publications

Under review

  1. M. Płodzień, D. Wiater, A. Chrostowski, T. Sowiński
    Numerically exact approach to few-body problems far from a perturbative regime

2018

  1. P. Kościk, M. Płodzień, T. Sowiński
    Variational approach for interacting ultra-cold atoms in arbitrary one-dimensional confinement
    Europhys. Lett. (in press)
    ArXiv:1804.06342
  2. J. Dobrzyniecki, T. Sowiński
    Dynamics of a few interacting bosons escaping from an open well
  3. M. Płodzień, R. Demkowicz-Dobrzański, T. Sowiński
    Few-fermion thermometry
  4. M. Płodzień, T. Sowiński, S. Kokkelmans
    Simulating polaron biophysics with Rydberg atoms
    Sci. Rep. 8, 9247 (2018)
    DOI:10.1038/s41598-018-27232-4
    ArXiv:1707.04120
  5. T. Sowiński
    Ground-state magnetization in mixtures of a few ultra-cold fermions in one-dimensional traps
  6. X. Li, D. Pęcak, T. Sowiński, J. Sherson, A. E. B. Nielsen
    Global optimization for quantum dynamics of few-fermion systems
  7. J. Dobrzyniecki, X. Li, A. E. B. Nielsen, T. Sowiński
    Effective three-body interactions for bosons in a double-well confinement
  8. P. Kościk, T. Sowiński
    Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions
    Sci. Rep. 8, 48 (2018)
    DOI:10.1038/s41598-017-18505-5
    ArXiv:1707.04240
  9. J. Dobrzyniecki, T. Sowiński
    Effective two-mode description of a few ultra-cold bosons in a double-well potential
    Phys. Lett. A 382, 394 (2018)
    DOI:10.1016/j.physleta.2017.12.027
    ArXiv:1707.04201

2017

  1. D. Pęcak, M. Gajda, T. Sowiński
    Experimentally accessible invariants encoded in interparticle correlations of harmonically trapped ultra-cold few-fermion mixtures
  2. D. Rakshit, J. Mostowski, T. Sowiński, M. Załuska-Kotur, M. Gajda
    On the observability of Pauli crystals in experiments with ultracold trapped Fermi gases
    Sci. Rep. 7, 15004 (2017)
    DOI:10.1038/s41598-017-14952-2
    ArXiv:1707.09860
  3. D. Wiater, T. Sowiński, J. Zakrzewski
    Two bosonic quantum walkers in one-dimensional optical lattices
  4. D. Pęcak, A. S. Dehkharghani, N. T. Zinner, T. Sowiński
    Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach

2016

  1. D. Pęcak, T. Sowiński
    Few strongly interacting ultracold fermions in one-dimensional traps of different shapes
  2. M. Gajda, J. Mostowski, T. Sowiński, M. Załuska-Kotur
    Single shot imaging of trapped Fermi gas
  3. J. Dobrzyniecki, T. Sowiński
    Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential
    Eur. Phys. J. D 70, 83 (2016)
    DOI:10.1140/epjd/e2016-70016-x
    ArXiv:1603.05619
  4. T. Sowiński, M. Gajda, K. Rzążewski
    Diffusion in a system of a few distinguishable fermions in a one-dimensional double-well potential
  5. D. Pęcak, M. Gajda, T. Sowiński
    Two-flavor mixture of a few fermions of different mass in a one-dimensional harmonic trap
    New J. Phys. 18, 013030 (2016)
    DOI:10.1088/1367-2630/18/1/013030
    ArXiv:1506.03592

2015

  1. T. Sowiński, R. W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein
    Criticality in the Bose-Hubbard model with three-body repulsion
    Phys. Rev. A 92, 043615 (2015)
    DOI:10.1103/PhysRevA.92.043615
    ArXiv:1304.4835
  2. T. Sowiński
    Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap
  3. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. A. Malomed, T. Sowiński, J. Zakrzewski
    Non-standard Hubbard models in optical lattices: a review
    Rep. Prog. Phys. 78, 066001 (2015)
    DOI:10.1088/0034-4885/78/6/066001
    ArXiv:1406.0181
  4. T. Sowiński
    Quantum phase transition in a shallow one-dimensional optical lattice
  5. T. Sowiński, M. Gajda, K. Rzążewski
    Pairing in a system of a few attractive fermions in a harmonic trap
  6. T. Karpiuk, T. Sowiński, M. Gajda, K. Rzążewski, M. Brewczyk
    Correspondence between dark solitons and the type II excitations of Lieb-Liniger model
    Phys. Rev. A 91, 013621 (2015)
    DOI:10.1103/PhysRevA.91.013621
    ArXiv:1402.5650

