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1.The proposed experiment:  
How to simulate the early universe in BEC? 



Fate of the false vacuum 
 Coleman 1: decay of relativistic scalar 

field; from metastable false vacuum to 
stable true vacuum 

 

 Bubble nucleation at speed  

False vacuum 
True vacua “universe 
bubbles” 

1. S. Coleman, Phys. Rev. D 15, 2929 
(1977). 

Fig b: Illustration of bubble nucleation of inflationary universes (Figures   
            edited from https://www.nasa.gov/) 
 

Fig a: Illustration of false  
            vacuum tunneling 

https://www.nasa.gov/


Proposed experiment of the false vacuum 

 BEC with two occupied hyperfine levels, well mixed with minimized 
interspecies interaction              , and a phase difference  

 For simplicity, we assume intraspecies interaction 

 This is possible for        (                                   and                                    ) 

 Fialko et al 2015 Europhys.Lett. 110 56001  

 

Fig: Illustration of well mixed BEC components 



Proposed experiment of the false vacuum 

 The Hamiltonian 

 

 

 Modulated time-dependent sinusoidal coupling 

 

Fig: Modulated coupling by external cw microwave field 



 Kapitza pendulum: Phase potential creation 

 Create metastable+stable potential: 

  

 Applying high driving frequency at 
the pivot point of a rigid pendulum  

 metastable false vacuum -> small 
perturbation angle at lower position 

 stable true vacuum -> upper vertical 
position 

 

Fig: Illustration of Kapitza pendulum (Figure 
source:https://en.wikipedia.org/wiki/Kapitza%27s_
pendulum) 



Relative phase of the BEC 

 Two component BEC with relative 
phase: 

 

 Phase potential in the condition of 
“Kapitza pendulum”: 

 

 

 Characteristic frequency due to 
the coupling amplitude: 

 

 Fast oscillation amplitude:  

 

 

 BEC in false vacuum: 

 

 BEC in true vacuum:  

Fig: Phase potential vs relative phase of BEC 



2.Theoretical model of the experiment 



Initial state (part1): Bogoliubov method 

 Assuming component             is in a vacuum state; component                         

is in thermal equilibrium at temperature     : 

 
 Fluctuations: 

 
 Bogoliubov coefficients for           :                      , 

 
 Free particle energy                         and excitation energy 

 

 Phonon distribution:                                                      , 

 



Initial state (part 2):  
truncated Wigner Approximation (TWA) 

 Long simulation time 

 Include thermal and vacuum fluctuations 

 Correction of order            for     particles 

 Taking                         , the corresponding Wigner representation for the BEC fields 
are (in dimensionless): 

 

 

 

 

                 

 

  



Initial state (part 2):  
truncated Wigner Approximation (TWA) 

 Long simulation time 

 Include thermal and vacuum fluctuations 

 Correction of order            for     particles 

 Taking                         , the corresponding Wigner representation for the BEC fields 
are (in dimensionless): 

 

 

 

 

 Complex Gaussian random variables                                           and                  

 
 Expectation values of noises:                               and                      , 

  



Initial state (part 3) 

 The BEC is rabi rotated by a microwave pulse to give equal occupation for 

both spin species with initial relative phase  

 In simulation, this is equivalent to a rotation matrix acting on the BEC fields: 

 

 

 

 

 

where                   and  

 

 Initial conditions 



3.Decay of false vacuum 



Some parameters 

3. A. Kumar et al., Phys. Rev. A 95, 021602(R) (2017). 

4. M. Kunimi and I. Danshita, Phys. Rev. A 99, 043613 (2019). 



The decay of false vacuum and  
the bubble nucleation of true vacua 

• The Wigner field trajectory in real time 

Fig: Decay of 1D false vacuum from a single  
        trajectory simulation with reduced  
        temperature                 , corresponds  
        to                    .   



Fig: Decay of 1D false vacuum from a single  
        trajectory simulation with reduced  
        temperature                 , corresponds  
        to                    .   

The decay of false vacuum and  
the bubble nucleation of true vacua 

Fig: Decay of 1D false vacuum from a single  
        trajectory simulation with reduced  
        temperature                 , corresponds  
        to                    .   



 Relative number density distribution:                                     ,  

where                                  and 

1D false vacuum at finite temperatures 

Fig: (left) reduced temperature                           ; (right)   



1D false vacuum at finite temperatures 
 False vacuum and true vacua (bubble universes)  

Fig: (left) reduced temperature                           ; (right)   



1D false vacuum at finite temperatures 
 False vacuum and true vacua (bubble universes)  

(1) (2) (3) (4) (5) 

Fig: (left) reduced temperature                           ; (right)   



1D false vacuum at finite temperatures 
 Domain walls and oscillons 

Fig: (left) reduced temperature                           ; (right)   



False vacuum True vacua “universe bubbles” 

Fig: Simulation of bubble nucleation in 2D BEC 
 

2D false vacuum at finite temperatures 



Tunneling rate: quantify bubble nucleation 

 Average cosine of the relative phase: 

 

 

 

 Threshold value for bubble nucleation 

 Survival probability and tunneling rate5 

Fig: Example of average cosine of the BEC relative 
       phase at two temperatures 5. S. Takagi, Macroscopic Quantum Tunneling (Cambridge    

    University Press 2002). 



Tunneling rate 

Fig: Tunneling rate at various temperatures   

 Statistical results from 80000 Wigner 
trajectories 

 Coherent state with no thermal effect 
included 

 Various external coupling  

 Various oscillation amplitude 



Tunneling rate 
 High oscillation amplitude (deeper phase potential “depth”) reduces tunneling rate 

 Strong external coupling reduces tunneling rate 

 Tunneling rate is dominated by the thermal fluctuations at high temperature 



4.Floquet instability 



Floquet instability 

 If modulation frequency     too low: unstable Floquet modes occur 6 

Fig. Critical wavenumber at various coupling     

6. J. Braden et al., JHEP 2019, 174 (2019). 
;  ;  



Floquet instability 

 Increase the momentum cutoff to 
include the unstable Floquet modes 

 True vacua gradually destroyed 

 Chaotic fluctuations 

 Short lived vacua 

;  ;  



Floquet instability 

 Increase modulation frequency 

 Partially stabilize the true vacua 

;  ;  



Floquet instability 

 Stable true vacua in the simulation 
time 

;  ;  



Floquet instability 

 Statistical results from 8000 trajectories 

 True vacua stabilization at large modulation frequency (Fig.a) 

 Initiation of bubble nucleation is delayed by modulation amplitude (Fig.b) 

;  ;  Fig.b: ;  ;  Fig.a: 



5.Summary 



Conclusion 

 BEC with two spin components as the analogous relativistic quantum field 

 Relative phase corresponds to the false/true vacuum 

 Components are coupled via modulation microwave 

 Thermal fluctuations coexist with true vacua 

 Bubble nucleation is accelerated at finite temperature 

 True vacua may be stabilized by high modulation frequency 
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Thank You 
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