Under review

  1. M. Gajda, J. Mostowski, M. Pylak, T. Sowiński, M. Załuska-Kotur
    Pauli crystals -- interplay of symmetries
  2. J. Dobrzyniecki, T. Sowiński
    Two Rydberg-dressed atoms escaping from an open well
  3. S. Sarkar, T. Sowiński
    Correlations in few two-component quantum walkers on a tilted lattice


  1. P. Kościk, T. Sowiński
    Variational ansatz for p-wave fermions confined in a one-dimensional harmonic trap
  2. F. Giacosa, P. Kościk, T. Sowiński
    Capturing non-exponential dynamics in the presence of two decay channels
  3. P. Wrzosek, K. Wohlfeld, D. Hofman, T. Sowiński, M. A. Sentef
    Quantum walk versus classical wave: Distinguishing ground states of quantum magnets by spacetime dynamics
  4. J. Dobrzyniecki, T. Sowiński
    Simulating artificial one-dimensional physics with ultra-cold fermionic atoms: three exemplary themes
  5. D. Nandy, T. Sowiński
    Dynamical properties of a few mass-imbalanced ultra-cold fermions confined in a double-well potential
  6. D. Pęcak, T. Sowiński
    Signatures of unconventional pairing in spin-imbalanced one-dimensional few-fermion systems
  7. P. Łydżba, T. Sowiński
    Unconventional pairing in one-dimensional systems of a few mass-imbalanced ultra-cold fermions
  8. D. Włodzyński, D. Pęcak, T. Sowiński
    Geometry-induced entanglement in a mass-imbalanced few-fermion system


  1. A. Chrostowski, T. Sowiński
    Efficient construction of many-body Fock states having the lowest energies
  2. T. Sowiński, M. Á. García-March
    One-dimensional mixtures of several ultracold atoms: a review
  3. P. Kościk, T. Sowiński
    Exactly solvable model of two interacting Rydberg-dressed atoms confined in a two-dimensional harmonic trap
    Sci. Rep. 9, 12018 (2019)
  4. J. Dobrzyniecki, T. Sowiński
    Momentum correlations of a few ultra-cold bosons escaping from an open well
  5. D. Pęcak, T. Sowiński
    Inter-component correlations in attractive one-dimensional mass-imbalanced few-body mixtures


  1. P. Kościk, M. Płodzień, T. Sowiński
    Variational approach for interacting ultra-cold atoms in arbitrary one-dimensional confinement
  2. J. Dobrzyniecki, T. Sowiński
    Dynamics of a few interacting bosons escaping from an open well
  3. M. Płodzień, R. Demkowicz-Dobrzański, T. Sowiński
    Few-fermion thermometry
  4. M. Płodzień, T. Sowiński, S. Kokkelmans
    Simulating polaron biophysics with Rydberg atoms
    Sci. Rep. 8, 9247 (2018)
  5. T. Sowiński
    Ground-state magnetization in mixtures of a few ultra-cold fermions in one-dimensional traps
  6. X. Li, D. Pęcak, T. Sowiński, J. Sherson, A. E. B. Nielsen
    Global optimization for quantum dynamics of few-fermion systems
  7. J. Dobrzyniecki, X. Li, A. E. B. Nielsen, T. Sowiński
    Effective three-body interactions for bosons in a double-well confinement
  8. P. Kościk, T. Sowiński
    Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions
    Sci. Rep. 8, 48 (2018)
  9. J. Dobrzyniecki, T. Sowiński
    Effective two-mode description of a few ultra-cold bosons in a double-well potential
    Phys. Lett. A 382, 394 (2018)


  1. D. Pęcak, M. Gajda, T. Sowiński
    Experimentally accessible invariants encoded in interparticle correlations of harmonically trapped ultra-cold few-fermion mixtures
  2. D. Rakshit, J. Mostowski, T. Sowiński, M. Załuska-Kotur, M. Gajda
    On the observability of Pauli crystals in experiments with ultracold trapped Fermi gases
    Sci. Rep. 7, 15004 (2017)
  3. D. Wiater, T. Sowiński, J. Zakrzewski
    Two bosonic quantum walkers in one-dimensional optical lattices
  4. D. Pęcak, A. S. Dehkharghani, N. T. Zinner, T. Sowiński
    Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach


  1. D. Pęcak, T. Sowiński
    Few strongly interacting ultracold fermions in one-dimensional traps of different shapes
  2. M. Gajda, J. Mostowski, T. Sowiński, M. Załuska-Kotur
    Single shot imaging of trapped Fermi gas
  3. J. Dobrzyniecki, T. Sowiński
    Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential
    Eur. Phys. J. D 70, 83 (2016)
  4. T. Sowiński, M. Gajda, K. Rzążewski
    Diffusion in a system of a few distinguishable fermions in a one-dimensional double-well potential
  5. D. Pęcak, M. Gajda, T. Sowiński
    Two-flavor mixture of a few fermions of different mass in a one-dimensional harmonic trap
    New J. Phys. 18, 013030 (2016)


