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Two-component Bose-Hubbard model with higher-angular-momentum states
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Bose-Hubbard Hamiltonian of cold two-component Bose gas of spinor chromium atoms is studied. Dipolar
interactions of magnetic moments while tuned resonantly by an ultralow magnetic field can lead to a transfer
of atoms from the ground to excited Wannier states with a nonvanishing angular orbital momentum. Hence we
propose the way of creating Px + iPy orbital superfluid. The spin introduces an additional degree of control and
leads to a variety of different stable phases of the system. The Mott insulator of atoms in a superposition of the
ground and vortex Wannier states as well as a superposition of the Mott insulator with orbital superfluid are
predicted.
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I. INTRODUCTION

Ultracold atoms provide a playground for mimicking
condensed matter and studying novel quantum many-body
phenomena [1,2]. Recently there has been particularly im-
pressive progress in two areas of physics of ultracold atoms:
the area of ultracold dipolar gases [3–6] and the physics of
orbital lattices [7]. In this paper we combine these two areas
and explore the effect of two-body dipolar interactions of
magnetic atomic moments in a lattice potential. We study
dipolar gases in their full complexity including spin as a
dynamical variable (as opposed to be a conserved quantity),
and magnetic dipolar interactions coupling different orbital
states of involved magnetic components. That introduces
additional physical processes into play and new degrees of
control to the standard Bose-Hubbard model.

Spinor gases in a lattice have been studied in the context of
Mott-insulator (MI)–superfluid (SF) transition [8]. In general
dipolar interactions lead directly to the dynamics of spin degree
of freedom but up till now in lattice systems this phenomenon
was neglected, that is, it was assumed that spin is frozen [4].
In such situations electric and magnetic dipoles are practically
equivalent—they introduce long range correlations. On the
other hand, it is known from studies of gases confined in
harmonic traps in the mean field limit [3,4] that taking the
dynamics of spin into account may modify properties of the
ground state of the system.

Spin dynamics may result from contact or dipolar in-
teractions. In the former case the total spin of interacting
atoms remains unchanged (magnetization of the sample is
constant). Qualitatively different phenomena take place when
spin dynamics is triggered by the dipolar forces. The atomic
magnetic moment originates from the spin which contributes
to the total angular momentum of the system. When magnetic
dipole changes due to the dipolar interactions, its variation
must be accompanied by corresponding dynamics of the
orbital angular momentum. Magnetic interactions can lead to
a transfer of angular momentum from spin to orbital degrees
of freedom. This phenomenon, discovered in ferromagnetic

solid samples, is known as the Einstein–de Haas effect [9–12].
Not a long range character of magnetic dipolar interactions but
rather their relation to the angular momentum plays a crucial
role in this phenomenon. This makes a fundamental difference
between magnetic and electric dipoles.

The main issue of our study is to account for the spin
degree of freedom in the lattice environment. Spin flipping
processes in the lattice could lead to an appearance of the
orbital Px + iPy superfluid. Recently orbital superfluids were
created in experiment [13]. The authors utilized a resonant
tunneling in a particularly designed lattice potential.

In this paper we show another way of creating orbital
superfluid by means of the resonant Einstein–de Haas effect.
The atom which flips its spin has to gain some additional
kinetic energy necessary to support its rotation. This energy is
typically much larger than the energy of dipolar interactions
and conservation of energy strongly suppresses the spin dy-
namics. The transfer of atoms between two spinor components
can be enhanced by tuning energies of states involved via
Zeeman effect [11]. We extend this idea to lattice gases.
Dipolar effects significantly modifying the MI–SF transition
lead to new phases of the system with quantized vortices in
MI or/and SF regimes.

The paper is organized as follows: in Sec. II we introduce
the two-component Bose-Hubbard model with dipolar interac-
tions coupling different Wannier states, in Sec. III we present
a phase diagram for the system, while in Sec. IV we discuss
validity and limitations of the model.

