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Classical field records of a quantum system: Their internal consistency and accuracy
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We determine the regime where the widespread classical field description for quantum Bose gases is
quantitatively accurate in one dimension (1D), 2D, and 3D by a careful study of the ideal gas limit. Numerical
benchmarking in 1D shows that the ideal gas results carry over unchanged into the weakly interacting gas. The
optimum high-energy cutoff is in general shown to depend strongly on the observable in question (e.g., energy,
density fluctuations, phase coherence length, condensate fraction). This explains the wide range of past results.
A consistent classical field representation with less than 10% deviation in all typical observables can be given
for systems at temperatures below 0.0064 degeneracy temperature in 1D, and 0.49 critical temperature in 3D.
Surprisingly, this is not possible for the two-dimensional ideal gas even at zero temperature because mean density,
density fluctuations, and energy cannot be simultaneously matched to the quantum results.
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I. INTRODUCTION

The quantum mechanics of a wide variety of physical
systems can be quite accurately described by an appropriately
chosen ensemble of complex fields (also called classical or
c-fields) [1–5]. Examples include quantum gases of ultracold
atoms, coherent light fields, and solid-state polariton systems.
A common feature is the appearance of collective behavior
such as high-amplitude phase fluctuations and superfluid
defects, that strongly fluctuate away from the mean field.
Though the term “classical” is used, we are talking about the
opposite regime to the usual gas of classical particles. Here, it is
the collective field that has classical properties such that each
member of the ensemble could be nondestructively tracked,
while the particles lose their individual identity. Examples of
such approaches include classical field ensembles [1,3,6–8],
the stochastic Gross-Pitaevski equation [2,9,10], the truncated
Wigner representation [11–13] for ultracold atoms, and the
open stochastic classical field equations for polaritons [14,15].
Related approaches for fermions include stochastic mean-field
theory in, e.g., heavy-ion collisions [16,17], and effective field
theories for the pairing order parameter [18,19].

In the absence of sufficient in situ experimental resolution,
the approach is also commonly used like a flight recorder to
give information on the dynamics of the system before its
detection in destructive time-of-flight images. Its applications
are growing in importance given advances in the experimental
investigation of spontaneous superfluid defects and phase
fluctuations, such as in Refs. [20–29]. In quantum many-body
systems with collective nonlinear phenomena, such ensembles
of complex fields are often the only practical way to obtain the-
oretical information on fluctuations, full distribution functions,
and, especially, on typical single realizations with superfluid
defects or quasicondensate phase fluctuations [8,28,30–46].

However, their use has usually been accompanied by linger-
ing doubt on whether the results are quantitative or qualitative.
From an operational perspective, two major contributing fac-
tors to that have been (i) a visible dependence of some results
on the high-energy cutoff that is chosen, and (ii) different opti-
mum cutoff values found in the literature [1,4,12,46–54]. The
aim of this paper is to identify a regime where c-fields are in

fact quantitatively accurate, so that they can be used there with
confidence.

Qualitatively, the condition for the applicability of classical
fields to bosons is that the relevant physics can be captured by
considering only the highly occupied single-particle modes,
without the need for a condensate [5]. Poorly occupied
modes are not described well, and those above an energy
cutoff need to be discarded to avoid pathological behavior,
such as the UV catastrophe known since late 19th century
physics.

However, the matter of just where to draw the line and
how accurate the description is has been a matter of much
contention and ambiguity. The history of applying classical
fields to ultracold atomic gases teaches us that accuracy has
depended quite strongly on the choice of the high-energy cutoff
and the observables studied. Past numerical benchmarking
[4,12,30,47–50,52,55–59], careful comparisons to experiment
[48,60–62], and also analytical [50,51] and purely mathemat-
ical studies [63] of various single observables have found that
it is possible to achieve good to very good agreement, but the
details of the recipe vary from study to study [1,12,48,50,52].

Here, we intend to clarify these dependencies, and will show
that under the right conditions the classical field approximation
can be treated as more than just a qualitative guide, but gives
predictions that are correct within small error bounds for a
wide range of observables.

