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Comparison of effective 1D (dotted yellow lines) and full 3D (solid green lines) collision of two
droplets at two times. Emission of two ”satellite” droplets can be seen (left), droplet ends up in a

bath of smaller droplets after a long time (right).

Our objective

We study contact-interacting two-component quantum droplets in the regime in which harmonic
confinement in one or two directions is sufficient to constrain the droplet wavefunction to the
transverse motional ground state, but not yet strong enough to modify the high energy

Bogoliubov spectrum or the LHY correction from its 3D form. Examples of this regime include
the experiments of Cabrera et al. Science 359, 301 (2018). We develop effective low-dimensional
extended Gross-Pitaevskii equations with modified coefficients and dependence on transverse

confinement.
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Two colliding quantum droplets at two times: effective 2D simulation (left) vs full 3D simulation
(right), first contact (top), merged droplets wobbling after a long time (bottom). Note the perfect

agreement between effective 2D and full 3D simulations.

Full 3D equations

Single component approximation:

∫ |φ|2d3x = N

i∂tφ = (−
∇2

2
− 3|φ|2 + 5

2
|φ|3 − µ)φ

E =
∫
(
1
2
|∇φ|2 − 3

2
|φ|4 + |φ|5)d3x

Effective 1D (elongated 3D)

φ(x, y, z) = φgaussian(x, y)φ1D(z)

i∂tφ1D = (−
∇2

2
− g1(ω)|φ1D|2 + c1(ω)|φ1D|3 − µ)φ1D

Effective 1D droplet density profiles: as a function of trapping frequency (left), as a function of
total number of particles (right).
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Effective 2D (flattened 3D)

φ(x, y, z) = φ2D(x, y)φgaussian(z)

i∂tφ2D = (−
∇2

2
− g2(ω)|φ2D|2 + c2(ω)|φ2D|3 − µ)φ2D

Effective 2D droplet density profiles: as a function of trapping frequency (left), as a function of
total number of particles (right).
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critical number of particles: 2.74 < Nc < 2.75
In both effective 1D and effective 2D stronger trapping frequency provides better agreement

between our effective low-D theory and full 3D.
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