II. THE MODEL

We assume that Cr atoms are in a two-dimensional (2D)
optical square lattice. To fix the parameters we consider a
realistic situation of the lattice described by the periodic
potential V0[sin2(2πx) + sin2(2πy)]. Here λ = 523 nm is the
wavelength of light beams creating the lattice and V0 is the
barrier height. A characteristic energy of the problem, that
is, the recoil energy is Er = h̄2(2π )2/(2mλ2). We express
all energies and lengths in units of Er and λ, respectively.
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Confinement along the z direction is provided by a harmonic
potential mω2

zz
2/2 of frequency h̄ωz = 16Er . At each lattice

site we choose two wave functions centered at the given site
(xi,yi) to form a single-particle basis of the two-component
system. The basis allows us to account for the resonant transfer
of atoms between mS = 3, l = 0 and mS = 2, l = 1 states in
the presence of magnetic field aligned along the z axis. The
lowest energy state ψa(x,y,z) ∼ W0(x)W0(y) exp(−z2ωz/2)
is effectively coupled to the excited state with one quantum
of orbital angular momentum ψb(x,y,z) ∼ [W1(x)W0(y) +
iW0(x)W1(y)] exp(−z2ωz/2). The state is a single-site analog
of a harmonic oscillator state ∼(x + iy) exp[−(x2 + y2)/2 −
z2ωz/2]. W0(x) and W1(x) are the ground and the first excited
Wannier states in a one-dimensional (1D) periodic potential
of the form V0 sin2(2πx). Single-particle energies of the two
essential states are denoted by Ea and Eb, respectively.

Limiting the subspace of essential states is a crucial
approximation in our study. It is possible only due to a
weakness of dipolar interactions. In fact there are several
channels of binary dipolar collisions leading to different
excited Wannier states. However, we can choose the desired
channel by a proper adjustment of the resonant external
magnetic field [11]. Typically the energy difference between
atoms in the ground and in the excited Wannier states is much
larger than dipolar energy which is the smallest energy scale
in the problem (except vanishing tunnelings case), Edip =
10−4Er � Eb − Ea ∼ Er . However, at resonant magnetic
field B0, Ea − gμBB0 = Eb, the two energies are equal and
the spin transfer between the components becomes efficient
on a typical time scale h̄/Edip � 10−2 s. Here μB is the
Bohr magneton and g = 2 is the Landé factor. Only then
the system can dynamically redistribute particles between
the two components without violating energy conservation.
A characteristic width of the resonances is small [14], of the
order of Edip ≈ gμBB, that is, B ≈ 100 μG. We assume that
no other states can be effectively coupled (see a more detailed
discussion of the validity of this model in Sec. IV).

In effect a two-component system is realized with the a

component corresponding to atoms in mS = 3, l = 0 state,
while atoms in the b component have mS = 2, l = 1. Single-
site basis states are |na,nb〉, where nc is a number of atoms in
the c component (c = a,b). The Hamiltonian of the system is

H =
∑

i

[
(Ea − gμBB) a

†
i ai + Eb b

†
i bi + Uab a

†
i b

†
i aibi

+ Ua

2
a
†2
i ai

2 + Ub

2
bi

†2bi
2 + D

(
bi

†2ai
2 + a

†2
i bi

2
)]

−
∑
〈i,j〉

[Ja a
†
i aj + Jb b

†
i bj ]. (1)

The parameters depend only on lattice height V0 and confining
frequency ωz in the z direction. Ua,Ub,Uab are the contact
interaction energies plus the part of dipolar energy which has
the same form as the corresponding contact term, D is the
on-site dipolar coupling of the two components, while Ja and
Jb are tunneling energies. The Hamiltonian (1) is an interesting
modification of the standard Bose-Hubbard model.

The on-site contact interactions Ua,Ub, and Uab cannot
change a total spin [15,16]. Dipolar two-body interactions

are much smaller than the contact ones; we keep only those
dipolar terms which lead to a spin dynamics. Moreover, only
on-site dipolar effects are accounted for in the Hamiltonian
(1). Dipolar potential, although long range, is so weak that
we can ignore dipole-dipole interactions between atoms at
neighboring sites in the considered range of small tunnelings.

