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To perform efficient many-body calculations in the framework of the exact diagonalization of the Hamilto-

nian one needs an appropriately tailored Fock basis built from the single-particle orbitals. The simplest way to
compose the basis is to choose a finite set of single-particle wave functions and find all possible distributions of
a given number of particles in these states. It is known, however, that this construction leads to very inaccurate
results since it does not take into account different many-body states having the same energy on equal footing.
Here we present a fast and surprisingly simple algorithm for generating the many-body Fock basis built from
many-body Fock states having the lowest non-interacting energies. The algorithm is insensitive to details of the
distribution of single-particle energies and it can be used for an arbitrary number of particles obeying bosonic or
fermionic statistics. Moreover, it can be easily generalized to a larger number of components. Taking as a simple
example the system of two ultra-cold bosons in an anharmonic trap, we show that exact calculations in the basis
generated with the algorithm are substantially more accurate than calculations performed within the standard
approach.
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1. Introduction

The exact diagonalization of the many-body Hamil-
tonian [1–3] is one of the simplest and straightforward
methods of finding the ground state of the system of in-
teracting quantum particles. It relies on a simple obser-
vation that having defined a finite set of D Fock states |i〉
(i ∈ 1, . . . ,D) one can calculate all matrix elements of
the Hamiltonian Ĥ of the system, Hij = 〈i|Ĥ|j〉, and
numerically diagonalize corresponding matrix. As a re-
sult one obtains approximate decomposition of system’s
eigenstates into defined Fock basis |Ψi〉 =

∑
i αi|i〉 and

their eigenenergies Ei. Obviously, the accuracy of this
straightforward method strongly depends not only on the
number of the Fock states used for calculations but also
on a particular method the states are chosen from the
infinite set of all possible Fock states.

In typical physical scenario the total Hamiltonian of
the many-body system can be divided to the sum of
single-particle Hamiltonians describing dynamics of par-
ticles confined in an external potential V (r) and the re-
maining part describing mutual interactions between par-
ticles, i.e., the many-body Hamiltonian of N particles has
a form

Ĥ =

N∑
i=1

[
− ~2

2m

∂2

∂r2i
+ V (ri)

]
+ Ĥint. (1)

Here we do not specify what the form of the interaction
Hamiltonian Ĥint is. In the most general case, it nontriv-
ially depends on all particles’ positions {r1, . . . , rN} and

∗corresponding author; e-mail: tomsow@ifpan.edu.pl

their derivatives. In the following, we assume that the
single-particle part of the Hamiltonian is already diago-
nalized and all its eigenstate ϕk(r) and their eigenener-
gies εk (sorted along ascending order) are known. Hav-
ing these states, it is very convenient to consider many-
body Hilbert space of N particles as spanned by the Fock
states built from these single-particle orbitals. It means
that any Fock state can be written formally in the sec-
ond quantization formalism as a sequence of numbers of
particles occupying individual orbitals
|i〉 = |n0n1 . . .〉, (2)

with
∑
k nk = N . Of course, in the case of fermionic

particles, an additional constraint has to be imposed as-
suring that for any k occupation nk ∈ {0, 1}. In this way,
quantum indistinguishability and statistics are taken into
account. The non-interacting energy of this state is
Ei =

∑
k nkεk. This notation immediately suggests one

of the simplest methods of limiting the size of the Fock
space and choosing only D of them as required by any
numerical method based on diagonalization [4]. Namely,
one limits the number of single-particle orbitals to some
chosen cut-off C, k ∈ {0, . . . , C}, and use them to build all
possible Fock states for further calculations. In this ap-
proach, to increase the numerical accuracy of the many-
body diagonalization, one slightly modifies a shape of
single-particle orbitals [5] or increases the cut-off C. Un-
fortunately, along with increasing cut-off C the number of
Fock states grows exponentially (DC = (C +N)!/(C!N !)
and DC = (C + 1)!/[(C − N + 1)!N !] for bosons and
fermions, respectively). In consequence, the method is
naturally limited by numerical resources (mainly by avail-
able memory and computational time) and it is com-
monly viewed as very demanding from a computational
perspective.
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To limit exponential growth of the considered Hilbert
space one can change the way the Fock basis is con-
structed. As discussed in the literature (see for exam-
ple [6–8]), generating the Fock basis directly from the
limited number of single-particle states is not the most
efficient way of obtaining well-converged results, since in
that case an energetic hierarchy in the Fock basis is com-
pletely neglected. Namely, this approach takes into ac-
count the Fock states with relatively large energies fitting
to small cut-offs C and neglects at the same time other
Fock states with substantially lower energies but having
larger single-particle excitations. As argued in [8], to in-
crease the accuracy of the exact diagonalization without
extending numerical efforts, one should select Fock states
with the lowest non-interacting energy Ei =

