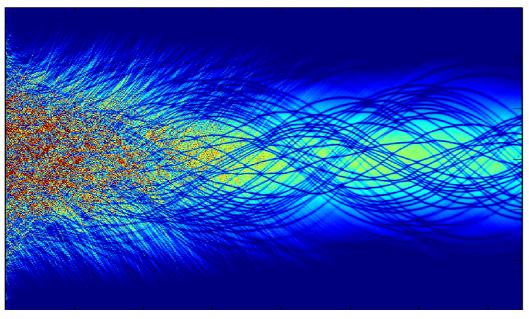
Can one have a consistent c-field description of ultracold Bose gases?

Piotr Deuar

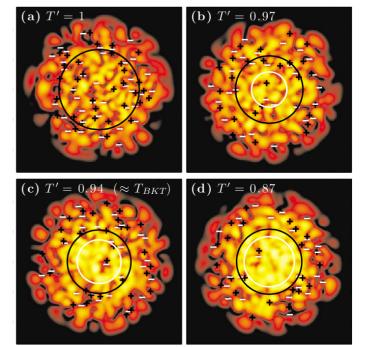
Joanna Pietraszewicz

Institute of Physics, Polish Academy of Sciences

<u>Collaboration:</u> Tomasz Świsłocki, Igor Nowicki Institute of Physics, Polish Academy of Sciences Nick Proukakis, Stuart Cockburn Newcastle University

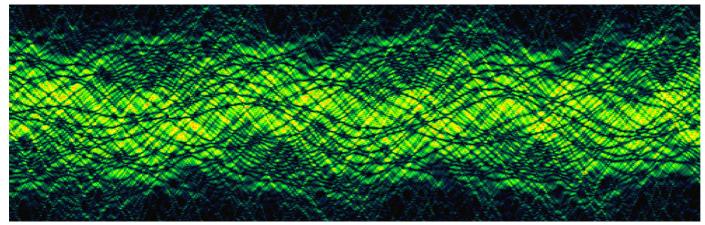


N A R O D O W E C E N T R U M N A U K I


arXiv:1504.06154

Thermal states and defects

Evaporative cooling (temperature quench) Witkowska, PD, Gajda, Rzążewski, *PRL* **106**, 135301 (2011)



Vortex pairs in 2D gas Bisset, Davis, Simula, Blakie, *PRA* **79**, 033626 (2009)

Solitons in thermal equilibrium state

Karpiuk, PD, Bienias, Witkowska, Pawłowski, Gajda, Rzążewski, Brewczyk, PRL 109, 205302 (2012)

23.06.2015 Quantum Technologies Conference VI, Warszawa, Poland

Classical fields approximation

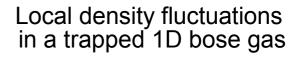
Full quantum field \rightarrow Ensemble of complex-fields $\hat{\Psi}(\mathbf{x}) = \sum_{k} \hat{a}_{k} \psi_{k}(\mathbf{x}) \rightarrow \left\{ \sum_{k \in \underline{\mathcal{C}}} \xi_{k} \psi_{k}(\mathbf{x}) \right\}$ Assume highly occupied modes The dreaded Replace mode amplitude operators \hat{a}_{k} cutoff k_c with complex number amplitudes $\,\xi_k\,$ "Quantum field theory, without discretized particles"

Evolution: nonlinear Schrodinger equation

$$i\hbar \frac{d\phi(x)}{dt} = \left[H_0(x) + g|\phi(x)|^2\right]\phi(x)$$

Developed by many authors:

A. Sinatra, M. Brewczyk, M. Gajda, M. Davis, K. Rzazewski, K. Burnett, E. Witkowska, ... *(no particular order)* <u>Useful Reviews:</u> M. Brewczyk *et al,* J. Phys B **40**, R1 (2007);


P. Blakie et al. Adv. Phys. 57, 363 (2008)

23.06.2015 Quantum Technologies Conference VI, Warszawa, Poland

Qualitative or quantitative?

