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Abstract – Recently developed techniques allow for simultaneous measurements of the positions
of all ultra cold atoms in a trap with high resolution. Each such single shot experiment detects one
element of the quantum ensemble formed by the cloud of atoms. Repeated single shot measure-
ments can be used to determine all correlations between particle positions as opposed to standard
measurements that determine particle density or two-particle correlations only. In this paper we
discuss the possible outcomes of such single shot measurements in case of cloud of ultra-cold non-
interacting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations
between particle positions that originate from unexpected spatial structures formed by the atoms.

Introduction. – Tremendous progress in experimen-1

tal techniques of preparing, manipulating and probing2

ultra-cold gases have opened new possibilities of optical3

methods of monitoring atomic systems. Atomic fluores-4

cence microscopes with resolution in the range of hun-5

dreds of nanometers became accessible [1–7]. The micro-6

scopes allow for observation of both boson and fermion7

atoms with resolution comparable to the optical wave-8

length. Single shot pictures of such systems correspond9

to a single realization of the N -body probability density10

as opposed to a one-particle probability distribution. Dif-11

ference between the two is tremendous, they differ by N12

body correlations. The seminal work of [8] shows how13

interference fringes, visible in a simultaneous single shot14

picture of N atoms, arise in the course of measurement.15

No fringes are observed in a single particle detection in-16

stead. In a similar way the solitons emerge in a process17

of detection of N -particles prepared in a type II excited18

state of a 1D system of bosons interacting via short-range19

potential described by the Lieb-Linger model [9]. Single20

shot time-dependent simulations of many-body dynamics21

showing appearance of fluctuating vortices and center-of-22

mass fluctuations of attractive BEC have been reported23

recently [10].24

N -body system is not a simple N -fold sum of systems of25

one particle. This is because of correlations between parti-26

cles resulting from their mutual interactions. In quantum27

systems correlations can be imposed not only by interac-28

tions, but also by the quantum statistics.29

Quantum Mechanics gives a completely different mean-30

ing to the classical concept of identical objects [11]. Quan-31

tum identical particles are identical not only because they 32

share the same mass, spin, charge, etc., but also because 33

they cannot be identified by tracing their history. Here 34

we show yet another consequence of quantum indistin- 35

guishability. We show that identical fermions confined 36

by an external trapping potential arrange themselves in 37

spectacular geometric structures even if no mutual inter- 38

action is present. This is because the indistinguishability 39

of fermions, formulated in the language of the Pauli ex- 40

clusion principle, prevents any two fermions from being at 41

the same location. These unexplored geometric structures, 42

Pauli crystals, emerge repeatedly in single shot pictures of 43

the many-body system. 44

Pauli crystals. – Here we study on a theoretical 45

ground a manifestation of the quantum statistics, namely 46

a high order geometric correlations in a small system of 47

ultra cold spin polarized fermions confined in space by an 48

external binding potential. To this end we generate a sin- 49

gle shot picture of this noninteracting system. We limit 50

our attention to the many-body ground state. Atoms are 51

attracted towards the trap minimum, but on the other 52

hand, the Pauli exclusion principle does not allow any two 53

fermions to be at the same position. These two competing 54

effects might, in principle, lead to a kind of equilibrium. 55

We limit our attention to a simple generic example of
particles bound by a harmonic potential in two dimensions
and frequency ωx = ωy = ω. One-particle states are the
standard harmonic oscillator wave functions:

ψnm(x, y) = Nnme−(x
2+y2)/2Hn(x)Hm(y), (1)

where Nnm = (2n+mn!m!
√
π)−1/2 is the norm, and Hn(z) 56
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Fig. 1: Pauli crystals in two-dimensional harmonic trap.
Configurations maximizing N -particle probability: (a) – 3
atoms, (b) – 6 atoms, (c) – 10 atoms, (d) – 15 atoms.