2014

  1. A. Barasiński, W. Leoński, T. Sowiński
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices
  2. T. Sowiński
    One-dimensional Bose-Hubbard model with pure three-body interactions
  3. T. Sowiński, R. W. Chhajlany
    Mean-field approaches to the Bose-Hubbard model with three-body local interaction
    Phys. Scripta T 160, 014038 (2014)
    DOI:10.1088/0031-8949/2014/T160/014038
    ArXiv:1404.0704

2013

  1. T. Sowiński, M. Łącki, O. Dutta, J. Pietraszewicz, P. Sierant, M. Gajda, J. Zakrzewski, M. Lewenstein
    Tunneling-Induced Restoration of the Degeneracy and the Time-Reversal Symmetry Breaking in Optical Lattices
    Phys. Rev. Lett. 111, 215302 (2013)
    DOI:10.1103/PhysRevLett.111.215302
    ArXiv:1304.6299
  2. T. Sowiński, T. Grass, O. Dutta, M. Lewenstein
    Few interacting fermions in a one-dimensional harmonic trap
    Phys. Rev. A 88, 033607 (2013)
    DOI:10.1103/PhysRevA.88.033607
    ArXiv:1304.8099
  3. J. Pietraszewicz, T. Sowiński, M. Brewczyk, M. Lewenstein, M. Gajda
    Spin dynamics of two bosons in an optical lattice site: a role of anharmonicity and anisotropy of the trapping potential
    Phys. Rev. A 88, 013608 (2013)
    DOI:10.1103/PhysRevA.88.013608
    ArXiv:1303.5232
  4. O. Dutta, T. Sowiński, M. Lewenstein
    Orbital physics of polar Fermi molecules
    Phys. Rev. A 87, 023619 (2013)
    DOI:10.1103/PhysRevA.87.023619
    ArXiv:1202.4158

2012

  1. T. Sowiński
    Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions
    Phys. Rev. A 85, 065601 (2012)
    DOI:10.1103/PhysRevA.85.065601
    ArXiv:1202.1932
  2. J. Pietraszewicz, T. Sowiński, M. Brewczyk, J. Zakrzewski, M. Lewenstein, M. Gajda
    Two component Bose-Hubbard model with higher angular momentum states
    Phys. Rev. A 85, 053638 (2012)
    DOI:10.1103/PhysRevA.85.053638
    ArXiv:1104.2512
  3. T. Sowiński
    Creation on demand of higher orbital states in a vibrating optical lattice
    Phys. Rev. Lett. 108, 165301 (2012)
    DOI:10.1103/PhysRevLett.108.165301
    ArXiv:1111.3802
  4. T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, M. Lewenstein
    Dipolar molecules in optical lattices
    Phys. Rev. Lett. 108, 115301 (2012)
    DOI:10.1103/PhysRevLett.108.115301
    ArXiv:1109.4782

2011

  1. T. Świsłocki, T. Sowiński, M. Brewczyk, M. Gajda
    Creation of topological states of a Bose-Einstein condensate in a square plaquette of four optical traps
    Phys. Rev. A 84, 023625 (2011)
    DOI:10.1103/PhysRevA.84.023625
    ArXiv:1008.2324
  2. T. Świsłocki, T. Sowiński, J. Pietraszewicz, M. Brewczyk, M. Lewenstein, J. Zakrzewski, M. Gajda
    Tunable dipolar resonances and Einstein-de Haas effect in a 87Rb-atom condensate
    Phys. Rev. A 83, 063617 (2011)
    DOI:10.1103/PhysRevA.83.063617
    ArXiv:1102.1566

2010

  1. T. Sowiński, M. Brewczyk, M. Gajda, K. Rzążewski
    Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap
    Phys. Rev. A 82, 053631 (2010)
    DOI:10.1103/PhysRevA.82.053631
    ArXiv:1006.3067

before 2010

  1. T. Sowiński
    Two-level atom at finite temperature
  2. I. Białynicki-Birula, T. Sowiński
    Quantum electrodynamics of qubits
    Phys. Rev. A 76, 062106 (2007)
    DOI:10.1103/PhysRevA.76.062106
    ArXiv:0705.2121
  3. T. Sowiński
    Wave functions of linear systems
  4. I. Białynicki-Birula, T. Sowiński
    Gravity-induced resonances in a rotating trap
  5. I. Białynicki-Birula, T. Sowiński
    Solutions of the logarithmic Schrödinger equation in rotating harmonic trap

preprint only

  1. T. Sowiński, I. Białynicki-Birula
    Harmonic oscillator in rotating trap: Complete solution in 3D