- For many problems, classical fields (c-fields) are the <u>only viable method.</u>
 - Especially when single realizations are needed
- Perennial questions:
 - * Fine, but, are the effects real?
 - * is it quantitative or only qualitative?
 - * what was the cutoff used?
- Perennial answers:
 - * It's okay if there are many particles
 - * Can work very well

25

20

15

 \sim 10 $_{0}$ 10 $_{0}$ $_{5}$ 10 $_{0}$ $_{5}$ 10 $_{10}$ 15 $_{20}$ 25 $_{30}$ 35 $_{40}$ 45 < n> Karpiuk, PD, Bienias, Witkowska, Pawłowski, Gajda, Rzążewski, Brewczyk, *PRL* **109**, 205302 (2012)

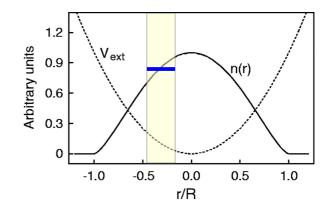
NARODOWE

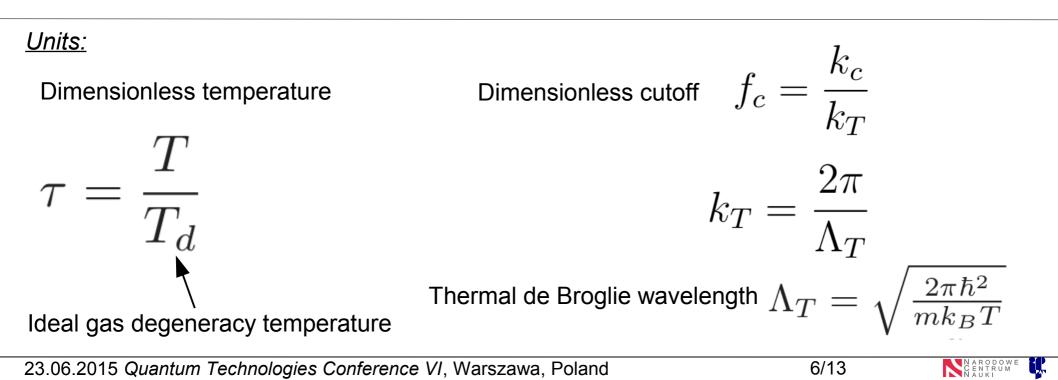
Ľ,

The cutoff..

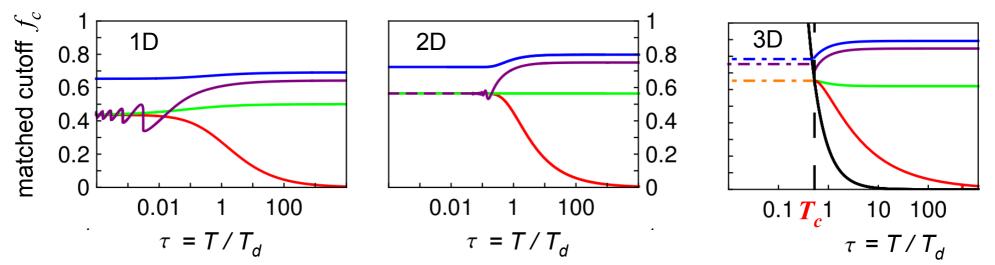
• The cutoff k_c is a very important parameter. Recommendations differ, though:

Study	Cutoff energy suggestions
Ideal gases	Uniform: 0.30 $k_{B}T$ in 1D
Canonical ensemble Consideration of number of excited atoms	Trapped: 1.0 $k_{B}T$ in 1D
Witkowska, Gajda, Rzazewski, PRA 79 , 033631 (2009)	Other values in 2D, 3D
SGPE calculations of interacting gas Cockburn, Negretti, Proukakis, Henkel, <i>PRA</i> 83 , 043619 (2011)	Match particle number in truncated Wigner description to ideal gas
Brewczyk etal	Match energy in high E modes to $k_{B}T$
Brewczyk, Gajda, Rzążewski, J. Phys. B 40, R1 (2007)	(equipartition) ~ 1 particle in high E modes
Consideration of damping rates	$\sim < k_{_B}T$
Sinatra, Lobo, Castin, J. Phys. B 35, 3599 (2002)	~ 10 particles in mode below cutoff
Widely used rule of thumb	$k_{_B}T$ + chemical potential