is the n-th Hermite polynomial. The positions x and y are57

expressed in the normal harmonic oscillator units, i.e. the58

unit of length being a =
√
h̄/Mω, where M is the mass59

of the particle. Quantum numbers n and m enumerate60

excitations in x and y direction respectively. We consider61

an isotropic trap, therefore all states with the same total62

number of excitations, n + m, are degenerated. These63

states have energy Enm = h̄ω(n+m+ 1), all states of the64

same energy form an energy shell.65

The ground state of a non-interacting N -body system is66

very simple, every particle occupies a different one-particle67

state. As a result the N lowest energy states, up to the68

Fermi energy are occupied. For N = 1, 3, 6, 10, 15 the69

ground state is uniquely defined because all states at or70

below the Fermi level are occupied and states above the71

Fermi level remain not occupied. The many-body ground72

state is degenerated whenever the total number of particles73

does not coincide with the degeneracy of the energy shells.74

The many-body wave function is simply the Slater75

determinant of the occupied one-particle orbitals:76

Ψ(r1, . . . , rN ) =
√

1
N ! det[ψij(rk)]. The modulus square77

of the wave function |Ψ(r1, . . . , rN )|2 is the probability78

density of finding the particles at positions r1, . . . , rN .79

In a single-shot measurement with a fluorescence mi-80

croscope, a set of N positions of atoms can be deter-81

mined. It is therefore legitimate to study the outcomes82

of such measurements on a theoretical ground. The posi-83

tions are probabilistic variables, therefore the most proba-84

ble ones are of special importance. To determine the con-85

figuration maximizing theN -body probability distribution86

|Ψ(r1, . . . , rN )|2 we used the Monte-Carlo algorithm [12].87

Starting from a randomly chosen configuration we shift88

positions of all particles and check if the shifted config-89

uration is more probable then the starting one. In case90

of failure another attempt is made. In Fig.(1) we show91

the most probable configurations for a different number of92

fermions in a two-dimensional harmonic trap. We see that93

geometric structures do appear.94

The patterns are universal ifN corresponds to closed en-95

ergy shells, i.e. takes one of the values N = 1, 3, 6, 10, 15.96

For open shells (not shown here) the patterns depend on97

the occupied orbitals at the Fermi level. Concentrating98

on the closed shells we see the following crystalline struc-99

tures: an equilateral triangle for three atoms; a pentagon100

at the outer shell and one atom located at the trap cen-101

ter for six atoms; two shells are seen for ten atoms – an 102

equilateral triangle forming the inner shell and a heptagon 103

forming the outer shell; and finally, for fifteen atoms, the 104

third shell develops – one atom is located at the center, 105

five atoms at the middle shell form a pentagon and the 106

remaining nine atoms are located at the outermost shell. 107

Let us note that if the inner shell contains more than one 108

atom it is generally not possible to match the discrete 109

symmetries of the inner and outer shells. In this case the 110

orientation of the inner shell with respect to the outer shell 111

is fixed. Moreover the shells do not form regular polygons, 112

i.e., distances of particles to the trap center vary slightly. 113

The geometric shells are different than energy shells. 114

Single shot detection of many-body system. – 115

Existence of geometrical structures maximizing the N- 116

body probability is an unexpected consequence of the 117

Fermi-Dirac statistics. Whether this fact belongs to a class 118

of physical curiosities without any importance whatsoever 119

depends upon possibility of detection of Pauli crystals. Do 120

they really exist in a sense that the probability distribution 121

of different configurations is sharply peaked at the most 122

probable one? Or, on the contrary, are they very elusive 123

object because probability distribution of different config- 124

urations is very flat and its maximum does not distinguish 125

any particular geometric arrangement? 126

To answer these questions we have to analyze out- 127

comes of single-shot measurements. Each such measure- 128

ment gives a collection of values of N particle positions. 129

These values are unpredictable, have probabilistic char- 130

acter, however the most probable configurations should 131

emerge as the most frequently observed ones in a series 132

of measurements. Let us now discuss detection of particle 133

positions, such measurement is particularly important in 134

discussion of the properties of the many-body system. 135

Consider an array of detectors, each one measures a par-
ticle at the position X. A single measurement of a particle
at position x (a click in the measuring device) means that
the detector reacted to a particle. We introduce a func-
tion that takes values 0 if no particle is detected and 1 if
a particle is detected.:

Click(X|x) = δ(X− x). (2)