We will concentrate first on the case of an ideal gas as
a baseline, reasoning that well-described interacting regimes
can be found at temperatures that are already well described
in the ideal gas. Then we will confirm that accuracy seen
in the ideal gas carries over into the weakly interacting
regime under appropriate conditions. We will work in the
local density approximation (LDA) in the thermodynamic
limit. That is, we will consider pieces of the gas cloud
having a certain local density, which allows us to remain
general in terms of trap geometry. In the LDA, it is natural
to work in the grand canonical ensemble (GCE), where
the rest of the system acts as the particle and thermal
reservoir. Such a model underpins more general behavior,
and it will be seen that several important conclusions can be
reached.
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In Sec. II we will describe our approach. Further, in
Sec. III A, we will find the temperature-dependent eigencutoffs
that allow the classical fields to correctly match the density
and one other observable. Subsequently, in Secs. III B and IV
we will determine the resulting errors in other observables and
the cutoff that minimizes the systematic error across the whole
range of observables. This will tell us about the temperature
range over which an accurate complex field description of the
system is possible. Finally, via numerical benchmarking of
a weakly interacting gas in one dimension (1D) to the exact
Yang and Yang solution [64] we will show in Sec. VI that the
ideal gas results carry over largely unchanged into that regime.
We conclude in Sec. VII.

II. APPROACH

A. Classical field description

The essence of the classical fields method is to replace
annihilation (creation) operators âk (â†

k) of single-particle
modes in the field operator by complex amplitudes ξk (ξ ∗

k ),
which is warranted when occupation is macroscopic. Then we
can write:

�̂(x) =
∑

k

âkψk(x) →
{∑

k∈C
ξkψk(x)

}
, (1)

where ψk(x) is the wave function for the kth mode and C
denotes the low-energy subspace. Since we will be considering
uniform sections of the gas, plane wave modes k ≡ k are the
most convenient, with momentum cutoff kc so that only modes
|k| < kc are included in C.

In general, it should be understood that �̂(x) corresponds
to an ensemble {. . .} of complex field realizations, each with
its own set of amplitudes ξk . The full ensemble preserves the
gauge symmetry of the quantum thermal state that corresponds
to a set of many experimental realizations. This is despite
the virtual symmetry breaking done by each member of the
ensemble similarly to a single experimental realization [5].

B. Parameters

The properties of the uniform dilute gas can be encapsulated
by two dimensionless parameters. The first is γ = mg

�2n
with

density n and contact interaction strength g, and the second
is a reduced temperature τ , which depends on the density n,
but not on the interaction strength. We choose the thermal de

Broglie wavelength �T =
√

2π�2

mkBT
as our length scale, so that

the reduced temperature is

τ = T

Td

= 1

2π

mkB

�2

T

n2/d
. (2)

Here, Td is the usual quantum degeneracy temperature in
d dimensions that corresponds to one particle per region of
volume �d

T . It is a natural scale for our investigation because
then τ = 1 corresponds to the point at which the highest
mode occupation is O(1), and this constitutes the intuitive
ultimate upper bound on temperature for which classical field
descriptions make sense.

It is convenient to also scale the cutoff in these units:

fc = kc

�T

2π
. (3)

A value of fc = 1 corresponds to a cutoff at the plane waves
with thermal de Broglie wavelength �T . We will henceforth
work in the following units: �T = 1 and � = m = 1, where
m is the mass of particles. Note that the cutoff in terms of
single-particle energy is

εc = π kBT f 2
c . (4)

In the ideal gas limit (γ → 0) that we consider first, there
is only one physical parameter characterizing the system, the
density-dependent reduced temperature τ , and one technical
parameter fc for the classical fields description. Phase space
density equal to one occurs at τ = τD = {1.539,1.443,1.368}
in 1D, 2D, and 3D respectively, while the BEC critical
temperature in 3D is τ = τC = 0.5272.

C. Observables

The great majority of experiments concentrate on low order
observables such as phase, density or their fluctuations. We will
analyze the following.

(i) n: density.
(ii) ε: kinetic energy per particle.
(iii) lpg: phase grain length.

This is the size of a coherent region, which we will calculate
via lpg := 1

n

∫
dz 〈�̂†(0)�̂(z)〉 = ∫

dz g(1)(z). In the quasicon-
densate regime, when g(1)(z) � e−|z|/lφ , lpg equals the phase
coherence length lφ .

(iv) g(2)(0): normalized local density fluctuations.
While these are of much theoretical interest, they are rarely
measured in situ because imaging resolution is usually much
worse than the intrinsic density correlation length of the
system.

(v) uG: coarse-grained density fluctuations.
This quantity is defined as uG := varN/〈N〉 =
n

∫
dz [g(2)(z) − 1] + 1, where N is the atom number

in a region much larger than the density correlation length.
In contrast to g(2)(0), this intensive thermodynamic quantity
often appears in experimental work [65,66] and it gives the
ratio of the measured fluctuations in a pixel to Poisson shot
noise. It is equal to the static structure factor at |k| = 0, i.e.,
S(0).

(vi) ρo: condensate fraction.
(vii) ar : coherence half width.

