Stationary, dynamic and thermal properties of quantum droplets

<u>M. B. Kruk^{1,*}</u>, P. Deuar¹

¹Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland *mbkruk@ifpan.edu.pl

 $>T_c$

Comparison of effective 1D (dotted yellow lines) and full 3D (solid green lines) collision of two droplets at two times. Emission of two "satellite" droplets can be seen (left), droplet ends up in a bath of smaller droplets after a long time (right).

Our objective

We study contact-interacting two-component quantum droplets in the regime in which harmonic confinement in one or two directions is sufficient to constrain the droplet wavefunction to the transverse motional ground state, but not yet strong enough to modify the high energy Bogoliubov spectrum or the LHY correction from its 3D form. Examples of this regime include the experiments of Cabrera et al. Science 359, 301 (2018). We develop effective low-dimensional extended Gross-Pitaevskii equations with modified coefficients and dependence on transverse confinement.

Full 3D equations

Single component approximation:

 $\int |\phi|^2 d^3 x = N$ $i\partial_t \phi = \left(-\frac{\nabla^2}{2} - 3|\phi|^2 + \frac{5}{2}|\phi|^3 - \mu\right)\phi$ $E = \int \left(\frac{1}{2}|\nabla\phi|^2 - \frac{3}{2}|\phi|^4 + |\phi|^5\right)d^3 x$

Effective 1D (elongated 3D)

 $\phi(x, y, z) = \phi_{\text{gaussian}}(x, y)\phi_{1\text{D}}(z)$

$$i\partial_t \phi_{1D} = \left(-\frac{\nabla^2}{2} - g_1(\omega)|\phi_{1D}|^2 + c_1(\omega)|\phi_{1D}|^3 - \mu\right)\phi_{1D}$$

Effective 1D droplet density profiles: as a function of trapping frequency (left), as a function of

Trapped direction characteristic length a_{\perp}

no critical number of particles

Effective 2D (flattened 3D)

Effective 2D droplet density profiles: as a function of trapping frequency (left), as a function of total number of particles (right).

Two colliding quantum droplets at two times: effective 2D simulation (left) vs full 3D simulation
(right), first contact (top), merged droplets wobbling after a long time (bottom). Note the perfect
agreement between effective 2D and full 3D simulations.critical number of particles: $2.74 < N_c < 2.75$
In both effective 1D and effective 2D stronger trapping frequency provides better agreement
between our effective low-D theory and full 3D.