Unlike tunneling between ground Wannier states Ja , the
tunneling energy Jb of the excited state is negative because
the wave function ψb(x,y,z) is antisymmetric in x and y.
Therefore the state with “antifferomagnetic” order of phases
between neighboring sites has lower energy than the state
where phases of the exited Wannier functions are the same.
For the opposite on-site phases of the excited Wannier states
both Ja and Jb are positive. This case is considered here.

III. PHASE DIAGRAM OF THE MODEL

We limit our study to a small occupation of a lattice site: not
more than one particle per single site on average. The resonant
magnetic fields equilibrates single-particle energies of states
|1,0〉 and |0,1〉, that is, Eb = Ea − gμBB0. Ea and Eb depend
on the lattice height, thus the resonant magnetic field varies
with V0, B0 = B0(V0).

Even with a single particle per site the dipolar interactions
couple ground and excited Wannier states due to the tunneling
in a higher order process. The transfer between |1,0〉 and |0,1〉
states is a sequence of: adding an atom to the a component
at a given single site |1,0〉 → |2,0〉 via tunneling, followed
by the dipolar transfer of both a-species atoms to the excited
Wannier state |2,0〉 → |0,2〉, and finally the tunneling which
removes one b-component atom from the site |0,2〉 → |0,1〉.
The two considered states are therefore coupled provided that
tunneling is nonzero.

Now, following the standard mean field approach of Fisher
et al. [17] we find thermodynamically stable phases of the
system in the chosen subspace. The Hamiltonian (1) is
translationally invariant, we assume the same property is
enjoyed by the lowest energy state. Introducing superfluid
order parameters for both components: φ(a) = 〈ai〉 and φ(b) =
〈bi〉 as well as the chemical potential μ, the Hamiltonian
of the system can be approximated by a sum of single-site
Hamiltonians H0 + HI ,

H0 = −μ(a†a + b†b) + 1
2Uaa

†a†aa + 1
2Ubb

†b†bb

+Uaba
†b†ab + D(b†b†aa + a†a†bb), (2)

HI = −zJaφ
∗
(a)a − zJbφ

∗
(b)b + H.c. (3)

Notice we skipped indices enumerating sites. In Eq. (3) z is
a number of neighbors and depends on the lattice geometry.
For a 2D square lattice z = 4. Hamiltonian H0 + HI does
not conserve a number of particles: it describes a single site
coupled to a particle reservoir. Order parameters φ(a) and φ(b)

vanish in the MI phase and hopping of atoms is suppressed.
Only in the SF regime a number of particles per site can
fluctuate. Close to the boundary, on the SF side, φ(a) and φ(b)

can be treated as small parameters of the perturbation theory.
The single-site ground state becomes unstable if the mean

field φ(a) or φ(b) are different than zero. The mean fields can
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FIG. 1. (Color online) Phase diagram for 2D square lattice at the
resonance z = 4. The regions are labeled as M , Mott insulator with
one particle in equal superposition of a and b states; MS, superfluid
in a and b components (b dominated) and Mott insulator in the
orthogonal superposition; S, superfluid phase of superposition of a

and b components; and Sb, superfluid in the b component. In the inset
the diagram for z = 3 together with chemical potential μ(N ) for a
given number of particles obtained from the exact diagonalization.
The lines, from bottom to top, correspond to occupation equal to
N = 2, . . . ,9 as indicated. For μ > Ub (light gray region) the ground
state of the system is a two-particle state, therefore in this regime,
the phases shown are thermodynamically unstable. They are stable,
however, with respect to one particle hopping.

be obtained numerically from the self-consistency condition:

φ(c) = lim
β→∞

Tr
[
ce−β(H0+HI )

]
/Z(β), (4)

where c = a,b. In the lowest order of the perturbation in the
order parameters, the set of equations (4) becomes linear and
homogeneous. Vanishing of its determinant is a necessary
condition for nonzero solutions for φ(c). This condition
determines lobs shown in Fig. 1.

In the low temperature limit (β → ∞) the partition function
reduces to a single lowest energy state contribution Z(β) =
e−βE0 . The energy E0 depends on the chemical potential μ.
Moreover, for μ < Ub < Ua the only contribution to Eq. (4)
comes from eigenstates of the Hamiltonian with zero, one, and
two particles. Our analysis is limited to this case only.