In the presence of a true condensate, lpg (and uG) ceases to be
a good thermodynamic quantity, diverging because g(1)(z →
∞) = ρo. In light of this we need another measure of the width
of phase fluctuations, and will define it by the half width of
the peak of g(1)(z), i.e., g(1)(ar ) = 1

2 (1 + ρo).
It is worth noting that the kinetic energy per particle in itself

is not a typical subject of measurement, but its consideration
has here its own justifications. If typical observable quantities
are described correctly, but ε is not, then this will quickly come
out as errors in the dynamics.
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D. Ensemble

A major consideration in our work here has been to remain
independent of trap geometry. This basically requires working
in the local density approximation (LDA). As an example
of variations with geometry that can occur without an LDA
approach, optimal energy cutoffs found on the basis of the
distribution of condensate fraction for a whole cloud in the
canonical ensemble were 0.29kBT in a uniform box, but
1.0kBT for a harmonically trapped gas [50]. In the end in
Sec. V A, we will see that the results of the LDA approach can
be largely reconciled with the harmonically trapped canonical
ensemble results.

When considering a relatively uniform section of a larger
gas, it is not only possible, but also essential to work in the
grand canonical ensemble (GCE) rather than the canonical one.
In such a situation the rest of the system acts as a particle and
thermal reservoir, while the uniform GCE section describes
the properties that are local to the region. This approximation
is acceptable provided the physical length scales such as lpg

are shorter than the length scale on which the density changes.
Such conditions generally prevail for quasicondensates or a
three-dimensional gas above the condensation temperature.

Use of the GCE in a truly condensed system such
as the three-dimensional gas below Tc or the finite-size
two-dimensional gas at extreme low temperatures, requires
some care and background to get our bearings. It is known
that for the ideal gas the usual thermodynamic equivalence
between ensembles is lost in the presence of condensation.
Particularly glaring differences are seen in the fluctuations of
condensate fraction between the canonical and grand canonical
ensemble—a matter that has been much studied [67–74] and is
sometimes known as the fluctuation catastrophe for the GCE.
In fact, a uniform condensed system in the GCE has anomalous
fluctuations of the number of condensed particles (i.e., their
variance grows faster than the mean number), which implies
that some quantities such as uG diverge. Technically this
signals the point of the breakdown of the theory [75–77], but in
reality this kind of behavior cannot actually occur. Physically,
the growth of diverging quantities is braked by other effects.
Usually, the causes can be traced to either a breakdown of the
thermodynamic limit due to finite-size effects, or a suppression
of fluctuations due to interactions (see Ref. [78] for a detailed
discussion).

The primary difference between the grand canonical and
microcanonical or canonical treatments of an ideal condensed
system has been pointed out quite early [71] by studying
the ground-state number fluctuations. They are huge in the
GCE [the occupation N0 of the ground state is exponentially
distributed P (N0) ∼ eμN0/T ] but small in the other thermody-
namical ensembles. In contrast, there is no such difference for
excited level occupations. This suggests that the majority of
observables are not pathological. Even the mean condensate
fraction does not diverge nor break equivalence between
ensembles, unlike its fluctuations. Hence, it is legitimate
to benchmark classical fields in the GCE provided that we
exclude from consideration those observables that are known
to be deviant. In particular, when condensation is present
neither condensate fraction ρo nor the main coherence decay
described by ar are pathological, so we will use these instead
of uG and lpg .

The suppression of anomalous condensate fluctuations due
to interactions can occur even at very weak interactions. This
can be seen from a simple argument: Consider the GCE
partition function of the condensate mode:

Z0(μ,T ) =
∞∑

N0=0

e(μN0−C0gN2
0 )/T (5)

with g the interaction strength, and C0 a geometry-dependent
factor [71]. In this form it is now a Gaussian distribution
of the condensate occupation with mean N0 = μ/2gC0

and relative condensate number fluctuations 
N0/N0 =√
T/(2C0gN2

0 ) = √
T/(2Eint). It means that the relative mag-

nitude of the number fluctuations is related to the ratio
of the temperature to the interaction energy of the entire
system, Eint. The latter very quickly suppresses the grand
canonical fluctuation catastrophe as the size of the system
becomes appreciable, leaving only a tiny low-temperature
region at T � 1/Eint with anomalous fluctuations, that shrinks
as T → 0.

The above considerations are distinct from the separate
matter of what ensemble should be considered for the entire
system. If one were to nondestructively follow a single
realization of the system over time and assume ergodic
evolution, then the correct ensemble would be the micro-
canonical one that has the system isolated from particle
and energy exchange. This has been considered in many
works [5,9,67,74,79]. On the other hand, actual experimental
studies usually deal with an ensemble over many independent
realizations created by cooling a new cloud each time,
and independently measuring each destructively. Then the
fluctuations of the number of particles between different
realizations can in fact be of the same order as the mean
number of particles over the whole experimental series. Due
to the large number fluctuations between shots, a sequence of
single clouds is likely to be more closely described by the GCE
than the CE.

