publications

Under review

    2022

    1. D. K. Nandy, T. Sowiński
      Sudden quench of harmonically trapped mass-imbalanced fermions
      Sci. Rep. 12, 19710 (2022)
      DOI:10.1038/s41598-022-24228-z
      ArXiv:2209.05870
    2. T. Sowiński
      Comment on "Do Bloch waves interfere with one another?"
      Phys. Lett. A 456, 128198 (2022)
      DOI:10.1016/j.physleta.2022.128198
      ArXiv:2211.04916
    3. D. Pęcak, T. Sowiński
      Unconventional pairing in few-fermion systems at finite temperature
      Sci. Rep 12, 17476 (2022)
      DOI:10.1038/s41598-022-22411-w
      ArXiv:2202.07639
    4. T. Sowiński, M. A. Garcia-March
      Fundamental limitations of the eigenvalue continuation approach
    5. L. Glöggler et al. (AEgIS Collaboration)
      High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics
      Meas. Sci. Technol. 33, 115105 (2022)
      DOI:10.1088/1361-6501/ac8221
    6. P. Łydżba, T. Sowiński
      Signatures of quantum chaos in low-energy mixtures of few fermions

    2021

    1. D. Włodzyński, T. Sowiński
      Few strongly interacting fermions of different mass driven in the vicinity of a critical point
    2. J. Dobrzyniecki, G. Orso, T. Sowiński
      Unconventional pairing in few-fermion systems tuned by external confinement
      Phys. Rev. Research 3, 043105 (2021)
      DOI:10.1103/PhysRevResearch.3.043105
      ArXiv:2105.12519
    3. T. Sowiński
      Few-body perspective on fermionic pairing in one spatial dimension
    4. P. Kościk, A. Kuroś, A. Pieprzycki, T. Sowiński
      Pair-correlation ansatz for the ground state of interacting bosons in an arbitrary one-dimensional potential
      Sci. Rep. 11, 13168 (2021)
      DOI:10.1038/s41598-021-92556-7
      ArXiv:2104.07953
    5. D. Nandy, T. Sowiński
      Dynamical resistivity of a few interacting fermions to the time-dependent potential barrier
    6. J. Dobrzyniecki, T. Sowiński
      Two Rydberg-dressed atoms escaping from an open well

    2020

    1. M. Gajda, J. Mostowski, M. Pylak, T. Sowiński, M. Załuska-Kotur
      Pauli crystals -- interplay of symmetries
    2. S. Sarkar, T. Sowiński
      Correlations in few two-component quantum walkers on a tilted lattice
    3. P. Kościk, T. Sowiński
      Variational ansatz for p-wave fermions confined in a one-dimensional harmonic trap
    4. F. Giacosa, P. Kościk, T. Sowiński
      Capturing non-exponential dynamics in the presence of two decay channels
    5. P. Wrzosek, K. Wohlfeld, D. Hofman, T. Sowiński, M. A. Sentef
      Quantum walk versus classical wave: Distinguishing ground states of quantum magnets by spacetime dynamics
    6. J. Dobrzyniecki, T. Sowiński
      Simulating artificial one-dimensional physics with ultra-cold fermionic atoms: three exemplary themes
    7. D. Nandy, T. Sowiński
      Dynamical properties of a few mass-imbalanced ultra-cold fermions confined in a double-well potential
    8. D. Pęcak, T. Sowiński
      Signatures of unconventional pairing in spin-imbalanced one-dimensional few-fermion systems
      Phys. Rev. Res. 2, 012077(R) (2020)
      DOI:10.1103/PhysRevResearch.2.012077
      ArXiv:1911.04187
    9. P. Łydżba, T. Sowiński
      Unconventional pairing in one-dimensional systems of a few mass-imbalanced ultra-cold fermions
    10. D. Włodzyński, D. Pęcak, T. Sowiński
      Geometry-induced entanglement in a mass-imbalanced few-fermion system

    2019

    1. A. Chrostowski, T. Sowiński
      Efficient construction of many-body Fock states having the lowest energies
    2. T. Sowiński, M. Á. García-March
      One-dimensional mixtures of several ultracold atoms: a review
    3. P. Kościk, T. Sowiński
      Exactly solvable model of two interacting Rydberg-dressed atoms confined in a two-dimensional harmonic trap
      Sci. Rep. 9, 12018 (2019)
      DOI:10.1038/s41598-019-48442-4
      ArXiv:1904.07009
    4. J. Dobrzyniecki, T. Sowiński
      Momentum correlations of a few ultra-cold bosons escaping from an open well
    5. D. Pęcak, T. Sowiński
      Inter-component correlations in attractive one-dimensional mass-imbalanced few-body mixtures