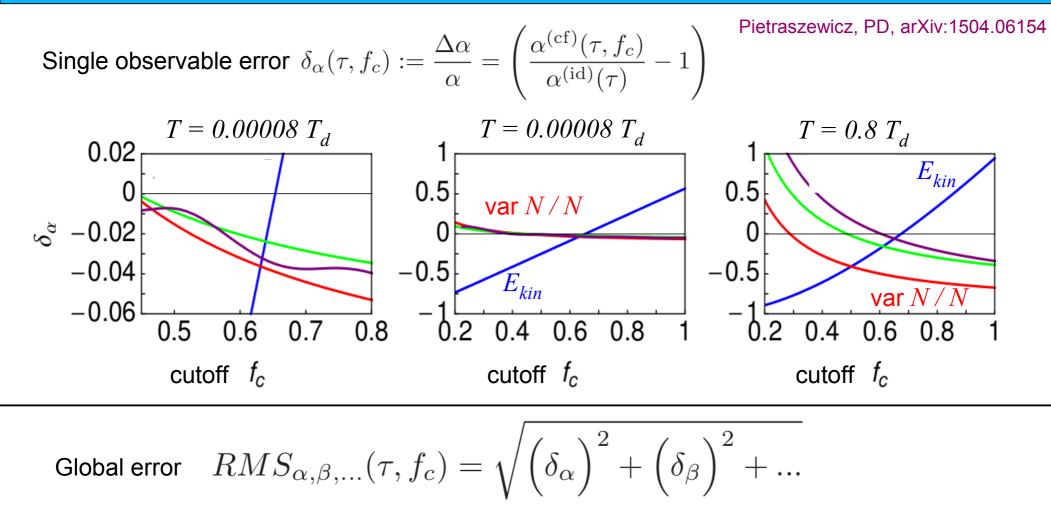

Initial plan: benchmark 1D quasicondensate with exact solution Yang, Yang, J. Math. Phys. **10**, 1115 (1969)


Realization: even ideal gas is not well understood

Generic case: uniform section of gas

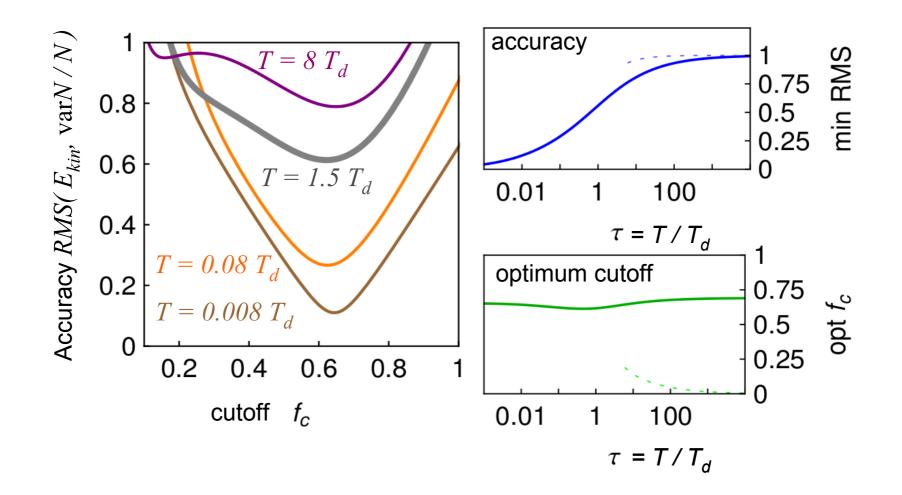

- Local Density approximation (LDA)
 - \rightarrow Grand Canonical ensemble

(rest of gas acts as a reservoir)