To wrap up this section, once correlation length scales are
short enough for the LDA to be valid, the approach used here
is relevant also to global properties of the system when the
GCE fluctuation catastrophe is suppressed. This can happen
because of any of the following: (i) lack of a true condensate;
(ii) observables that do not depend on fluctuations of the
condensate fraction; (iii) weak but sufficient interaction for Eint

of the entire system to be large compared to the temperature;
(iv) an experimental data set that consists of an ensemble of
many independent realizations, except for the cases with strong
post-selection on particle number. Such conditions prevail in a
very wide range of systems of interest. Keeping these in mind,
let us proceed.

E. Benchmarking

We will compare the classical field predictions for the
observables in Sec. II C to the exact Bose gas values in the
thermodynamic limit. For the ideal gas they can mostly be
obtained analytically.

To proceed, the LDA approximation requires, first, the
density to be correct, in the sense that an ideal gas with
density n (i.e., reduced temperature τ ) should be compared
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to a classical field ensemble with the same density. This is
also essential in practice regardless of the LDA, since n is
the most basic observed quantity in experiments. To match
ideal gas and classical field densities, first chemical potentials
μ(id) and μ(cf), respectively, must be chosen. A sum over Gibbs
factors gives the exact Bose gas density n(μ(id)) and the density
estimate n(cf)(μ(cf),fc) in classical fields as functions of their
grand canonical chemical potentials. We invert these, and
with the help of Eq. (2) obtain μ(id)(τ ) and μ(cf)(τ,fc). Other
observables e.g. ε(id)(τ ) and ε(cf)(τ,fc) can then be expressed
as functions of τ and fc as well.

In general, for the Bose ideal gas, τ and the choice of
units specify all properties of the system. In classical fields,
in addition to τ , the system description requires a technical
parameter fc. There, we can fit both densities n(id) and n(cf) to
τ , but also we can make one other quantity agree exactly by
an appropriate choice of fc.

III. OBSERVABLE-DEPENDENT ACCURACY

A. Single observable eigencutoffs

Figure 1 shows how such cutoffs matched to different
observables (which we will call eigencutoffs) behave as a
function of temperature.

The density is already matched due to the LDA as explained
above, and is not shown. We have also not shown results for
g(2)(0) because it is always correctly predicted to be g(2)(0) = 2
for every cutoff in the ideal gas. This property will not hold
any more when interactions are present. Indeed, then the local
density fluctuations manifest a dependence on cutoff.

The high-temperature behavior is qualitatively similar in all
dimensions. The eigencutoffs matched to energy per particle
f ε

c and to coherence half width f ar
c rise to constant values,

while the eigencutoff matched for density fluctuation f uG
c

drops to zero (this will be commented on later in Sec. V B).
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FIG. 1. (Color online) Matched eigencutoffs fc for several ob-
servables as a function of temperature τ (ε, blue line; ar , purple line;
lpg , green line; uG, red line; ρo, orange line). The top panels (a), (b)
show one-dimensional and two-dimensional cases, respectively, and
the bottom panels present the three-dimensional situation with (d) a
magnification of the critical region. The Bose gas critical temperature
τC is marked as a vertical dashed line, while the black solid line shows
the fc value below which condensation of classical fields occurs.

The f
lpg

c takes intermediate values and is almost constant.
An unexpected feature is the similar behavior of cutoffs
corresponding to ar and ε rather than the ar and lpg that are
more related physically.

The crossover to low-temperature behavior is around τ = 1,
as expected. In the low-temperature regime, most eigencutoffs
collapse to a common value (0.436 and 0.564, in 1D and 2D,
respectively), except for f ε

c , which prefers the higher values
0.653 and 0.724. In 3D, the cutoffs at τ → 0 are 0.783, 0.753,
and 0.653 for ε, ar , and ρo, respectively.

Below critical temperature in 3D, the eigencutoff for
condensate fraction has a constant value. This comes about
because the critical temperature in classical fields is cutoff
dependent, τ

(cf)
C = [4fc]−2/3, while in the Bose gas it is τC =

[ζ (3/2)]−2/3 = 0.5272 with ζ (3/2) the zeta function. The con-
densate fractions are directly related as ρ(id)

o = [1 − (τ/τC)
3
2 ]

and ρ(cf)
o = [1 − (τ/τ

(cf)
C )

3
2 ]. Hence, f

ρo
c = ζ [3/2]

4 = 0.65309
makes ρ(id)

o and ρ(cf)
o equal for all τ � τC .