    2018

    1. P. Kościk, M. Płodzień, T. Sowiński
      Variational approach for interacting ultra-cold atoms in arbitrary one-dimensional confinement
    2. J. Dobrzyniecki, T. Sowiński
      Dynamics of a few interacting bosons escaping from an open well
    3. M. Płodzień, R. Demkowicz-Dobrzański, T. Sowiński
      Few-fermion thermometry
    4. M. Płodzień, T. Sowiński, S. Kokkelmans
      Simulating polaron biophysics with Rydberg atoms
      Sci. Rep. 8, 9247 (2018)
      DOI:10.1038/s41598-018-27232-4
      ArXiv:1707.04120
    5. T. Sowiński
      Ground-state magnetization in mixtures of a few ultra-cold fermions in one-dimensional traps
    6. X. Li, D. Pęcak, T. Sowiński, J. Sherson, A. E. B. Nielsen
      Global optimization for quantum dynamics of few-fermion systems
    7. J. Dobrzyniecki, X. Li, A. E. B. Nielsen, T. Sowiński
      Effective three-body interactions for bosons in a double-well confinement
    8. P. Kościk, T. Sowiński
      Exactly solvable model of two trapped quantum particles interacting via finite-range soft-core interactions
      Sci. Rep. 8, 48 (2018)
      DOI:10.1038/s41598-017-18505-5
      ArXiv:1707.04240
    9. J. Dobrzyniecki, T. Sowiński
      Effective two-mode description of a few ultra-cold bosons in a double-well potential
      Phys. Lett. A 382, 394 (2018)
      DOI:10.1016/j.physleta.2017.12.027
      ArXiv:1707.04201

    2017

    1. D. Pęcak, M. Gajda, T. Sowiński
      Experimentally accessible invariants encoded in interparticle correlations of harmonically trapped ultra-cold few-fermion mixtures
    2. D. Rakshit, J. Mostowski, T. Sowiński, M. Załuska-Kotur, M. Gajda
      On the observability of Pauli crystals in experiments with ultracold trapped Fermi gases
      Sci. Rep. 7, 15004 (2017)
      DOI:10.1038/s41598-017-14952-2
      ArXiv:1707.09860
    3. D. Wiater, T. Sowiński, J. Zakrzewski
      Two bosonic quantum walkers in one-dimensional optical lattices
    4. D. Pęcak, A. S. Dehkharghani, N. T. Zinner, T. Sowiński
      Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach

    2016

    1. D. Pęcak, T. Sowiński
      Few strongly interacting ultracold fermions in one-dimensional traps of different shapes
    2. M. Gajda, J. Mostowski, T. Sowiński, M. Załuska-Kotur
      Single shot imaging of trapped Fermi gas
    3. J. Dobrzyniecki, T. Sowiński
      Exact dynamics of two ultra-cold bosons confined in a one-dimensional double-well potential
      Eur. Phys. J. D 70, 83 (2016)
      DOI:10.1140/epjd/e2016-70016-x
      ArXiv:1603.05619
    4. T. Sowiński, M. Gajda, K. Rzążewski
      Diffusion in a system of a few distinguishable fermions in a one-dimensional double-well potential
    5. D. Pęcak, M. Gajda, T. Sowiński
      Two-flavor mixture of a few fermions of different mass in a one-dimensional harmonic trap
      New J. Phys. 18, 013030 (2016)
      DOI:10.1088/1367-2630/18/1/013030
      ArXiv:1506.03592

    2015

    1. T. Sowiński, R. W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein
      Criticality in the Bose-Hubbard model with three-body repulsion
      Phys. Rev. A 92, 043615 (2015)
      DOI:10.1103/PhysRevA.92.043615
      ArXiv:1304.4835
    2. T. Sowiński
      Slightly Imbalanced System of a Few Attractive Fermions in a One-Dimensional Harmonic Trap
    3. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.-S. Lühmann, B. A. Malomed, T. Sowiński, J. Zakrzewski
      Non-standard Hubbard models in optical lattices: a review
      Rep. Prog. Phys. 78, 066001 (2015)
      DOI:10.1088/0034-4885/78/6/066001
      ArXiv:1406.0181
    4. T. Sowiński
      Quantum phase transition in a shallow one-dimensional optical lattice
    5. T. Sowiński, M. Gajda, K. Rzążewski
      Pairing in a system of a few attractive fermions in a harmonic trap
    6. T. Karpiuk, T. Sowiński, M. Gajda, K. Rzążewski, M. Brewczyk
      Correspondence between dark solitons and the type II excitations of Lieb-Liniger model
      Phys. Rev. A 91, 013621 (2015)
      DOI:10.1103/PhysRevA.91.013621
      ArXiv:1402.5650

