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We give an outlook on the future of coherence theory and many-body quantum
dynamics as experiments develop in the arena of ultra-cold atoms. Novel results
on quantum heating of centre-of-mass temperature in evaporative cooling and
simulation methods for long-range interactions are obtained, using positive-P
phase-space techniques.

1. Coherence theory in the 21st century

One recognition of important developments in coherence theory was the 2005 Nobel
award in Physics, one half to Roy J. Glauber, ‘for his contribution to the quantum
theory of optical coherence’, and one half to Ted Haensch and Jan Hall ‘for their
contributions to the development of laser-based precision spectroscopy’. This richly
deserved award recognizes crucial developments in quantum optics and laser science
in the second half of the twentieth century. One may ask now: What is the future of
coherence theory?

One answer to this question lies in the groundbreaking work of experimentalists
working with ultra-cold atoms. Perhaps the ideal quantum system for experi-
mental investigation, ultracold atoms display many useful properties under active
investigation, including:

(a) ultra-low temperatures to below 1 nK;
(b) Bose–Einstein condensates (BEC): atom ‘photons’;
(c) quantum superfluid degenerate Fermi gases (DFG): atom ‘electrons’;
(d) ‘superchemistry’: stimulated bosonic molecule formation;
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(e) atom lasers, atomic diffraction, atom interferometers;
(f) direct detection of atom coherence and correlations.

A crucial, common property of photons and ultracold gases is their simplicity
as many-body systems. This makes them ideal candidates for both theoretical and
experimental investigation in fundamental science. The underlying interactions
are well understood, the experimental systems can be easily characterized by a few
parameters, and interaction strengths can be tuned.

Under these conditions, well-known theoretical models can be used to high
accuracy, thus combining ideas from coherence and many-body theory. As well
as being able to test and understand theories like the Hubbard model, one has
the possibility of new technologies of unprecedented accuracy and subtlety. This is
likely to lead to new tests of macroscopic quantum mechanics and quantum
superpositions, which is undoubtedly one of the grand challenges of modern physics.

In this paper, we give a brief overview of recent directions that coherence theory
has taken since it originated in the quantum optics area, as well as giving new
theoretical results on examples of quantum dynamics. First we describe some of
the recent experimental developments in quantum-atom optics, in which the
role of correlations are becoming increasingly important. Second, we review
theoretical developments in which coherence theory is being utilized to give new
simulation techniques that can handle the fundamental issue of quantum dynamics
of many-body systems.

2. Quantum dynamical experiments

As one of the new types of experiment on atomic coherence and correlations,
many laboratories are now able to carry out intrinsically dynamical experiments on
many-body systems, rather than the near-equilibrium experiments of condensed
matter physics. Dynamical results provide a new probe into the properties of
many-body systems. Clearly, the future of coherence theory must include an under-
standing of how to quantitatively predict the results of experiments involving
the dynamical evolution of many-body quantum systems far from thermal
equilibrium. Due to the rapid growth of ultra-cold atom facilities, these types of
experiment are now carried out in many laboratories. They test quantum theory
in regimes of large particle number, as they typically involve 102–107 interacting
particles, at temperatures of around 100 nK.

A schematic diagram of the type of experiment that we will focus on is shown
in figure 1. A condensate is prepared with each atom in a quantum superposition
of two different momenta, resulting in effectively two condensates in relative motion,
occupying the same physical space. Subsequently, a strong scattering commences,
in which both individual particle and coherent many-body effects play
important roles.