  1. T. Sowiński, R. W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein
    Criticality in the Bose-Hubbard model with three-body repulsion
    Phys. Rev. A 92, 043615 (2015)
  2. T. Sowiński
    Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap
  3. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. A. Malomed, T. Sowiński, J. Zakrzewski
    Non-standard Hubbard models in optical lattices: a review
    Rep. Prog. Phys. 78, 066001 (2015)
  4. T. Sowiński
    Quantum phase transition in a shallow one-dimensional optical lattice
  5. T. Sowiński, M. Gajda, K. Rzążewski
    Pairing in a system of a few attractive fermions in a harmonic trap
  6. T. Karpiuk, T. Sowiński, M. Gajda, K. Rzążewski, M. Brewczyk
    Correspondence between dark solitons and the type II excitations of Lieb-Liniger model
    Phys. Rev. A 91, 013621 (2015)


  1. A. Barasiński, W. Leoński, T. Sowiński
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices
  2. T. Sowiński
    One-dimensional Bose-Hubbard model with pure three-body interactions
  3. T. Sowiński, R. W. Chhajlany
    Mean-field approaches to the Bose-Hubbard model with three-body local interaction
    Phys. Scripta T 160, 014038 (2014)


  1. T. Sowiński, M. Łącki, O. Dutta, J. Pietraszewicz, P. Sierant, M. Gajda, J. Zakrzewski, M. Lewenstein
    Tunneling-Induced Restoration of the Degeneracy and the Time-Reversal Symmetry Breaking in Optical Lattices
    Phys. Rev. Lett. 111, 215302 (2013)
  2. T. Sowiński, T. Grass, O. Dutta, M. Lewenstein
    Few interacting fermions in a one-dimensional harmonic trap
    Phys. Rev. A 88, 033607 (2013)
  3. J. Pietraszewicz, T. Sowiński, M. Brewczyk, M. Lewenstein, M. Gajda
    Spin dynamics of two bosons in an optical lattice site: a role of anharmonicity and anisotropy of the trapping potential
    Phys. Rev. A 88, 013608 (2013)
  4. O. Dutta, T. Sowiński, M. Lewenstein
    Orbital physics of polar Fermi molecules
    Phys. Rev. A 87, 023619 (2013)


  1. T. Sowiński
    Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions
    Phys. Rev. A 85, 065601 (2012)
  2. J. Pietraszewicz, T. Sowiński, M. Brewczyk, J. Zakrzewski, M. Lewenstein, M. Gajda
    Two component Bose-Hubbard model with higher angular momentum states
    Phys. Rev. A 85, 053638 (2012)
  3. T. Sowiński
    Creation on demand of higher orbital states in a vibrating optical lattice
    Phys. Rev. Lett. 108, 165301 (2012)
  4. T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, M. Lewenstein
    Dipolar molecules in optical lattices
    Phys. Rev. Lett. 108, 115301 (2012)


  1. T. Świsłocki, T. Sowiński, M. Brewczyk, M. Gajda
    Creation of topological states of a Bose-Einstein condensate in a square plaquette of four optical traps
    Phys. Rev. A 84, 023625 (2011)
  2. T. Świsłocki, T. Sowiński, J. Pietraszewicz, M. Brewczyk, M. Lewenstein, J. Zakrzewski, M. Gajda
    Tunable dipolar resonances and Einstein-de Haas effect in a 87Rb-atom condensate
    Phys. Rev. A 83, 063617 (2011)


  1. T. Sowiński, M. Brewczyk, M. Gajda, K. Rzążewski
    Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap
    Phys. Rev. A 82, 053631 (2010)

before 2010

  1. T. Sowiński
    Two-level atom at finite temperature
  2. I. Białynicki-Birula, T. Sowiński
    Quantum electrodynamics of qubits
    Phys. Rev. A 76, 062106 (2007)
  3. T. Sowiński
    Wave functions of linear systems
  4. I. Białynicki-Birula, T. Sowiński
    Gravity-induced resonances in a rotating trap
  5. I. Białynicki-Birula, T. Sowiński
    Solutions of the logarithmic Schrödinger equation in rotating harmonic trap

preprint only

  1. M. Płodzień, D. Wiater, A. Chrostowski, T. Sowiński
    Numerically exact approach to few-body problems far from a perturbative regime
  2. T. Sowiński, I. Białynicki-Birula
    Harmonic oscillator in rotating trap: Complete solution in 3D