∑
k nkεk

rather than states with the lowest excitations k ≤ C.
In general, selecting the Fock states {|i〉} having the

lowest non-interacting energy is not a trivial task. Only
in the case of equally distributed single-particle energies
εk − εk−1 = ∆ (like in the one-dimensional parabolic
confinement) it can be done quite easily since then the
non-interacting energies can be represented uniquely by
integer numbers. Consequently, the problem can be re-
duced to the task of finding different partitions of an
integer (representing the non-interacting energy) into
a fixed number of parts (representing individual parti-
cles) [9]. A detailed explanation is presented for exam-
ple in [8]. Unfortunately, a simple generalization of this
approach to cases when single-particle energies are not
equally distant does not exist. Therefore, one needs to
apply a direct selection of states with the lowest non-
interacting energy from a basis of states having the low-
est excitations (determined by a single-particle cut-off
C). This, however, is very inefficient and consumes huge
amounts of computational facilities (memory and com-
putation time). Consequently, its usefulness is strongly
limited.

In this work, we present a simple numerical algorithm
of generating the cropped Fock basis for N particles
(bosons as well as fermions) in the general case of any
complete set of single-particle orbitals ϕk(r) having as-
cending single-particle energies ε0 ≤ ε1 ≤ . . .. As the in-
put, the algorithm requires only one parameter, namely
the maximal energy E of states in generated Fock ba-
sis. As a result one obtains a complete set of all DE
Fock states having energy no larger than declared max-
imal energy E. Importantly, an order of states in the
generated set is well-known since automatically they are
sorted lexicographically. Therefore, one can easily find
not only i-th Fock state but also perform reversed identi-
fication on demand and find the index i of the Fock state
represented by its occupations. This property of the set
is crucial for quick generation of a matrix representation
of a many-body Hamiltonian matrix. A fundamental ad-
vantage of the algorithm presented is that Fock states are
generated sequentially one-by-one in O(DE) time, i.e., an
improvement with respect to the case of a direct selection
method is tremendous.

2. The algorithm

Counterintuitively, the best way to present the algo-
rithm for generating the cropped Fock basis of states
with the lowest non-interacting energy is to represent the
Fock states in the first quantization formalism, i.e., in-
stead of the number of particles occupying single-particle
orbitals one needs to remember single-particle states oc-
cupied by individual particles. It means that the Fock
state |i〉 is represented by a set of N numbers (i1, . . . , iN )
rather than a vector (2) encoding occupations. The
relation between the two is straightforward. As an
example, the non-interacting ground-state of N = 4
bosons in both notations reads |1〉 = |40 . . .〉 = (0, 0, 0, 0)
while in the case of N = 4 fermions it has a form
|1〉 = |11110 . . .〉 = (0, 1, 2, 3). Since particles are indistin-
guishable, it is understood that the states encoded in the
first quantization are appropriately (anti)symmetrized
and only for simplicity they are represented by sets with
ascending numbers, i1 ≤ i2 ≤ . . . ≤ iN .

The idea of the algorithm is very similar for both quan-
tum statistics. Therefore, let us first perform a short pre-
sentation for the case of N bosons. Schematic flowchart
of the algorithm (in the Fortran-like code) is presented in
Fig. 1. The input requirements are: number of particles
N , the single-particle energies εk sorted along ascend-
ing order (stored in E(k)), and the maximal energy E
(stored in EnergyMax). As an output one gets the se-
ries of Fock states {|i〉} represented by a set of numbers
(i1, . . . , iN ) (stored temporarily in State(j)) which are
generated in lexicographical order. Example outputs of
the algorithm for two different situations are presented in
Table I. Table Ia presents resulting Fock basis for the one-
dimensional harmonic confinement having equally dis-
tant single-particle energy levels

ε0 = 0.5, (3a)

εk = εk−1 + 1, for k > 0 (3b)
with the maximal energy E = 6. As it is seen, only
twelve Fock states have this property (DE = 12). At
this point, one should note a huge reduction of the con-
sidered Hilbert space when compared to the standard
approach of single-particle cut-off. It is clearly seen that
in the case of the former method, to capture all states
with non-interacting energy no larger than E = 6, one
needs to use cut-off C = 4 (state |5〉 has one particle ex-
cited to the single-particle state with energy ε4 = 4.5).
It means that the cropped Hilbert space generated with
the standard cut-off approach would have a much larger
dimension of DC = 70.