    2014

    1. A. Barasiński, W. Leoński, T. Sowiński
      Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices
    2. T. Sowiński
      One-dimensional Bose-Hubbard model with pure three-body interactions
    3. T. Sowiński, R. W. Chhajlany
      Mean-field approaches to the Bose-Hubbard model with three-body local interaction
      Phys. Scripta T 160, 014038 (2014)
      DOI:10.1088/0031-8949/2014/T160/014038
      ArXiv:1404.0704

    2013

    1. T. Sowiński, M. Łącki, O. Dutta, J. Pietraszewicz, P. Sierant, M. Gajda, J. Zakrzewski, M. Lewenstein
      Tunneling-Induced Restoration of the Degeneracy and the Time-Reversal Symmetry Breaking in Optical Lattices
      Phys. Rev. Lett. 111, 215302 (2013)
      DOI:10.1103/PhysRevLett.111.215302
      ArXiv:1304.6299
    2. T. Sowiński, T. Grass, O. Dutta, M. Lewenstein
      Few interacting fermions in a one-dimensional harmonic trap
      Phys. Rev. A 88, 033607 (2013)
      DOI:10.1103/PhysRevA.88.033607
      ArXiv:1304.8099
    3. J. Pietraszewicz, T. Sowiński, M. Brewczyk, M. Lewenstein, M. Gajda
      Spin dynamics of two bosons in an optical lattice site: a role of anharmonicity and anisotropy of the trapping potential
      Phys. Rev. A 88, 013608 (2013)
      DOI:10.1103/PhysRevA.88.013608
      ArXiv:1303.5232
    4. O. Dutta, T. Sowiński, M. Lewenstein
      Orbital physics of polar Fermi molecules
      Phys. Rev. A 87, 023619 (2013)
      DOI:10.1103/PhysRevA.87.023619
      ArXiv:1202.4158

    2012

    1. T. Sowiński
      Exact diagonalization of the one-dimensional Bose-Hubbard model with local three-body interactions
      Phys. Rev. A 85, 065601 (2012)
      DOI:10.1103/PhysRevA.85.065601
      ArXiv:1202.1932
    2. J. Pietraszewicz, T. Sowiński, M. Brewczyk, J. Zakrzewski, M. Lewenstein, M. Gajda
      Two component Bose-Hubbard model with higher angular momentum states
      Phys. Rev. A 85, 053638 (2012)
      DOI:10.1103/PhysRevA.85.053638
      ArXiv:1104.2512
    3. T. Sowiński
      Creation on demand of higher orbital states in a vibrating optical lattice
      Phys. Rev. Lett. 108, 165301 (2012)
      DOI:10.1103/PhysRevLett.108.165301
      ArXiv:1111.3802
    4. T. Sowiński, O. Dutta, P. Hauke, L. Tagliacozzo, M. Lewenstein
      Dipolar molecules in optical lattices
      Phys. Rev. Lett. 108, 115301 (2012)
      DOI:10.1103/PhysRevLett.108.115301
      ArXiv:1109.4782

    2011

    1. T. Świsłocki, T. Sowiński, M. Brewczyk, M. Gajda
      Creation of topological states of a Bose-Einstein condensate in a square plaquette of four optical traps
      Phys. Rev. A 84, 023625 (2011)
      DOI:10.1103/PhysRevA.84.023625
      ArXiv:1008.2324
    2. T. Świsłocki, T. Sowiński, J. Pietraszewicz, M. Brewczyk, M. Lewenstein, J. Zakrzewski, M. Gajda
      Tunable dipolar resonances and Einstein-de Haas effect in a 87Rb-atom condensate
      Phys. Rev. A 83, 063617 (2011)
      DOI:10.1103/PhysRevA.83.063617
      ArXiv:1102.1566

    2010

    1. T. Sowiński, M. Brewczyk, M. Gajda, K. Rzążewski
      Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap
      Phys. Rev. A 82, 053631 (2010)
      DOI:10.1103/PhysRevA.82.053631
      ArXiv:1006.3067

    before 2010

    1. T. Sowiński
      Two-level atom at finite temperature
    2. I. Białynicki-Birula, T. Sowiński
      Quantum electrodynamics of qubits
      Phys. Rev. A 76, 062106 (2007)
      DOI:10.1103/PhysRevA.76.062106
      ArXiv:0705.2121
    3. T. Sowiński
      Wave functions of linear systems
    4. I. Białynicki-Birula, T. Sowiński
      Gravity-induced resonances in a rotating trap
    5. I. Białynicki-Birula, T. Sowiński
      Solutions of the logarithmic Schrödinger equation in rotating harmonic trap

    preprint only

    1. M. Płodzień, D. Wiater, A. Chrostowski, T. Sowiński
      Numerically exact approach to few-body problems far from a perturbative regime
    2. T. Sowiński, I. Białynicki-Birula
      Harmonic oscillator in rotating trap: Complete solution in 3D