Cutoff optimum for different observables

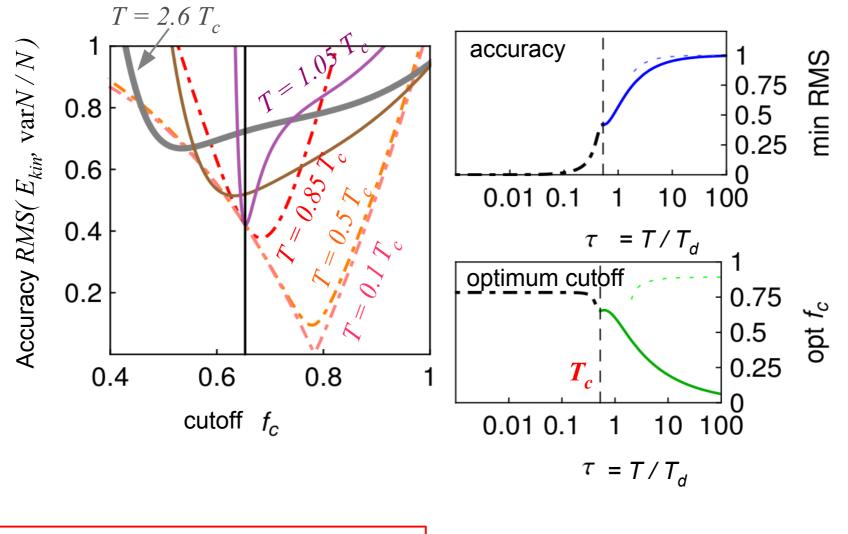
- *E_{kin}* Kinetic energy per particle Most extreme behaviour
- varN / N Coarse-grained fluctuations
- l_{pg} phase grain volume (~ coherence length l_{Φ})
- Half-width of $g^{(1)}(x)$
- ρ_0 condensate fraction

Accuracy

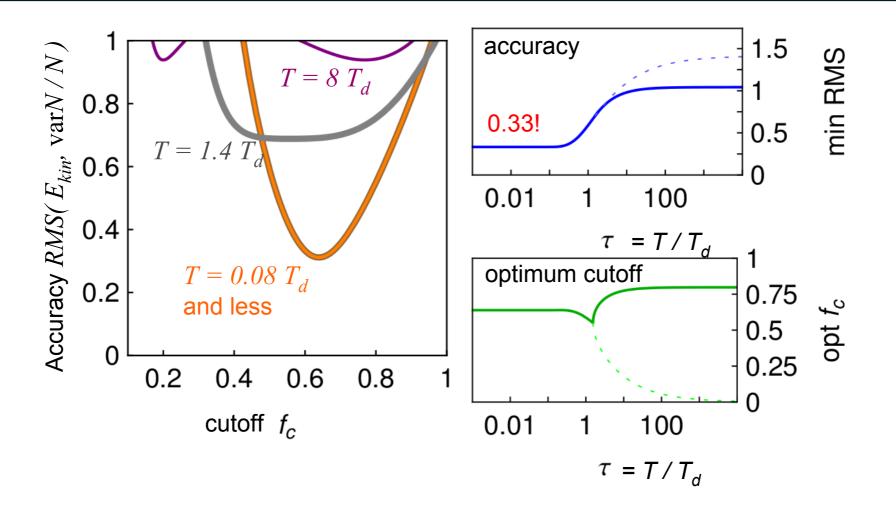

Error in any observable will be < RMS

Kinetic energy and coarse-grained fluctuations capture most extreme behaviour

 \rightarrow use these only


1D

 $\label{eq:recommendation:} \frac{\text{Recommendation:}}{\text{Accuracy better than 10\% for T} < 0.007 \ T_d} \\ \text{Use} \ f_c = 0.65 \quad (\text{ Energy cutoff} = 1.3 \ k_B T \)}$


3D

<u>Recommendation:</u> Accuracy better than 10% for T < 0.49 T_c Use $f_c = 0.78$ (Energy cutoff = 1.9 k_BT)

2D

<u>Recommendation:</u> Don't use classical fields, at the least not near the ideal gas regime

Interacting gas benchmarking

Comparison to Yang & Yang exact solution

Yang, Yang, J. Math. Phys. 10, 1115 (1969)

23.06.2015 Quantum Technologies Conference VI, Warszawa, Poland

i,

Summary

arXiv:1504.06154

- Cutoffs and accuracy depend strongly on the observable *Kinetic energy and density fluctuations are most incompatible*
- We found the temperatures and best cutoff for which a consistent and accurate c-field description exists in 1D and 3D.
 However, the 2D ideal gas is never well described
- Preliminary results in the interacting quasicondensate: Same cutoff as ideal gas, 10% accuracy also possible.

