FFLO
momenta q. In general, the filtering is done by convoluting the
noise correlation with an appropriately chosen filter function,

Q(q) =
∫

d p↑d p↓ F (p↑ + p↓ + q)Gπ (p↑; p↓). (3)

In our approach we choose the simplest Gaussian filtering
function F (ξ ) = (πκ )−1/2 exp(−ξ 2/2κ2), with κ being of the
order of the perpendicular width of the enhanced correlation
area. We checked that the final results are not sensitive to
the exact shape of the filtering function, since for reasonable
values of κ the most probable momentum q0 (the value for
which the measure Q(q) is maximum) does not change. In
Fig. 3 we plot the resulting function Q(q) for the system of
N = 10 particles and different imbalances �N . It is clear that
the balanced system (�N = 0) is characterized by vanishing
q0 (black curve). When the particle imbalance is increased,
the maximum moves towards higher absolute values of the
momenta.

Finally, to make a whole picture comprehensive, we make
a connection of the imbalance �N with the discrepancy
between Fermi momenta of both components �pF . In the
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case of an essentially nonhomogeneous system of a few
particles, the definition of the Fermi momentum is obviously
not straightforward since the system is not translationally
invariant. Particularly, it is no longer valid that the Fermi
momentum pFσ is proportional to the number of particles
Nσ . Moreover, due to a small number of particles, any ap-
proaches based on the local density approximation being
appropriate for a large number of particles (see, for example,
Refs. [49,52,53]) are also not adequate. To overcome this
difficulty, let us first notice that the well-determined quantity
is the Fermi energy in the limit of weak interactions, εFσ =
h̄ω(Nσ − 1/2). This energy defines the maximal value of the
momentum which is accessible for the particle moving on the
Fermi surface, pFσ = √

2mεFσ . In the semiclassical picture,
this is a momentum gained by a particle when it passes
through the middle of the trap. If we associate the Fermi
momentum with this quantity, then we immediately find a
phenomenological connection between the imbalance �N and
the maximal discrepancy of the Fermi momenta �pF . When
momenta are expressed in the natural unit

√
h̄mω, then this

relation reads

�pF ≈ pF↑ − pF↓ =
√

2

(
N↑ − 1

2

)
−

√
2

(
N↓ − 1

2

)
. (4)

Applying this definition, in the inset of Fig. 3 we plot the
most probable net momentum of the pair q0 as a function of
the discrepancy �pF for N = 10. It is clearly evident that all
points lie almost exactly on the straight line. The situation
is very similar if one repeats this procedure for a different
number of particles. In Fig. 1 we show numerical results for
N = 3, . . . , 14 and different imbalances �N . All these points
almost ideally support the relation q0 ≈ �pF (dashed line)
and display one of the fundamental consequences of the FFLO
pairing mechanism—the net momentum of the Cooper pair is
equal to the Fermi momenta discrepancy, q0 = �pF .

Finally, let us discuss the evident deviations between
numerical results and predictions of our phenomenological
derivation. They can be explained on three levels. (i) It is
clear that the definition of the momentum mismatch �pF is
very phenomenological and simplified. It focuses only on one
momentum associated with the Fermi level. Therefore it may
predict only a general trend rather than an exact relation. (ii) It
is known that the relation between the FFLO momentum and
the components’ Fermi momenta is, in fact, more complicated
when interactions and an effective pairing potential are taken
into account. For example, as discussed in Ref. [54], even a
simplified inclusion of an effective pairing potential immedi-
ately leads to increasing of the FFLO momentum. This effect
is clearly seen in Fig. 1 (all points are shifted towards larger
q0). Moreover, as clearly evident in Fig. 3, the distribution
of possible FFLO momenta becomes very wide for larger
imbalances. Therefore, choosing a single q0 to characterize a
whole distribution is evidently oversimplified. (iii) The theory
of FFLO pairing explains the appearance of correlations in
terms of the collective cooperation of all particles in the
system. Therefore, it gives rigorous relations only for a large
number of particles. From this point of view, the existence of
some finite-size corrections is quite natural. They lead to small
shifts of particular points in Fig. 1.