Because the outcome of a single measurement is unpre-
dictable, one has to repeat it many times to get a statis-
tics. Repeated measurements allow to make a histogram
defined as:

hM (X) =
1

M

M∑
s=1

Click(X|x(s)), (3)

where s refers to different measurements. It can be shown
straightforwardly that in the limit of infinitely many mea-
surements one gets the one-particle probability distribu-
tion:

lim
M→∞

hM (X) = p(X), (4)
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where

p(X) =

∫
dx2 · · · dxN |Ψ(X,x2, . . . ,xN )|2. (5)

This quantity gives the probability distribution of finding136

one particle at a point X, without any information on the137

correlations between the particles.138

Consider now a simultaneous detection of N particles
in a single shot measurement. Its result is given by:

SingleShot(X|x1, . . . ,xN ) =

N∑
i=1

Click(X|xi). (6)

Single shot is, in our case, a mapping of the 2N -139

dimensional configuration space on the 2-dimensional140

physical space. It contains information on the geometry of141

the detected configuration, however it tells nothing about142

probabilities of different configurations. Many repetitions143

are needed to get the probabilities and to construct a his-144

togram of particles’ positions:145

H(X) =
1

M

M∑
s=1

SingleShot(X|x(s)
1 , . . . ,x

(s)
N ) (7)

=
1

M

M∑
s=1

N∑
i=1

Click(X|x(s)
i ). (8)

Evidently, by changing order of summation in Eq.(8), we
get:

H(X) = NhM (X). (9)

The histogram however, does not contain any information146

about higher order correlations, in particular about the147

geometry carried by a single shot picture. Correlations148

are washed out by summation of different outcomes.149

Correlating configurations. – Analysis of geomet-
ric configurations cannot be based on a simple histogram
of particle positions. Some quantitative methods allow-
ing to compare different configurations, not the positions
of individual particles, are required. For a convenience
we introduce a symbol {x}N to denote the configuration
(x1, . . . ,xN ). In order to compare an outcome of a mea-
surement {x}N with a given pattern, i.e. with the Pauli
crystal structure {r0}N , we have to define a measure in
the space of configurations defining the distance between
them. To this end we use polar coordinates instead of
the cartesian ones, (xi) → (ri, φi), (r0i) → (r0i , φ0i),
and assign to every particle xi its unique partner r0σ(i) ,
(xi)→ (r0σ(i)). If the coordinates form a single shell then
the transformation σ is a cyclic permutation of the set
1, . . . , N . We define the distance between the two config-
urations as:

d ({x}N , {r0}N ) =

N∑
i=1

(
φ0i − φσ(i)

)2
. (10)
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Fig. 2: Comparison of one-particle and configuration
probability densities. (a), (b) – 3 atoms, (c), (d) – 6 atoms,
(e), (f) – 10 atoms, (g), (h) – 15 atoms. For each pair of fig-
ures we show a one-particle density distribution obtained with
a direct collecting of the particle positions in many single shot
experiments H(X)/N – left panels: (a), (c), (e), (g). In right
panels – (b), (d), (f), (h), we show configuration probability
density C(X)/N resulting from the image processing. Position
is measured in natural units of the harmonic oscillator. The
same color scale is used for every pair of figures. Note that con-
figuration distributions are strongly peaked around maximal
values. This maxima dominate over relatively flat structures
of the one-particle density.
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The above definition is not the only possible. In fact a150

problem of the good definition of a distance between poly-151

gons is one the basic problems in all pattern recognition152

algorithms which inevitably must assume some knowledge153

about the pattern. However, we checked that our defini-154

tion works very well in the case studied here. We checked155

then when a system has a n-fold axis of symmetry, in or-156

der to ensure elementary fairness treatment of all particles,157

the maximal angle of rotation has to be limited to 2π/n.158

Only then, all maxima of the pattern found have similar159

heights and widths.160

To observe the Pauli crystals one has to correlate out-
comes of simultaneous measurement of all N positions.
Single shot will never give a pure geometry of the Pauli
crystal because of quantum fluctuations of the particle po-
sitions. The crystalline pattern has to be extracted from
the measured noisy structure with the help of the image
processing. Our goal is to compare different configurations
leaving aside such details as the position of the center of
mass and the orientation of the configuration in space,
thus the geometry of a configuration depends only on rel-
ative positions of particles. Therefore we shift the center of
mass of the configuration at hand to the origin of the coor-
dinate system: x′i = xi − xCM (xCM = (1/N)