For negative chemical potential μ < 0, the single-site
ground state is |0,0〉 vacuum state (dark gray region in Fig. 1).
With increasing tunneling (and fixed μ) particles appearing in
the superfluid vortex b phase (Sb). Only at larger tunnelings do
some atoms appear in the a component and both “standard”
and Px + iPy orbital superfluids coexist (S).

The situation becomes more complicated for larger chem-
ical potential 0 < μ < Ub. At the resonance B = B0, the
ground state is degenerate if tunneling is neglected: the states
|1,0〉 and |0,1〉 have the same energy E0 = −μ. The de-
generacy is lifted via tunneling in the second order of the
perturbation. In addition, a position of the resonance is shifted
toward smaller magnetic field values. Analysis of the effective
Hamiltonian (compare [18]) indicates that in the resonant
region the single-site ground state is a superposition of both
components |g〉 = α1|1,0〉 − α2|0,1〉. Exactly at resonance

α1 = α2 = 1/
√

2. While crossing the resonance the ground
state switches from |1,0〉 to |0,1〉. The width of the reso-
nance 	B can be estimated perturbatively to be gμB |	B| ≈
10−6Er for V0 = 25Er , while for lower barriers V0 = 10Er

the resonant region is broader gμB |	B| ≈ 10−3Er . Due
to its small width the resonance can be hardly accessible
particularly for small tunnelings. Away from the resonance
the standard phase diagrams for the a or b component
emerge.

In Fig. 1 we show regions of stability of different possible
phases of the system at resonance, that is, when |g〉 =
(|1,0〉 − |0,1〉)/√2. For small tunnelings the system is in the
Mott insulating phase (M) with one atom per site. Every atom
is in the superposition of the ground and the vortex Wannier
state. At the blue line, the border of M lobe, Eqs. (4) allow
for nonzero solutions for φ(a) and φ(b). Equations (4) become
diagonal if HI is expressed in terms of bosonic operators A† =
(κaa

† + κbb
†) and B† = (−κba

† + κab
†), where κ2

a + κ2
b = 1

and both coefficients of the superposition depend on the
tunnelings Ja and Jb. The operators create an atom in two
orthogonal superpositions of a and b states. At the border of
the Mott phase M the mean value of the operator B is different
from zero and a nonvanishing superfluid component �B =
−κbφ(a) + κaφ(b) appears in the MS region. Our numerical
results show that κa � −0.99 and the ratio (κb/κa)2 � 0.02 is
small at the edge of stability of the Mott insulator. Therefore
B† � b†, that is, the superfluid �B is dominated by the orbital
b component. The mean field corresponding to the A† � a†

operator is zero in the discussed region. The system is therefore
in equal superposition of the Mott insulating and superfluid
phases. The Mott phase is dominated by the a component and
the superfluid phase is overwhelmed with the b species. Both
components, however, contain a small minority of remaining
species.

At larger tunneling the system undergoes another phase
transition as Eqs. (4) allow for another nonzero mean field.
Now the mean value of A departs from zero defining the
border of the “bigger” lob. Mott component of the ground
Wannier state becomes unstable. The additional mean field
�A = κaφ(a) + κbφ(b) appears in the S region. Again κa �
0.97 and the maximal value of (κb/κa)2 � 0.06 is small. The a

species dominate the �A superfluid component. Both �A and
�B superfluids exist in the S region.

All the above findings are supported by direct inspection
of the true many-body ground state obtained by exact dig-
onalization of the many-body Hamiltonian in a small 2 × 4
rectangular plaquette with periodic boundary conditions for
total number of particles N = 1, . . . ,10. Note that each site
has three neighbors, z = 3, in this case. Resonance condition
is reached by finding the magnetic field for which both a and b

species are equally populated. Calculations for z = 4 require
much larger number of sites and are numerically unreachable.
In the inset of Fig. 1 we compare the exact results with the mean
field ones but for z = 3. The lines in the inset correspond to the
constant number of particles per site obtained from the relation
μ(N ) = [E0(N + 1) − E0(N − 1)]/2. They allow us to trace
the phases the system enters while adiabatically changing the
tunneling at fixed particle number. The M and MS phases can
be reached with one particle per site only (eight particles in the
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FIG. 2. (Color online) Hopping for the lowest energy state in a
2 × 4 plaquette obtained from the exact diagonalization. Upper line:
b component, lower line: a component.