IV. CONCLUSIONS

In summary, we showed—based on exact numerical
calculations—that in the confined one-dimensional system of
a few attractively interacting fermionic 6Li atoms, the FFLO
pairing mechanism is clearly manifested and can be detected
with current experimental techniques. Taking into account
the tremendous tunability of ultracold systems, our proposal
not only opens another route for the direct experimental
confirmation of unconventional pairing forced by broken sym-
metry between components, but also reveals an additional
tool for studying the appearance of collectiveness when the
quantum system undergoes a transition from the few to the
many-body limit. At this point, we want also to mention that
the FFLO mechanism can be considered for spin-balanced
few-body systems but with different mass atoms [55]. Taking
into account the huge experimental progress in controlling
mass-imbalanced Fermi mixtures [56–58], this possibility is
also in game. It should be noted, however, that the few-body
regime for these kinds of systems has not yet been achieved.
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FIG. 4. The most probable FFLO momentum q0 as a function
of the Fermi momenta mismatch �pF. Different points correspond
to a different number of particles and different imbalances. Labels
linked to particular points denote the number of particles (N↓, N↑).
For clarity we do not show the point q0 = �pF = 0 corresponding
to the balanced scenario (N↑ = N↓).

012077-4



SIGNATURES OF UNCONVENTIONAL PAIRING IN … PHYSICAL REVIEW RESEARCH 2, 012077(R) (2020)

APPENDIX

As explained in the main text, Fig. 1 shows a linear relation
between the most probable net momentum of the pair q0

and the momentum mismatch of Fermi spheres �pF . The

universality of this relation is supported by exact numerical
results obtained for different configurations (N↑, N↓) of the
system studied. Each configuration is represented by a black
dot on the plot. In Fig. 4 we redraw these results and explicitly
give labels denoting these configurations.
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(2014).

[20] M. Alford, J. Bowers, and K. Rajagopal, J. Phys. G: Nucl. Part.
Phys. 27, 541 (2001).

[21] V. Cirigliano, S. Reddy, and R. Sharma, Phys. Rev. C 84,
045809 (2011).

[22] A. Sedrakian and J. W. Clark, Eur. Phys. J. A 55, 167 (2019).
[23] R. Casalbuoni, R. Gatto, N. Ippolito, G. Nardulli, and M.

Ruggieri, Phys. Lett. B 627, 89 (2005).

[24] Y.-a. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge,
R. G. Hulet, S. K. Baur, and E. J. Mueller, Nature (London)
467, 567 (2010).

[25] J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen, and P. Törmä,
Rep. Prog. Phys. 81, 046401 (2018).

[26] M. Singh and G. Orso, arXiv:1911.03448.
[27] T. Kawamura, R. Hanai, D. Kagamihara, D. Inotani, and Y.

Ohashi, Phys. Rev. A 101, 013602 (2020).
[28] F. Serwane, G. Zürn, T. Lompe, T. Ottenstein, A. Wenz, and S.

Jochim, Science 332, 336 (2011).
[29] A. Bergschneider, V. M. Klinkhamer, J. H. Becher, R. Klemt,

L. Palm, G. Zürn, S. Jochim, and P. M. Preiss, Nat. Phys. 15,
640 (2019).

[30] P. O. Bugnion, J. A. Lofthouse, and G. J. Conduit, Phys. Rev.
Lett. 111, 045301 (2013).

[31] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[32] G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider, T.

Lompe, and S. Jochim, Phys. Rev. Lett. 111, 175302 (2013).
[33] T. Haugset and H. Haugerud, Phys. Rev. A 57, 3809 (1998).
[34] F. Deuretzbacher, K. Bongs, K. Sengstock, and D. Pfannkuche,

Phys. Rev. A 75, 013614 (2007).
[35] M. Płodzień, D. Wiater, A. Chrostowski, and T. Sowiński,
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