∑
i=1,N xi)

and then apply rotations in the x−y plane by an angle α,

xi(α) = Rα (xi − xCM ) . (11)

The ‘best alignment’ of a given configuration {x(α)}N is
therefore the one which minimizes the distance:

d ({x(α)}N , {r0}N ) = min.. (12)

Eq.(12) determines the rotation angle α, which brings the161

given configuration to the ‘closest’ distance to the pattern.162

Evidently this angle is different for every configuration.163

Our strategy of image processing is the following. Each164

configuration, selected according to the N -particle proba-165

bility distribution, is optimally transformed by an isomet-166

ric transformation {x}N → {x(α)}N to match the pattern167

according to Eq.(12). To gain an insight into the geometric168

configuration we introduce the configuration probability169

density , C(X) which is the histogram of configurations:170

C(X) =
1

M

M∑
s=1

SingleShot(X|x(s)
1 (α), . . . ,x

(s)
N (α))

. (13)

The configuration probability density C(X) is seemingly171

not much different from the histogram of particles’ posi-172

tions, H(X). In fact the difference, related to the pre-173

processing of the measurement outcome, is tremendous.174

Contrary to H(X) which is proportional to one-particle175

probability density, the configuration probability density176

C(X) contains information about the geometric N-order177

correlations of the particles.178
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Fig. 3: Quality of pattern recognition. (a) Configuration
density of the excited state of 6-particle system obtained after
image processing based on a comparison with a corresponding
excited state Pauli crystal pattern. (b) Configuration density
of the state shown in (a) but obtained after processing of the
same data as used in (a), but based on a comparison with the
ground state pattern of 6-particle system. The patterns are
marked by dots.

Ensemble of configurations. – To generate an 179

ensemble of configurations according to the many-body 180

probability distribution we use the Metropolis algorithm. 181

We generate a random Markov walk in the configura- 182

tion space. The states belonging to the Markov chain 183

become members of the ensemble. The transition prob- 184

ability between subsequent configurations {x(s)}N → 185

{y(s)}N is given by the ratio of their probabilities p = 186

|Ψ({y(s)}N )|2/|Ψ({x(s)}N )|2, [12]. If p > 1 the trial con- 187

figuration is accepted to the chain: {x(s+1)}N = {y(s)}N . 188

If p < 1 there are two options chosen probabilistically: (a) 189

the trial step is accepted to the ensemble with the proba- 190

bility p, {x(s+1)}N = {y(s)}N , (b) the old configuration is 191

again included into the chain with the probability (1− p), 192

{x(s+1)}N = {x(s)
N }N . Typically we generate 2× 106 con- 193

figurations, each being a set of N positions on a two di- 194

mensional plane. Next we collect many realizations of the 195

quantum state and after M realizations we have N ×M 196

positions of particles. A histogram of such realizations, 197

i.e. one-particle density, H(X)/N , and configuration den- 198

sity probability, C(X)/N , for N = 3, 6, 10, 15 atoms are 199

shown in Fig.(2). In all cases the one-particle distribution 200

is a smooth function of axial symmetry with some maxima 201

in the radial direction. Clearly the one-particle distribu- 202

tion does not show any geometric structures resembling 203

the Pauli crystals shown in Fig.(1). 204

On the contrary, the configuration density probability 205

C(X)/N shown in left panels of Fig(2) exhibits the geo- 206

metric structure of Pauli crystals. The agreement is amaz- 207

ing – compare Fig.(1). Quantum fluctuations lead to some 208

smearing of the crystal vertexes, fortunately the uncertain- 209

ties of atom positions are smaller than their separations, at 210

least for small N . For larger N several shells are formed. 211

The outer shells are somewhat melted because of quan- 212

tum fluctuations. A similar method of imaging geometri- 213

cal structures formed by interacting Rydberg atoms was 214

recently realized in experiment with ultra cold atoms [13]. 215

Evidently our image processing, thus configuration den- 216

sity, C(X), depends on the pattern. To show how image- 217
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Fig. 4: Open shell Pauli crystalline structure for N=5
atoms. (a) – one-particle probability distribution H(X)/N ,
(b) – configuration probability distribution C(X)/N . Note
that color scale is different in both panels to emphasize a small
structure in the one-particle density. Maxima of one-particle
distribution do not coincide with maxima of configuration dis-
tribution. The latter are marked by blue and black dots.

