Conclusions: repeated cooling cvcles check out in realistic simulations
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Schematic diagram of time sequence of cooling event: (A)—a thermal sample of atoms is prepared, (B)—active
cooling begins, (C)—active coolings stops, (D)—unwanted atoms are removed.

* (A) Stochastic Gross Pitaevskii Euation (SGPE) for initial state generation

* (B) plain nonlinear Schrodinger equation (GPE) for dynamical evolution
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Simulation method - classical field
Bose field semiclassical replacement

~ ~ so-called
U(x) =) a;u5(x) — p(x) = { ) :@j%(x)} “classical fields”
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Assuming high occupation:

This method is essential because
exact quantum mechanics of 10°
atoms in 10° states is not feasible

mean mode occupation 72;(t)

Remarkably:
the main physics is captured well 012

Developed by many authors:
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Initial states - Stochastic GPE

higher spin states removed
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(dissipation)
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Cutoff and numerical lattice:

Hi (V) = g|V(r, 1)

chempot sets N
gain of particles from tails
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(complex noise, fluctuation)

Thermalised ensemble at long time

effective T

Temperature is easily set

t

* k™ : optimised for several variables according to
Pietraszewicz, PD, PRA 92, 063620 (2015); 98, 023622 (2018)

* volume: chosen to match known condensate fraction

0.6

0.4
0.24

0.0 ———

-0.2F

relative error

7= 0.001 7y = 0.01

0.6 0.8 L0

0.4

momentum cutoff

The case of °>°Cr S=3

Seven spinor components

P(r) =
(¢3(r), ¥a(r),1(r), Yo(r), Y_1(r), Y_2(r),v_3(r)

Parameters as in experiment

Q 2Cr S=3 « Several hyperfine species of the same atom
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H.1s a 7x7 matrix in spinor components

H; is the dipolar interaction term. It will not be written down today.

Open questions

* Can successive cycles lead to more cooling?
* What are the limitations / conditions needed?

* how should magnetic field be changed in successive cycles?

* does it also work for 23Na (suggested in the paper)

Cooling cycles confirmed

Adapting B after every cycle |3 = kB T/G/,LB
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Cooling mechanism in >*Cr

* Dipolar interactions populate the m, = -2 state via the nonequilibrium process

Yo &Yl =yl &yt

provided the Zeeman energy gap between spin states is sufficiently small

* No condensates appear in components m, = -2, -1, .. ., 3 because thermal
clouds are not saturated.

* Higher spin components are removed by reshaping the trap and increasing B

* Cycle repeats, possibly with a modified B field

Limitations in °°Cr ; minimum B

1) Thermal energy should be sufficient to overcome the magnetic energy barrier
2upB S kBT,

2) The magnetic field should be high enough that the condensate ground state
remains polarised and cannot overcome the magnetic energy barrier
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0.6 scattering lengths in the total spin 6 and 4 channels

0.4+ Combining conditions leads to
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Condensate fraction

' ' ' : for our system this gives 0.057c, 0.13 u --- very low
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- two mechanisms, both allowing kT < 1

Scientific Reports 11, 6441 (2021)

The case of ?Na F=1

Was conjectured to also allow cooling via the quadratic Zeeman effect,

purely through contact spin-dependent interactions
Naylor, Marechal, Hackens, Gorceix, Pedri, Vernac, Laburthe-Tolra, PRL 115, 243002 (2015)

Three quasispin components ’Lp — (77/)1,7#0,1/)_1)

Quadratic Zeeman effect is relevant here
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co = 4wh*(2as + ag)/3m spin-independent; large

Co = 4h* (CLQ - Go)/3’m spin-dependent; small

Cooling cycles
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Cooling mechanism in ?Na

» Low threshold for spin mixing allows Rabi oscillations between lowest and higher
auasispin states. &y = Yo &Y

 The process ./,.c th _. .,.th c is then essential to exchange
g Vo &Y = ¥y &L, J

condensate and thermal populations in a single spin component, and irreversibly
degrade the reversible Rabi oscillations

» The thermal atoms redistribute, leaving only 1/3 of the original number in 0
m =

. . o A

* Higher energy spin components are removed. ) BNg F=1
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Limitations in *Na ; maximum B

* Spin mixing terms responsible for the transfer 21y = 141

and Rabi oscillation have energy of order con

* Therefore, amplitude of spin mixing process will decay rapidly once the energy
difference exceeds con

* Under magnetic field, energy to take two atoms from m= 0to m=+1, -1
Is 2q

* -—-> One needs: q 5 Cznglax
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