To show that the algorithm works also for other
confinements in Table I(b) we present the output for
the same maximal energy E = 6, but for anharmonic
confinement having decreasing energy distances between
single-particle orbitals. As an example we set

ε0 = 0.5, (4a)

εk = εk−1 + (4/5)k−1, for k > 0. (4b)



568 A. Chrostowski, T. Sowiński

Fig. 1. Schematic flowchart of the algorithm generat-
ing a sequence of the Fock states with the lowest non-
interacting energy ofN bosons from a given set of single-
particle orbitals having ascending energies εk stored in
variables E(k). The maximal energy E is stored in
EnergyMax. Initial and reset boxes (INI and RES, re-
spectively) are marked for convenient comparison with
the corresponding algorithm for fermionic particles.

It is clearly seen that in this case, the gain from the
algorithm is even larger. There are only sixteen Fock
states (DE = 16) having appropriate energy, while some
of them have highly excited particles. For example, the
state |8〉 has one particle with energy ε7 = 92 991/15 625.
It means that in the standard cut-off method one needs to
introduce C = 7 to capture all the states and the resulting
size of the Hilbert space would be considerably larger
DC = 1 980.

In the case of fermionic statistics, any two particles
cannot occupy the same single-particle orbital. There-
fore, the algorithm needs to be modified to take into ac-
count this constraint. Fortunately, the changes are not
substantial and they concern only the initial block and
the reset block (marked in Fig. 1 as INI and RES, re-
spectively). In the initial block, the change is trivial and
it is reduced to a simple change of the non-interacting
ground state. In the reset block, particles having indexes
larger than currently stored index should have consecu-
tive occupations instead of occupations equal to the oc-
cupation of the indexed particle. For completeness, in
Fig. 2 we present a schematic flowchart of the algorithm
with these two changes directly incorporated.

Finally, let us emphasize that the algorithm presented
can be very easily generalized to cases of multicompo-
nent mixtures of particles with different statistics. One
may think that the simplest way of such generalization

TABLE I

Fock basis build form states with non-interacting energies
not larger than E = 6 for the system of N = 4 bosons ob-
tained with the algorithm presented in Fig. 1 for two dif-
ferent single-particle energy spectra (3) and (4). In both
cases obtained states are generated in a lexicographic or-
der. Note that in both cases some of states have highly-
excited particles while their non-interacting energy is rel-
atively low. See the main text for a discussion.

Index Occupations Energy
(a) Harmonic oscillator (εi = 0.5 + i)

|1〉 |40000〉 2.000000
|2〉 |31000〉 3.000000
|3〉 |30100〉 4.000000
|4〉 |30010〉 5.000000
|5〉 |30001〉 6.000000
|6〉 |22000〉 4.000000
|7〉 |21100〉 5.000000
|8〉 |21010〉 6.000000
|9〉 |20200〉 6.000000
|10〉 |13000〉 5.000000
|11〉 |12100〉 6.000000
|12〉 |04000〉 6.000000

(b) Anharmonic well defined by Eq. (4)
|1〉 |40000000〉 2.000000
|2〉 |31000000〉 3.000000
|3〉 |30100000〉 3.800000
|4〉 |30010000〉 4.440000
|5〉 |30001000〉 4.952000
|6〉 |30000100〉 5.361600
|7〉 |30000010〉 5.689280
|8〉 |30000001〉 5.951424
|9〉 |22000000〉 4.000000
|10〉 |21100000〉 4.800000
|11〉 |21010000〉 5.440000
|12〉 |21001000〉 5.952000
|13〉 |20200000〉 5.600000
|14〉 |13000000〉 5.000000
|15〉 |12100000〉 5.800000
|16〉 |04000000〉 6.000000