processed configurations are biased by the pattern used,218

in Fig.(3) we show two configuration densities obtained by219

the best matching of the same ensemble of single shot pic-220

tures to a two different patterns. As an example we choose221

the ensemble of configurations generated from the prob-222

ability distribution of the one of lowest excited states of223

N = 6 particles, obtained by exciting the one at the Fermi224

surface. In the Slater determinant we replaced the state225

nx = 2, ny = 0 by nx = 2, ny = 1. In Fig.(3a) we show226

the configuration density obtained by fitting the ensem-227

ble of configurations to the ’native’ crystalline structure228

of the excited state (marked by blue dots), while in the229

right panel, Fig.(3b), the same set of images is adjusted230

to the ground state Pauli crystal, marked by black dots. A231

’quality’ of agreement, favors the native structure. If, as232

the pattern, a configuration similar to the native one were233

used, the pattern recognition algorithm would have pro-234

duced a better agreement with the pattern . This however235

is not surprising, similar patterns are hard to distinguish.236

In the case studied here the configuration of maximal237

probability is not unique. The system we investigate has238

some symmetries. The same symmetries are enjoyed by239

the N -particle probability. In the case of closed energy240

shells the symmetries are rotations around the trap center,241

reflections and inversion. There are also other symmetries242

like permutations of the particles and some specific sym-243

metries depending on the particle number N . This results244

in a huge degeneracy of configurations with maximal prob-245

ability. All of them differ by some symmetry operation.246

The symmetries are broken differently in each single real-247

ization. This is an additional reason why the histogram248

based on the generated single shot realizations washes out249

the Pauli-crystal structure.250

The above discussion might suggest that the problem of251

recognition of the crystalline structures is solely due the252

high symmetry of the system, and necessity of a proper253

alignment of single shot outcomes can be presumably over-254

came by choosing a trapping potential of a very low sym-255

metry. One can hope then, that even one-particle density256

will show a number of maxima arranged in the geometry 257

of Pauli crystals. Such small oscillations of one-particle 258

density are in fact typical for small systems of noninter- 259

acting fermions as a result of the oscillatory character of 260

one-particle wavefunctions – thus of one-particle densities 261

too. We want to stress that this is not the case here, 262

structures we found are different. 263

To show the effect of symmetry, we consider a case of 264

N = 5 particles, i.e. the open shell structure where we 265

have a freedom to choose two occupied orbital out of three 266

basis states. In Fig.(4) we show the one-particle den- 267

sity H(X)/N and the configuration probability density 268

C(X)/N for the ground state system of N = 5 particles. 269

To lift the degeneracy we assumed that in the ground state 270

the orbitals n = 2,m = 0, and n = 1,m = 1 are occupied 271

and the orbital n = 0,m = 2 is empty. This choice is 272

equivalent to assumption that ωx is ‘a bit’ smaller than 273

ωy. The ground state has no rotational symmetry, the 274

only symmetry is the reflection with respect to the y-axis, 275

y → −y. 276

There are two equivalent configurations maximizing the 277

5-particle probability. These are isosceles trapezoids dif- 278

fering by the reflection, see blue and black dots in Fig.(4a). 279

These Pauli crystalline structures are drawn on top of the 280

corresponding one-particle density. The structures are lo- 281

cated in the region when the density is large, but evi- 282

dently most of atoms forming the Pauli structure are not 283

located at the maxima of the one-particle density. The 284

one-particle density has two maxima, both on the y-axis. 285

On the contrary, sharp maxima of the configuration den- 286

sity, C(X)/N , Fig.(4b), fit perfectly to the geometry of 287

the Pauli crystal. The configuration density was obtained 288

by our image processing method using rotations to align 289

the configurations. 290

Few-particle correlations. – In this section we use 291

an example of N = 6 particles to show to what extend the 292