In the remainder of this section, we will outline two recent experiments of this
type, in which many-body effects clearly play a role. There are other experiments
as well, and indeed this is a very rapidly developing field.
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2.1 Collisions in sodium BEC

An example of quantum dynamics is provided by a series of experiments by the

Ketterle group at MIT [1] that involve the three-dimensional collision of two sodium

(Na) BECs, as in the schematic diagram of figure 1. The two BECs are produced

from a single initially ellipsoidal trapped cloud, as found in a non-spherical

magnetic trap.
The initial condensate is then split into two halves, with a large relative velocity,

and the trap is turned off. This leaves two condensates that are spatially overlapped

and have a relative velocity, so that a collision occurs. Also observed in these

experiments are: amplification of seed pulses during a collision, interaction of

condensates with lattices, and quantum reflection from a mirror. These condensates

typically include 107 or more interacting bosons, and measurements usually involve

the observation of density distributions.

2.2 Metastable helium experiments

A recent experimental configuration that allows the retrieval of much more informa-

tion is the interaction of metastable helium condensates. These have a distinct

advantage over the alkali metals like sodium or rubidium, in that single atom arrivals

at a detector multi-channel plate can be readily detected, owing to the high excitation

energy (around 20 eV) of the metastable atoms. This allows atomic correlations to

be measured directly [2].
Metastable helium experiments have been carried out by a number of groups.

In particular, the group of Westbrook and Aspect at the Institut d’Optique (France)

have already observed three-dimensional collisions of metastable He*, using

multichannel plate (MCP) detection combined with a time-domain multiplexor

to obtain both temporally and spatially resolved quantum correlations of atomic

arrival times [3]. Backward and forward quantum correlations were observed to

Correlations calculated
from here vy=vy0

Original
condensate

Atoms scattered into
an ≈ spherical shell

Second condensate
produced by Bragg
optical transition

vx

vy

vz

2vQ

Figure 1. Momentum–space diagram of an ultra-cold collision experiment. (The colour
version of this figure is included in the online version of the journal.)
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be enhanced. A similar experiment is also underway by Dall and Truscott [4] at
The Australian National University.

3. Many-body quantum dynamics

The well-known difficulty with treating the dynamical quantum theory of many-body
systems, is that the Hilbert space—the number of quantum states involved—can
become exponentially complex. This is a subtle point, as of course given an exact
solution, a system in a pure state is described by just one quantum state at all times.
The problem is that when one does not know the relevant exact quantum state,
it is necessary to expand in a basis of states.

3.1 Exponential complexity

As an example, consider n atoms distributed among m modes, with n ’ m ’ 500 000.
The number of possible many-body number states that could be involved is

Ns ¼ 22n ¼ 21000 000: ð1Þ

Since this number means that there are more quantum states than atoms in the
universe, we conclude that even on the largest possible computer, we cannot
diagonalize the Hamiltonian relative to this basis, in general!

3.2 Traditional theoretical methods

There are many traditional theoretical methods, which all have severe drawbacks
as first principles solutions:

(i) Perturbation theory. A well established approach, perturbation theory can be
applied in many ways, and a particularly sophisticated variation is obtained
by using perturbation theory on a path-integral formulation of quantum
dynamics. This approach diverges at strong couplings and long times.

(ii) Operator factorization. This approach neglects any quantum correlations.
Although many variations exist, these methods inherently involve uncon-
trolled approximations, and are not applicable for strong correlations.

(iii) Restricted Hilbert-spaces. Complementary to the idea of operator factoriza-
tion is the approximation of using a truncated Hilbert space, with an
unknown error due to the truncation. Examples in this general category
include the density matrix renormalization method [5]. Similarly, density
functional theory [6] has unknown approximation errors.

(iv) Numerical diagonalization. While exact in principle, this is intractable for
large particle numbers, unless the number of spatial modes is severely
restricted.

(v) Bethe ansatz solutions. Certain one-dimensional many-body problems have
exactly known eigenstates from the Bethe ansatz. These can be very useful in
static cases. However, knowing the eigenvalues does not necessarily solve the
dynamical complexity problem. Exponentially many eigenstates are still
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required to expand an arbitrary initial state—there are simply too many basis
states for exact quantum dynamical calculations.

(vi) Quantum computers. Can quantum computers solve quantum dynamics?
In 1982, Feynman proposed this approach. By even the most optimistic
predictions, hardware of practical use is still many years away, and their
range of application appears limited.