Two other noteworthy points are that: (�) in 2D, the
eigencutoff fc = 1/

√
π that gives the correct phase grain

length lpg does not depend on temperature, and (��) the
wavelike behavior of f ar

c in 1D (as well as in 2D), that comes
from oscillations of g(1)(z) with distance, is caused by the sharp
cutoff in momentum space in classical fields.

B. Relative errors of single observables

Now, how does a nonoptimal choice of fc affect the
observables, and their systematic error? This is very relevant
for practical considerations. For one thing, in a nonuniform
system, when the cutoff is matched in one spatial region, it is
good to know the sensitivity of results in other regions with a
different density on this choice of fc. Furthermore, we need
this information to judge how good the classical fields are in
describing the system overall.

The relative error δα of an observable α is

δα(τ,fc) := 
α

α
=

(
α(cf)(τ,fc)

α(id)(τ )
− 1

)
(6)

Its cutoff dependence is shown in Fig. 2. The first observation
is that the relative error of energy per particle has an opposite
trend to the other quantities. The resulting mismatch turns out
to be the strongest restriction on the fc range for which all δα

errors are small.
Secondly, in 1D the known fact [51] that g(1)(z) and g(2)(z)

do not depend on cutoffs at low τ , is reflected in small errors
in lpg , uG, and ar . However, these errors are no longer small in
higher dimensions. As temperature drops, the δα(τ,fc) except
for δρo

, collapse onto curves that stay invariant with τ and
remain steep (the τ = 0.08 and τ = 0.05 panels in Fig. 2). In
other words, observables remain sensitive to cutoff all the way
down to zero temperature in 2D and 3D.

IV. GLOBAL ACCURACY

What does it take to match all, or at least to be close to all
typical observables? Let us consider the global error estimator

RMSα,β,...(τ,fc) =
√

(δα)2 + (δβ)2 + · · ·.
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FIG. 2. (Color online) Variation of the relative errors δα of
observables with cutoff fc at representative high and low temperatures
τ . Colors like in Fig. 1. Top row: 1D, second row: 2D, third row: 3D
above τC , last row: 3D below τC .

This is a root mean square of the relative errors of chosen
observables α, β, etc. Each relative error will, by definition,
be less than RMS. The main aim of the function RMS will be
to catch inaccuracy in any observable.

We have studied the RMSα,β,... with all the observables that
we have been considering. Moreover, we also took various
combinations of them. It turns out that when we include just
uG and ε, all relevant features that were seen with larger sets of
observables are covered. This happens because these quantities
are the most extreme in terms of the behavior of eigen fc and
of the values and trends of δα . This is seen in Figs. 1 and 2.
Also, the pair (ε,uG) includes observables of second and fourth
order in �̂, which are the two main classes measured in
experiments. We will use them to define the quantity:

RMS(τ,fc) =
√

(δε)2 + (δuG
)2 (7)

that will be our indicator of the overall accuracy and applica-
bility of the classical fields approximation. Below τC in 3D,
the condensate fraction ρo will be used instead of uG.

Minimizing Eq. (7) at a given temperature will give
the optimal cutoff momentum and minimum error indicator
minRMS. For example, a minRMS value below 0.1 (i.e.,
<10% error in observables) is often satisfactory and we will
take it as a guideline.

Figure 3 shows the results for the one-dimensional gas.
Global error RMS is very large above the degeneracy tem-
perature τ = 1. For low temperatures it falls to zero, as one
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FIG. 3. (Color online) Summary results for the one-dimensional
gas. The left panel shows the dependence of the global error estimator
RMS, based on ε and uG, on cutoff fc for several values of τ = {0.008
brown, 0.08 orange, τD gray, 8 purple}. The top right panel shows
the minimal value of RMS achieved at the optimal cutoff shown in
the lower right panel. An additional dashed branch indicates a less
optimal local minimum of RMS.

would hope. According to our 10% guideline, classical fields
give acceptable results up to τ = 0.0064. The best choice of
fc is fairly invariant with temperature in this region, being in
the range (0.649 ± 0.043). In fact, if we choose the average
value of fc, we will be close to absolute minRMS regardless
of temperature or density. At high τ an extra second branch
appears that is associated with a local minimum of RMS
with large errors in ε and small in uG. It is not of practical
importance for us because it is less optimal.