low-order correlation function carry information on the 293

Pauli crystalline structures. The Pauli crystal in this case 294

forms two geometric shells with one particle in the trap 295

center and five at the outer shell of the radius r0 = 1.265, 296

see Fig.(1). The one-particle density does not depend on 297

the azimuthal angle. This is expected because of the axial 298

symmetry. But also a radial structure of the one-particle 299

density does not indicate any geometrical arrangement of 300

atoms. The one-particle density has a sharp maximum at 301

the center of the trap, a plateau at larger distances, and 302

finally, at distance of the order of r ∼ 1, it falls to zero 303

quite rapidly, Fig(2c). Nothing particular is happening at 304

the distance r0 = 1.265. The one-particle density does not 305

suggest existence of the shell of the radius r0. 306

One might expect, however, that two-body correlations 307

will disclose a geometric ordering. Fig.(5a) shows the con- 308

ditional probability density of particle detection at posi- 309

tion r0 as a function of the azimuthal angle, provided that 310

simultaneously another particle is found at the same dis- 311

tance r0 and at the azimuthal angle φ0 = 2.705. Polar 312
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Fig. 5: Probability density distribution functions. (a) -
Two point correlation function - conditional probability den-
sity of detecting a particle at position r0 = 1.265 (i.e. the
radius of the Pauli crystal) as a function of the azimuthal an-
gle, provided that another particle is found simultaneously at
(r0, φ0 = 2.705). Black scattered points result from the Monte
Carlo simulations while the blue line is the exact analytic curve.
Pauli blocking and kind of the Friedel oscillations can be seen.
These small four maxima in the correlation function indicate
emerging Pauli crystal structure (b) - Configuration density
as a function of the azimuthal angle at the distance r = r0
obtained from the histogram of configurations generated by
the Markovian random walk after our image processing (black
line). Five maxima corresponding to the vertexes of the Pauli
crystal are clearly seen. Note high contrast. Red line - the
same function plotted for a thermal state corresponding to
kBT = h̄ω. Contrast is smaller.

coordinates r0 and φ0 correspond to the location of one of313

the vertices of the Pauli crystal in Fig.(1). What is clearly314

seen is the effect of the Pauli exclusion principle (Pauli315

blocking) - the probability of finding the second particle316

close to the first one is very small. In addition weak oscil-317

lations are seen; they are of the same type as the Friedel318

oscillations [14] known in the case of electron gas. No319

clear structure resembling pentagon is visible in Fig.(5a),320

however four hardly distinguishable maxima of the cor-321

relation functions are seeds of emerging structure. The322

second order correlation function does not give enough323

evidence of existence of the Pauli crystal. In contrast,324

the image processing procedure described above, showing325

N -order correlations, unveils the crystalline structure. To326

support this statement we show in Fig.(5b) a cut through327

the configuration density function C(X), Fig.(2d), along328

the circle of the radius r0 = 1.265. Five distinct maxima329

indicate the most probable positions of particles arranged330

in a pentagon - the Pauli crystal. The contrast is very331

high.332

An alternative approach to the Pauli crystals is based333

on the method of Javanainen [8]. In this approach the334

Pauli crystal should emerge from the hierarchy of the con-335

ditional probability functions. The starting point of this336

approach is to select a particle at position x1, then use the337

conditional probability to select the second particle at po-338

sition x2, continue this way through three, four etc. con-339

ditional probabilities. One may expect that few particles340

will give hint on positions of all other particles. We veri-341

fied this approach using example of 6 particles. In Fig.(6)342

we show the result of this procedure. First, Fig.(6a) we se-343

-2

 0

 2

-2  0  2

(a)

-2

 0

 2

-2  0  2

(b)

-2

 0

 2

-2  0  2

(b)

-2

 0

 2

-2  0  2

(c)

-2

 0

 2

-2  0  2

(c)

-2

 0

 2

-2  0  2

(d)

-2

 0

 2

-2  0  2

(d)

-2

 0

 2

-2  0  2

(e)

-2

 0

 2

-2  0  2

(e)

-2

 0

 2

-2  0  2

(f)

-2

 0

 2

-2  0  2

(f)