plaquette). Direct inspection of a structure of the many-body
ground state fully confirms the stable phases of the system
described above. In particular, the ground state in the MS

region can be approximated (with the accuracy of about 4%)
by 1√

2
[�a

†
i − 1√

N!
( 1√

N

∑
b
†
i )N ]|
〉, where |
〉 is the vacuum

state.
In addition, we calculated a hopping, that is, the mean

values of the following hopping operators: ha = ∑
〈j〉〈a†

j ai〉
and hb = ∑

〈j〉〈b†j bi〉. These operators annihilate a particle
at a given site and put it in a neighboring site. They might
be viewed as number conserving analogs of the mean fields
φ(a) and φ(b). In Fig. 2 we show the hopping for the case
of one particle per site. For large tunnelings both a and b

hopping are large—the components are in the superfluid phase.
Entering the MS phase, Ja/Ua � 0.064, the hopping of the
a component rapidly falls down while hopping of b atoms
remains big—the system enters the a-component dominated
Mott insulator superimposed with b-component dominated
superfluid. At Ja/Ua � 0.002 both hoppings tend to zero—the
system enters the Mott phase with equal occupation of both
species. This confirms results based on the Fisher method.

IV. VALIDITY OF THE MODEL

Finally let us discuss possible limitations of the validity
of the model discussed above. As we study a stability of
the Mott phase we consider the case of deep optical lattices
where tunneling is a small perturbation only. It is very
natural to assume that dipolar interactions couple the ground
Wannier state to the orbital state at each lattice site, and the
system possesses the translational symmetry. Moreover, we
have assumed that locally the potential at a given site has
almost perfect axial symmetry with respect to the site center.
Therefore, the local site Hamiltonian preserves projection of
the total angular momentum, and the only state coupled to the
ground Wannier one is of the type ∼(x + iy), where x and y

are measured with respect to the site center. This state is the
eigenstate of the projection of the orbital angular momentum
on the z axis.

Three comments are in order.

A. Role of anharmonicity

Due to high selectivity of magnetic resonances we have
the freedom of choosing a given channel of dipolar collision

by a proper adjustment of the external magnetic field. In
particular, we study the channel where the z component of
the relative orbital angular momentum of interacting particles
changes by two quanta 	Lz = 2. Assuming that each of the
two colliding atoms are initially in the spherically symmetric
ground state, the lowest energy final state of the two atoms has a
form |vortex〉 ∼ (x1 + iy1)2 + (x2 + iy2)2 − 2(x1 + iy1)(x2 +
iy2). Note that in the harmonic trap of radial frequency ω the
state |vortex〉 corresponds to a superposition of two states:
|v2〉 ∼ (x1 + iy1)2 + (x2 + iy2)2 and |v1〉 ∼ (x1 + iy1)(x2 +
iy2), where xi, yi are particle coordinates. For |v2〉 one of
colliding atoms acquires two quanta of rotation while the
second atom remains in the spatial ground state, that is, the
energy of |v2〉 is E2 = 2h̄ω. On the other hand, |v1〉 represents
the situation where each of two atoms gets one quantum of
rotation resulting in the total energy 2E1 = 2h̄ω. Evidently
for equally spaced harmonic energy levels both states are
degenerate, E2 = 2E1, and both the conservation of angular
momentum and the conservation of energy can be satisfied.