Figure 4 shows the results for the two-dimensional gas.
The behavior at low temperature is surprisingly unfavorable.
RMS never falls below 0.333. This is a consequence of an
inability to satisfy both observables uG and ε. Their relative
errors δε(uG)(τ,fc) become stuck on the curves shown in the
fourth plot of Fig. 2 whenever τ � 0.08 and do not cross
near zero error. One wonders whether this situation (minRMS
well above 10% as τ → 0) is repeated for other different
sets of observables. It turns out that even the pairs (ε,lpg)
or (ε,ar ) will lead to similar large minRMS values. In fact, no
combination that includes ε and any other observable will work
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FIG. 4. (Color online) Summary results for the two-dimensional
gas. Description as in Fig. 3. The τ = 0.008 and τ = 0.08 lines in
the left panel overlap.
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FIG. 5. (Color online) Summary results for the three-
dimensional gas. The solid lines correspond to RMSε,uG

in
the temperature region τ > τC and dot-dashed lines to RMSε,ρo

in the region τ < τC . The left panel shows the dependence of the
global error estimators on cutoff fc: τ = τD gray, τ = 0.85 brown,
τ = 0.55 purple, τ = 0.45 red, τ = 0.25 orange, and τ = 0.05
pink. The black vertical line indicates the critical cutoff for τC . The
right panels are as in Fig. 3, with the Bose gas critical temperature
τC marked with a vertical dashed line and solutions below τC as
dot-dashed lines.

well, because the δα(τ,fc) curves are invariant. The crucial and
a priori not so obvious conclusion is that in 2D, in the small
temperature, ideal gas regime the classical fields description
gives at best only a qualitative description of the gas, and
a description that is quantitatively correct across observables
is unreachable. The matter of whether this is alleviated once
interactions become important warrants further study.

Figure 5 shows the results for the three-dimensional gas.
The area above critical temperature behaves analogously to
low dimensions. However, around the critical temperature,
the RMS curve narrows and the accuracy of classical fields
becomes very sensitive to the choice of the cutoff fc. This
is related to the fluctuations uG growing to infinity at τC . As
such, it may be related to the inequivalence of the condensed
ideal gas ensembles and may be an effect that is readily
removed by finite-size or interaction effects. In the condensed
regime below τC , the RMS curve widens out again while
classical fields rapidly become accurate with RMS < 10%
below τ = 0.486τC .

V. DISCUSSION

Several points can be addressed on the basis of the ideal
gas results, before considering an interacting gas.

A. Nonuniform gases

So far, we have been fully focused on the local density
approach here in order to obtain results that are applicable for
general inhomogeneous cloud geometries.

A very convenient aspect of what we have found is that
the best cutoff value optfc is practically constant in the
whole region where classical fields are a good description
(say, minRMS < 10%). This can be seen in Figs. 3 and
5, where in this region, optfc ∈ (0.645,0.653) in 1D and
optfc ∈ (0.778,0.783) in 3D. The best low-temperature cutoff

in 2D is also a constant optfc = 0.639, see Fig. 4. Even
beyond this best region, the optfc value is almost constant
until values of τ � 1 are reached. For a nonuniform gas at a
temperature T , the reduced temperature scales with density as
τ (x) ∝ 1/[n(x)]2/d . Those aspects ensure that the optimum
cutoff for all sections of the gas is practically the same,
provided only that the bulk of the gas is quantum degenerate
(i.e., τ (x) � 1). If it isn’t, then the description is not accurate
anyway. Operationally, this all means that the best cutoff to
choose regardless of the density profile of the gas is

kc = optfc

�

√
2πmkBT ; εc = π (optfc)2kBT . (8)

So either we take the low-temperature cutoff or it doesn’t
matter anyway.

The case of the uniform GCE is in fact quite well matched to
the trapped canonical ensemble (CE) gas that was mentioned
in Sec. II D, despite the apparently different framework of
the problem. This is because the dominant central bulk of
such a trapped gas is effectively a uniform open system in
the LDA. The cutoffs found for the harmonically trapped
canonical ensemble of the ideal gas based on condensate
fraction distribution at low τ [50] correspond in our notation
to values of f

(CE−trap)
c = {0.56,0.72,0.84} in 1D, 2D, and

3D, respectively. These are quite close to the GCE values
of optf (LDA)

c = {0.65,0.64,0.78} found here (Figs. 3–5). This
further reinforces the view that results obtained with the LDA
are also relevant for nonuniform gases, even when the entire
cloud does not have particle exchange with an environment.

A certain exception is the canonical ensemble in a box
whose cutoffs were also studied in Ref. [50] and found to
be much lower f (CE−box)

c = {0.30,0.47,0.65}. This indicates
that this is a special case which describes very different
physics. The matter of which ensemble should be used to
describe the recently achieved box potentials [22,23,80] is
still open. If the interaction is not too strong, then shot-to-shot
fluctuations in energy and particle number can be appreciable
and so a grand canonical approach may be warranted for the
whole gas (if one is concerned with ensemble rather than
time-averaged properties).