Fig. 6: Emergence of a geometric structures in a course
of a conditional measurement. Conditional density dis-
tributions of a ground state of a system of N = 6 particles.
Reference particles are marked by white dots. In every panel
we show a higher order correlation function by adding a consec-
utive reference particle at the maximum of the preceding corre-
lation function. All densities are normalized to the number of
‘not frozen’ particles. (a) One-particle density. (b) Conditional
two-point probability of the same system - reference particle
frozen at maximum of the function in (a), i.e. at r = 0. (c)
Three-point correlation function – two reference particles. (d)
Four-point correlation function – three reference particles. (e)
Five-point correlation function – four reference particles. (f)
Six-point correlation function – five reference particles. Note
emergence of the Pauli crystalline structure. While consecu-
tive particles are located in the vertices of the Pauli crystal,
the corresponding conditional density distribution peaks more
sharply around the positions of the remaining vertices of the
structure.

lected the first particle at the maximum of the one particle 344

density. Corresponding one-particle conditional density 345

shows a maximum along a ring of the radius of the Pauli 346

crystal Fig.(6b). This is the first signature of the emerg- 347

ing structure. Next we chose the position of the second 348

particle on this ring. In Fig.(6b) we plot a corresponding 349

three-point conditional probability. Note a small structure 350

appearing along the ring, Fig.(6c), in addition to clearly 351

visible Pauli hole. When the third particle is chosen at 352

the maximum on a ring, the Pauli structure of N = 6 353

atoms system clearly emerges in higher order conditional 354

distributions, Fig.(6d)-Fig.(6f). The conditional approach 355

to the high order correlation functions and emerging Pauli 356

crystal structures is an independent test strengthening our 357

confidence in the image processing method. 358

Comparison with other systems and experimen- 359

tal prospects. – Many other systems exist that contain 360

atoms or molecules arranged in a regular geometric struc- 361

ture, like molecules, crystals, clusters. Also more exotic 362

structures can be formed, e.g. Wigner [15] and Coulomb 363

crystals [16–18]. In the context of ultra cold trapped atoms 364

interacting via a short range contact potential, geometric 365

p-6
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Fig. 7: Melting of the Pauli crystal at nonzero temper-
ature. (a) Configuration distribution of the ground state of
N = 6 particle system. (b) Configuration distribution of the
same system at nonzero temperature T = h̄ω/kB .

crystalline structures - ”Wigner molecules” were predicted366

[19–21]. In all these cases, however, the geometry is de-367

termined by a balance between attractive interactions at368

large distances and repulsive at small distances. Quantum369

statistics plays a marginal role in the resulting geometry370

in all cases. It should be stressed that the geometry of371

Pauli crystals differs on the fundamental level from that372

of other crystals. It would be misleading to consider the373

anti-symmetry of the wave function as a simple kind of374

repulsion. The case of Pauli crystals is truly unique. Ob-375

servation of the Pauli crystals can be possible only in ideal376

or very weakly interacting quantum systems. Fermi-Dirac377

statistic leads to observable effects only when one-body378

wave functions of individual particles overlap. This is pos-379

sible in the case of electrons in atoms. Electrons in atoms,380

however, are not good candidates for the envisaged exper-381

iments because of their Coulomb interactions. We rather382

have in mind systems of ultra-cold fermion atoms in opti-383

cal traps. Lithium 6Li or Potassium 40K atoms are good384

candidates. At densities of 1012 cm−3 the wave functions385

describing atoms overlap at the temperature of the order386

of T = 10−7 K. These are the conditions at which quan-387

tum statistics plays a crucial role [22–25].388

Conclusions. – Our finding shows that even a simple389

system of noninteracting Fermi gas has a geometry deeply390

hidden in many-body correlations. This finding might sug-391

gest that geometric correlations are common in all Fermi392

systems. Interactions compete with quantum statistics393

and modify the geometric structures. For instance the394

Wigner crystals have different geometric structures than395

the Pauli crystals. Therefore, one can think of systems396

that will be somewhere between these two cases where397

both interactions and statistics play a role in determining398

the geometric structure. This suggests that the system399

may undergo some kind of ’geometric phase transition’400

from one crystalline structure to another. We believe that401

theoretical studies of high order geometric correlations in402

ultra cold atomic systems, particularly in a view of exper-403

imental possibilities of single shot pictures, can bring to404

light many interesting and unexpected information about 405

the correlated many-body systems. 406
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