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INTRODUCTION
We demonstrate that the beyond-mean-field Lee-Huang-Yang (LHY) corrections [1] to
the Bogoliubov ground-state [2] can alternatively be described by implementing an effec-
tive interaction strength g0 and an effective condensate density n0 in the truncated Wigner
approximation. This treatment gives identical expected initial energy and density con-
dition for the mean-field and the Wigner field dynamics. Numerical simulations of the
Bose-Einstein condensate (BEC) dynamics in several one-dimensional systems are car-
ried out accordingly using the beyond-mean-field description and the truncated Wigner
approximation. For the example of applying a periodic trapping potential to an initially
homogeneous BEC, the truncated Wigner method shows mostly qualitative agreement
with the beyond-mean-field result and shows that the interference pattern developed in
the beyond-mean-field is unphysical. This allows replacing the beyond-mean-field LHY
correlations with the truncated Wigner appproximation, and leads to the determination
of the quantum correlations for systems which the LHY corrections are non-negligible.

EFFECTIVE INTERACTION STRENGTH AND DENSITY

The standard Hamiltonian for a weakly interacting dilute gas has the form Ĥ =∫
dx

[
−Ψ̂†(x) h̄2

∇2

2m Ψ̂(x)+V (x)Ψ̂†(x)Ψ̂(x)+ g
2 Ψ̂†2(x)Ψ̂2(x)

]
. To take into account

quantum fluctuations, the Bose field operator is expanded as Ψ̂(x) = φ0(x) +
δ φ̂(x). The Hamiltonian is diagonalized by the Bogoliubov transformation, δ φ̂(x) =

1√
V ∑

k

[
ukb̂keik·x − vkb̂†

ke−ik·x
]
, where uk =

εk+Ek
2
√

εkEk
and vk =

εk−Ek
2
√

εkEk
for homogeneous gas

with Ek = h̄2k2/2m and εk =
√

Ek(Ek +2g0n).
The higher-order energy contributions of the quasiparticle lead to the LHY corrections

[3]. Note that the LHY correction is dimension-dependent, for 1D [4]:

ELHY(g,n) =−
∫

dx
2gn

√
mgn

3π h̄
.

For beyond-mean-field description, the total energy of a homogeneous BEC system con-
sists of the mean-field interaction, Eint,MF =

∫
dx gn2

2 , and the LHY correction, i.e.

EBMF(g,n) = Eint,MF(g,n)+ELHY(g,n).

The truncated Wigner method describes quantum system by introducing vacuum noise
to the initial state. For Bogoliubov ground state, the phonon modes are represented as
complex Gaussian random variables b̂k ∼ βk and b̂†

k ∼ β ∗
k where ⟨|βk|2⟩= 1

2 , i.e. [5,6]

ΨW (x) = φ0(x)+
1√
L∑

k

(
ukβkeikx − vkβ

∗
k e−ikx

)
.

For Bogoliubov ground state in Wigner representaion, the expected total energy consists
of the kinetic term Ekin,W = L

4π

h̄2

m
∫

dk|vk|2k2 and the interaction term Eint,W =
∫

dx g0G(2)

2 :

EW(g0,n) = Ekin,W(g0,n)+Eint,W(g0,n),

where G(2) = n2− n
V +4nδn+2Re(m̄)

√
n(n− 1

V )+ |m̄|2+2(δn)2 is the pair correlation,

m̄ = 1
V

L
2π

∫
dku∗kvk is the anamolous pair density and δn = 1

V
L

2π

∫
dk|vk|2 is the density

depletion. The effective interaction strength g0 is determined when:

EW(g0,n) = EBMF(g,n).

The effective condensate density n0 is used to retain the mean-field density:
n0 = n−δn(g0,n) = φ

2
0 .
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Figure 1: Top: matching the expected total energy from the Wigner method with the
beyond-mean-field energy to determine the effective interaction strength g̃0. In this ex-
ample g̃ = 0.3, g̃0 ≈ 0.285 (in dimensionless form, x̃ = x

ξh
in the unit of healing length

ξh =
h̄√

2mng ). Bottom left: the density depletion predicted by the Wigner method matches
to the expected depletion determined from the Bogoliubov coefficients ũk, ṽk. Bottom
right: Wigner simulation retains the LHY correction, here ẼLHY ≈−18.86.

DYNAMICS OF THE BEC
Taking into account quantum fluctuations beyond the Gross-Pitaevskii equation, the time
evolution of the one-dimensional mean-field (in dimensionless form ψ̃MF ) follows the
extended Gross-Pitaevskii equation (EGPE) which includes the LHY correction:

∂ψ̃MF

∂ t̃
=−i

[
−∇̃

2 +Ṽ + g̃|ψ̃MF |2 −
1√
2π

g̃
3
2 |ψ̃MF |

]
ψ̃MF .

Using the effective interaction strength g̃0 and the effective condensate density ñ0, the
Wigner field (ψ̃W ) follows the standard GPE without the LHY correction:

∂ψ̃W

∂ t̃
=−i

[
−∇̃

2 +Ṽ + g̃0|ψ̃W |2
]

ψ̃W .

COMPARISON BETWEEN EGPE AND WIGNER METHOD

The Wigner field dynamics with the effective g̃0 and ñ0 is compared to the mean-field
dynamics. The LHY correction in mean-field is replaced by the quantum fluctuations
introduced in the Wigner field. The two effective parameters retain the energy and the
density of the bose gas system as the LHY correction employed.

Figure 2: Simulations of the dynamics of an initially homogeneous bose gas, a periodic
trapping potential Ṽ = g̃ñ

10 cos( x̃
8 ) is applied at t̃ > 0. Left: EGPE prediction, sharp inter-

ference pattern developed at t̃ ≳ 50. Right: the truncated Wigner approximation shows
that the interference pattern is unphysical.

k-SPACE CORRELATIONS

A harmonic potential Ṽ = 4g̃ñ( 2x̃
L̃
)2 is applied to an initially homogeneous bose gas.

For mean-field and beyond-mean-field which the LHY correction is included, pair cor-
relation g(2) = 1. Using the truncated Wigner approximation, pair correlations can be
determined. Here k−space pair correlations are calculated.

Figure 3: Simulations of the time evolution of an initially homogeneous bose gas with
a harmonic potential applied at t̃ > 0. Top: gas density profile simulated by truncated
Wigner method. Bottom left: pair correlation g(2)(k̃, k̃). Bottom right: pair correlation
g(2)(k̃,−k̃). A strong correlation is developed after maximum compression 25 ≲ t̃ ≲ 30.
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