is to generate Fock basis for each component separately
and then build a multicomponent basis by a simple ten-
sor composition. However, this approach is not correct
since the resulting Fock basis does not contain states with
the lowest non-interacting energy. It is especially crucial
when the numbers of particles in different components
are different or when different components have different
single-particle energy spectra. To overcome this difficulty
one should apply above algorithms to each component re-
cursively taking care of the total non-interacting energy
of generated Fock state, i.e., when the state of a given
component is generated (instruction write(*,*) State
in flowcharts) next algorithm for the following com-
ponent should be executed. To assure that the non-
interaction energy of the complete Fock state is bounded,
the EnergyMax variable for a given component should be
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Fig. 2. Adaptation of the algorithm presented in Fig. 1
to the case of fermionic systems. To fulfill fermionic
statistics forbidding any two particles to occupy the
same single-particle state the initial block and the reset
block need to be modified (INI and RES, respectively).
Compare with corresponding blocks in Fig. 1.

set as the maximal non-interacting energy E lowered by
a sum of current energies of components generated al-
ready. The complete Fock state is accepted as a member
of the Fock basis in the last component output.

3. Physical example

To show that the presented method of building the
many-body Fock basis substantially increases efficiency
of the exact diagonalization method let us consider the
simplest model of N = 2 ultra-cold bosons confined in
a one-dimensional anharmonic trap and interacting via
contact forces. In the dimensionless units the Hamilto-
nian of the system reads

Ĥ =

N∑
i=1

[
−1

2

∂2

∂x2i
+

1

2
|xi|2−α

]
+ g

∑
i>j

δ(xi − xj), (5)

where α controls an anharmonicity of the trap (for α = 0
the standard harmonic confinement is restored) and g is
the interaction strength between particles. In the follow-
ing example we set α = 0.5 and g = 0.1.

In Fig. 3 we present the ground-state energy of the
Hamiltonian (5) obtained with two complementary meth-
ods. First, with blue points, we display the ground-
state energy obtained when the Fock basis is generated
with the presented algorithm. Different points corre-
spond to different maximal energies E and the are la-
beled by corresponding sizes of obtained Fock basis DE .

For comparison, using red horizontal lines, we present the
ground-state energies obtained with the standard method
of truncating the single-particle basis. Different lines cor-
respond to different cut-offs C and they are additionally
labeled by corresponding sizes of the cropped many-body
Hilbert spaces DC . It is clearly seen that along with in-
creasing sizes of the Fock basis the ground-state energies
decrease (ground-state energies obtained with any ap-
proximate method are always bounded from below by the
exact ground-state energy of the system). Note that the
standard cut-off method is very inefficient when it is com-
pared to diagonalization in the basis of energetically the
lowest Fock states. For a given C the same ground-state
energy may be obtained for much smaller Hilbert spaces
provided that one selects the Fock states systematically
according to the non-interacting energy. For example,
the ground-state energy obtained for C = 26 correspond-
ing to the size of the Hamiltonian matrix DC = 23 751
is almost the same as the energy obtained for almost
four times smaller Hamiltonian matrix (DE = 6 536) cal-
culated in the basis of Fock states with non-interacting
energy not larger than E = 26.

Fig. 3. The ground-state energy obtained for the sys-
tem of N = 2 bosons for different numerical schemes
of generating the Fock basis. Blue points correspond to
the case of exact diagonalization in the basis of the Fock
states with the lowest non-interacting energy, while red
lines represent results when the standard cut-off method
of the single-particle basis is used. The ground-state
energy decreases along with the size of the Fock basis
D (numbers in parentheses) determined by the maximal
energy E and the cut-off C, respectively. Note improved
convergence for the same sizes of the Fock space when
the Fock states with the lowest non-interacting energies
are used for calculations.

4. Conclusions

Accuracy of the exact diagonalization of many-body
Hamiltonians crucially depends on an appropriate se-
lection of the Fock states. Typically, they are chosen
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from the set of eigenstates of the non-interacting sys-
tem. Then, the efficiency of the method can be signif-
icantly improved if, instead of states having particles
with the lowest excitations, the states with the lowest
non-interacting energies are chosen. In this work, we
present a very efficient and surprisingly simple algorithm
generating all Fock states with the lowest non-interacting
energy from a given set of single-particle orbitals. In this
way, we give the base for further efficient calculations of
a variety of many-body scenarios. In principle, the al-
gorithm can be adapted to any many-body system for
which a non-interacting Hamiltonian can be written as a
sum of independent single-particle Hamiltonians. There-
fore, it can be extremely useful in many different physical
scenarios.
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