B. Breakdown mechanism at high temperatures

The reason for the drop of f uG
c to zero at high τ provides

an instructive example of how the classical field description
breaks down. Generally the explanation comes down to
different statistics of particle numbers Nk in the modes. Both
the fully quantum Bose gas and the classical field have an
exponentially decaying particle number distribution:

P (Nk) ∝ e(μ−�
2|k|2/2m)Nk (9)

in each mode. However, in the exact treatment, Nk can
only take on discrete values 0, 1, . . . , while in the classical
fields the non-integer part of the distribution is also needed.
This peculiarity very strongly increases fluctuations especially
when the bulk of the distribution is in this region, i.e., the mean
number of particles is Nk � O(1).

The above observations are transferred to uG in the
following way: For the exact Bose gas, the distribution is
Poissonian when Nk 
 1, giving var[N (id)

k ] = 〈N (id)
k 〉 for each
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mode, while the exponential distribution in classical fields
gives var[N (cf)

k ] = 〈N (cf)
k 〉2. Due to having independent modes,

uG = ∑
k var[Nk] /

∑
k〈Nk〉, and in the exact treatment

uG → 1 directly. To obtain the same with classical fields,
occupations N

(cf)
k ∼ 1 are necessary to make var[Nk] ≈ 〈Nk〉.

These are much greater than in the Bose gas. So to also
simultaneously match overall density of the many-mode gas,
the cutoff must be made much lower than the Bose gas
momentum width 2π/�T so as to get the same area under the
distribution of density in k space. From (3), this immediately
implies f uG

c 
 1. With such a great modification of N (k),
correctly matching additional observables like ε with classical
fields becomes out of the question.

A similar breakdown can be expected whenever the physics
is captured by low-occupied independent modes. For example,
such discrepancies were seen between experiment and classi-
cal fields in the quantum Bogoliubov regime of the interacting
gas at very low temperatures [65].

VI. CROSSOVER TO THE INTERACTING GAS

An obvious question is whether the ideal gas results
carry over into the interacting gas. To address this, we have
benchmarked the classical field description in one-dimensional
systems with the Yang-Yang exact solution for the uniform
interacting Bose gas [64] for a sequence of increasing
interaction strengths that cover the crossover from the ideal
gas to an interaction-induced quasicondensate.

A. Procedure

The exact values for n = N/L, as well as system energy
E in a segment of length L can be obtained via the self-
consistent numerical solution of the integral equations given
in the original Yang-Yang paper [64]. The Hellmann-Feynman
theorem was used by Kheruntsyan et al. to obtain g(2)(0) =
− 1

n2 (∂P/∂g)μ,T from the Yang-Yang solution for pressure
P [81,82], which can be readily evaluated numerically. For
the contact-interacting gas the expression for the interaction
energy in the system is Eint = 1

2gn2Lg(2)(0). From this, one
obtains the kinetic energy per particle: εkin = (E − Eint)/N .
The coarse-grained density fluctuations can also be found via
uG = kBT

n
(∂n/∂μ)T , based on the expression for var[N ] in

Ref. [66].
To obtain classical field results, we generate ensembles of

classical field realizations �(x) using a Metropolis algorithm,
in a way conceptually similar to the work of Witkowska
et al. [55] but using grand canonical ensemble weights
e[μN(�)−E(�)]/kBT . The numerical lattice is chosen to have a
box of length L with periodic boundary conditions that is wide
enough for the density and phase correlations to decay to zero
before wrapping around. The number of points was 210, which
is easily sufficient for the maximum numerical lattice wave
vector to be many times larger than the cutoffs kc imposed on
the field in k space. This ensures that no aliasing problems
appear for the evaluation of the interaction energy term, as has
been discussed in the context of the padded lattice in the PGPE
and truncated Wigner methods [83]. Classical field values for
observables at a given cutoff are calculated using 104 ensemble
members.

For each cutoff, the observables are benchmarked against
exact Yang-Yang values for systems having the same values of
T , g, and density n as the classical field ensemble. It remains
true for the interacting gas that uG and εkin have the most
extreme behavior among the set of observables that now also
include the interaction energy per particle and g(2)(0). The
latter two have a cutoff-dependent behavior that is somewhat
similar to uG. Hence, we continue to use the same global
accuracy indicator (7) as for the ideal gas, using the kinetic
energy per particle εkin and coarse-grained fluctuations uG.
minRMS and optfc are obtained by fitting a function to
the cutoff-dependent values of RMS(τ,fc) at a given τ and
γ . We use the square root of a parabola because it is a
good candidate for describing the fc-dependent behavior of
RMS(τ,fc) near the minimum. It marries the approximately
linear behavior of δε and δuG

in this region that is seen
in Fig. 2, with the expression (7) for RMS. We use data
from an fc range of about ±0.05 around the minimum.
Error bars are obtained by splitting the field samples into
NS smaller subensembles, calculating subensemble values of
minRMS(i) and optf (i)