The situation becomes different in the optical lattice
because of anharmonicity of the lattice potential. The state
|v2〉 has energy of the second Wannier state E2. This energy
is smaller than twice the energy of the first excited Wannier
2E1 of the state |v1〉. Even for high barriers, that is, V0 = 40Er ,
the energy splitting 2E1 − E2 = 10−1Er is significantly larger
than dipolar energy of Cr atoms, Edip = 10−4Er . Therefore,
by means of magnetic field tuning one may select the
resonant transfer of atoms due to dipolar interactions, bringing
both interacting particles to the state with one quantum of
rotation while making the transfer to the second Wannier state
nonresonant (and not efficient). This is a situation considered
in the present paper. Note that a proper adjustment of the
magnetic field may make the excitation of D orbital |v2〉
resonant—the situation not considered here. Anharmonicity
of the lattice potential, although small, plays an important
role.

B. Vorticity versus tunneling

The second issue is related to the tunneling of vortex-like
states. As the lattice states have C4 symmetry the angular
momentum need not be conserved in the tunneling. With our
choice of alternating phases of the excited Wannier states the
tunneling coefficient in the excited band is positive, Jb > 0.
Therefore tunneling of the right handed vortex ∼(x + iy) to the
vortex of the same vorticity at neighboring site is equal to tR =
Jb + Ja and is larger than tunneling with simultaneous change
of the vorticity, that is, to ∼(x − iy) state, tL = Jb − Ja . The
difference is small since tunneling in the lowest Wannier state
Ja � Jb, but significant. The tunneling decreases the system
energy, thus the larger tunneling for the process preserving
vorticity will decrease the system energy more and will be
preferred. This observation allows for including only the right
handed vortex in our single-particle basis and omitting the left
handed one.

C. Single-site anisotropy

In our model we have assumed that the single-site potential
is isotropic, that is, the two-particle state produced in the
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dipolar interactions has both the well defined energy and
the relative angular momentum. In fact, this is not strictly
true. The single-site potential cannot be approximated by a
harmonic one if fine details are to be studied. In a square 2D
lattice every site has four neighbours and the square symmetry
of the lattice influences the single-site potential. The quartic
terms in the expansion of V0[sin2(2πx) + sin2(2πy)] potential
are relevant. For this reason the two-particle state |vortex〉
corresponding to LZ = 2 is not the eigenenergy state of single
particle plus contact interaction on-site Hamiltonian. It is a
superposition of three two-particle states of different energy
instead. The fine structure results both from the anharmonicity
and the anisotropy of the trapping potential. The anisotropy
of the trap cannot be reduced even for very high lattices.
We checked that even for V0 = 100Er the energy splitting
is significantly larger than dipolar interaction energy. Large
magnetic moments, leading to larger dipolar energy, could
help to overcome this problem. Conservation of energy allows
us to tune independently only to one of the three components
of the |vortex〉 state. Weak dipolar interactions resolve this
fine structure of two-particle energy states. To observe the
Einstein–de Haas effect in optical lattices one should use the
lattice geometry for which the anisotropy due to the lattice
symmetry is substantially reduced. To this end a 2D triangular
lattice with every site having six neighbors might be promising.
The other way out is to rotate every lattice site around its axis
similarly as in the experiment [19].

V. CONCLUSIONS AND OUTLOOK

In this paper we studied the model Bose-Hubbard system
with two Wannier states in optical lattice. We show that weak
dipolar interactions can be resonantly tuned to couple the

ground Wannier state to the excited one with higher orbital
angular momentum. We have studied a case of at most one
particle per site on average. Even in this case, we predict
various novel phases of the system. The phase diagram of the
system significantly depends on the magnetic field. On the
resonance we predict three distinct phases of the system: (i)
the Mott insulator of superposition of ground and vortex states,
(ii) the a-component dominated Mott insulator superimposed
with b-component dominated superfluid, and (iii) two superflu-
ids in particular combination of both species. We also discuss
some limitations of our approach, stressing that harmonic
approximation has to be used with caution when studying
orbital physics in optical lattices.

Higher densities (more particles per site) are more favorable
for dipolar transfer, the related physics will be discussed
elsewhere. It is worth noting that our results may be directly
related to the very recent experiments, in which spin relaxation
in an ultracold dipolar gas in an optical lattice was observed
in a presence of an ultralow magnetic field [16,20]. Although,
so far, no vortices have been found, we hope that the present
work will help to identify the regime of parameters in which
generation of Px + iPy superfluid and appearance of novel
quantum phases occurs.
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