

Spin distillation cooling of ultracold Bose gases

Tomasz Świsłocki¹, Mariusz Gajda², Mirosław Brewczyk³, <u>Piotr Deuar²</u>

1 Warsaw University of Life Sciences (Institute of Information Technology), Warsaw, Poland 2 Institute of Physics, Polish Academy of Sciences, Warsaw, Poland 3 University of Białystok, Białystok, Poland

Scientific Reports **11**, 6441 (2021)

<u>Conclusions: repeated cooling cycles check out in realistic simulations; two mechanisms, both allowing $~k_BT \ll \mu$ </u>

The case of ⁵²Cr S=3

Dipolar interactions, 7 components Linear Zeeman effect

Seven spinor components Parameters as in experiment $\psi(\mathbf{r}) =$ $(\psi_3(\mathbf{r}), \psi_2(\mathbf{r}), \psi_1(\mathbf{r}), \psi_0(\mathbf{r}), \psi_{-1}(\mathbf{r}), \psi_{-2}(\mathbf{r}), \psi_{-3}(\mathbf{r}))$

The case of ²³Na F=1

<u>Contact interactions, 3 components</u> Quadratic Zeeman effect

Was conjectured to also allow cooling via the quadratic Zeeman effect,

purely through contact spin-dependent interactions Naylor, Marechal, Hackens, Gorceix, Pedri, Vernac, Laburthe-Tolra, PRL 115, 243002 (2015)

Three quasispin components
$$\ oldsymbol{\psi} = (\psi_1, \psi_0, \psi_{-1})$$

qB²

energy

²³Na *F*=1

Quadratic Zeeman effect is relevant here

 $H_{\text{QZE}} = -q \int d\mathbf{r} \ n_0(\mathbf{r})$

 H_c is a 7×7 matrix in spinor components H_d is the dipolar interaction term. It will not be written down today.

Open questions

• Can successive cycles lead to more cooling?

• What are the limitations / conditions needed?

* how should magnetic field be changed in successive cycles?

does it also work for ²³Na (suggested in the paper)

Cooling cycles confirmed

Adapting *B* after every cycle $B = k_B T / 6 \mu_B$

Cooling cycles

Cooling mechanism in ²³Na

- Low threshold for spin mixing allows Rabi oscillations between lowest and higher quasispin states. $\psi_0 \, \& \psi_{\pm 1} \rightleftharpoons \psi_0 \, \& \psi_{\pm 1}$
- The process $\psi_0^c \otimes \psi_{\pm 1}^{\text{th}} \rightleftharpoons \psi_0^{\text{th}} \otimes \psi_{\pm 1}^c$ is then essential to exchange condensate and thermal populations in a single spin component, and irreversibly
- The thermal atoms redistribute, leaving only 1/3 of the original number in $m_{c} = 0$
- Higher energy spin components are removed.

degrade the reversible Rabi oscillations

²³Na *F*=1 <u>m</u>=+1, -1 $m_{c}=0$ initial cloud

• Cycle repeats, possibly with a modified B field

1-particle modes

Developed by many authors:

M. Brewczyk, M. Gajda, M. Davis, K. Rzążewski, A. Sinatra, K. Burnett, E. Witkowska, ... (no priority implied) Useful Reviews: M. Brewczyk et al, J. Phys B 40, R1 (2007); P. Blakie et al. Adv. Phys. 57, 363 (2008)

Limitations in ⁵²Cr ; minimum B

1) Thermal energy should be sufficient to overcome the magnetic energy barrier

 $2\mu_B B \lesssim k_B T$

2) The magnetic field should be high enough that the condensate ground state remains polarised and cannot overcome the magnetic energy barrier

We acknowledge the support of: the National Science Centre, Poland; the QuantERA program; Thanks are also due to Bruno Laburthe-Tolra, Emilia Witkowska, Joanna Pietraszewicz

Limitations in ²³Na ; maximum B

• Spin mixing terms responsible for the transfer $2n_0 \rightleftharpoons n_{\pm 1}$

and Rabi oscillation have energy of order $c_2 n$

N A R O D O W E C E N T R U M

• Therefore, amplitude of spin mixing process will decay rapidly once the energy difference exceeds $C_2 \eta$