c in the same way for each, and invoking
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FIG. 6. (Color online) A preview of the situation in the one-
dimensional interacting gas. Here, τ = 0.00159, and γ = g/n

increases to the right. Top: the change in uG, obtained from the
Yang-Yang [64] exact solution, compared to the ideal gas γ → 0
value (red). Middle: minimal value of RMS as in Figs. 3–5 with
1σ statistical error bars from an ensemble of 104 samples, and the
ideal gas value shown as the horizontal line. Bottom: corresponding
optimum cutoff fc and its ideal gas value. One sees that while the
observable uG changes by two orders of magnitude, the ideal gas
values for cutoff and accuracy carry over onto the interacting gas.
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the central limit theorem to estimate the uncertainty in the
full-ensemble values to be 
optfc =

√
var[optf (i)

c ]/NS and

minRMS =

√
var[minRMS(i)]/NS .

B. Results

We have carried out the above benchmarking for the
reduced temperature τ = 0.00159 and a range of interaction
strengths γ = g/n from 2 × 10−6 to 0.005 in the dilute
interacting gas. These are experimentally realistic parameters.
The local bunching g(2)(0) changes over this range from 1.976
in the very weakly interacting limit to 1.02 at γ = 0.005. This
indicates that we move from an almost perfect ideal gas on the
left deep into the strong quasicondensate regime on the right,
where almost all effects are dominated by the interaction mean
field. The coarse-grained density fluctuations change by two
orders of magnitude over this range, as plotted in the top panel
of Fig. 6.

The results of this foray into the interacting gas are shown in
the other panels of Fig. 6. The ideal gas values for cutoff carry
over onto the interacting gas unchanged, to within available
statistical precision. The global accuracy minRMS actually
improves. One concludes then that in this regime at least the
optimum cutoff and degree of accuracy found in the ideal gas
applies very well to a wide swath of the interacting gas as well.
This is not an a priori obvious result, but certainly a convenient
and encouraging one for those who want to make calculations
using classical fields.

VII. CONCLUSIONS

To conclude, we have judged the goodness of classical fields
for describing the ideal Bose gas in 1D, 2D, and 3D using all
the usually measured observables. We have shown that 10% or
better accuracy for the whole set of observables simultaneously
is possible in 1D up to temperatures of T = 0.0064Td with the
cutoff prescription kc ≈ 0.65( 2π

�T
) and in 3D up to T = 0.49Tc

with kc ≈ 0.78 ( 2π
�T

). The essence of the matter can be captured
by the indicator RMS based on kinetic energy per particle and
coarse-grained density fluctuations, which are the observables
that are the hardest to mutually satisfy.

In 2D, we have found a surprising feature that classical
fields remain incapable of properly describing all the observ-

ables together in the ideal gas even as T → 0. One suspects
that finite size effects and/or weak interactions may improve
agreement here. The indication is that something is going on
in 2D that warrants further study.

When a system is correctly described with a classical
ensemble of complex fields as here, the observation of many
intrinsically quantum effects that rely on wave-particle duality
or a discretization of the basis is ruled out. This includes things
such as stronger-than-classical correlations, Heisenberg uncer-
tainty relations, mode entanglement, EPR and Bell inequality
violation, antibunching, and noncommuting observables. All
in line with the difference between classical optics on the one
hand and quantum optics and quantum information theory on
the other. Thus, for parameters in which the weakly interacting
Bose gas is described by the classical field to some level of
RMS, observation of the above intrinsically quantum effects
with typical observables will also be suppressed to a level of
the same order as RMS. Of course, large RMS is not sufficient
to imply quantum effects.

Two results lead to optimistic conclusions for the practical
application of classical fields to ultracold gases. First, the
optimum cutoffs in the ideal gas are almost unchanged with
τ in the whole region where accuracy is good. This means
that even for a nonuniform cloud with a common global
temperature, a single cutoff value is close to optimal in
the entire degenerate region. This goes a long way towards
pacifying one of the leading practical worries. Second, our
study of the crossover into the interacting gas in Sec. VI shows
that the cutoff that optimizes the ideal gas is also valid for
a part of the interacting gas, including a region where the
quasicondensate is dominated by interactions. The degree of
accuracy seen in the ideal gas is also preserved. This is a
nontrivial but very encouraging result. A more detailed study
of the situation for the whole range of interaction strengths in
1D is a subject for future research.
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Phys. Rev. A 70, 033614 (2004).
[55] E. Witkowska, M. Gajda, and K. Rzążewski, Opt. Commun.
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Phys. Rev. Lett. 82, 4376 (1999).
[74] P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, and K. Rzążewski,
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