In summary, we see that while experimentalists have more sophisticated tools than
ever before, the theorist faces severe difficulties in modelling these new experiments.
It would clearly be useful to have first-principles techniques that utilize existing
computers.

3.3 Classical phase space

One of the most important and enduring ideas of Glauber [7], developed in parallel
with an approach of Sudarshan [8], was the use of coherent states to generate
quantum operator representations for bosons. In some cases one can obtain
expansions of the density matrix using a probability PðaÞ. For an M-mode bosonic
problem, we define

b� ¼

ð
PðaÞ aj i ah jd2Ma, ð2Þ

where aj i is an M-mode coherent state, defined as a simultaneous eigenstate of the
annihilation operators. This approach maps quantum states into an essentially
classical phase-space. We note that there is a clear limitation here: the expansion
is a separable one, and therefore cannot describe entangled states.

The technique, of course, was highly successful in its applications to the quantum
theory of the laser, since a laser output state is typically non-entangled. Different
variations of this approach are obtained by considering different operator orderings
in the equivalence relations between operator products and classical field products.
Many prominent physicists have developed and used phase-space distributions for
quantum systems, starting from Wigner, Moyal [9] and Husimi [10], with later
developments due to Glauber, Sudarshan, Agarwal and Wolf [11, 12], Lax [13] and
many others.

The problem, however, with interpreting these distributions as probabilistic
mappings to a classical phase space is that these are fundamentally incomplete.
When used to calculate general quantum dynamical time-evolution, either the
distributions or the propagators can have negative values. Even the Husimi
Q-function, which is statically complete and always positive, generally has no
corresponding positive propagator. Hence, no stochastic process is available for
simulation purposes.

3.4 Quantum phase space

The problems of exponential complexity can be reduced—though not wholly
eliminated—by using a doubled phase-space expansion that allows quantum super-
positions and entanglement in the basis set. The idea of dimension-doubling was
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also proposed by Glauber [7]. However, this by itself is not sufficient. It is also
necessary to have an appropriate differential mapping, which maps the operator
products that occur in a physical Hamiltonian, to positive definite differential
operators that have stochastic equivalences.

The first approach of this type was the positive-P representation [14, 15], in which
there are 2M complex coordinates, so that

b� ¼

ð
Pða, bÞ

b
�� ��

a
��

a b
��� � d2Mad2Mb: ð3Þ

The resulting distributions are positive and obey a diffusion equation, so that they
can be effectively simulated using a stochastic process.

3.5 Application

Before turning to specific examples, we give the þP equations for a general bosonic
system with two-body interactions. Such systems are modelled by using nonlinear
interactions on a lattice, together with linear interactions coupling different sites,
so that the quantum Hamiltonian is

bHða, ayÞ ¼ �h
X
ij

!ija
y

i aj þ
1

2
�ij :bnibnj :� �

: ð4Þ

Here !ij is a nonlocal linear coupling, which may correspond to simple quantum
diffusion of free particles, or else to inter-well hopping in the case of a true lattice,
while �ij is a nonlocal nonlinear coupling. If �ij ¼ ��ij, then one recovers
the usual local interaction lattice theory, applicable for ultracold atoms under
s-wave scattering. The boson number operator at each site is: bni ¼ ayi ai, which has
a stochastic equivalent of ni ¼ ��

i �i. Even though the Hamiltonian has the
appearance of modelling a lattice, the general approach also holds for quantum
fields with a momentum cut-off that equals the inverse lattice spacing.

With the addition of nonlocal linear damping of �ij, the simplest corresponding
positive-P stochastic equations have the Itô form:

@�i

@t
¼ � �ij þ i!ij

� �
�j � i�ijnj þ bik�

ðaÞ
k ðtÞ

� 	
�i,

@�i

@t
¼ � �ij þ i!ij

� �
�j � i�ijn

�
j þ bik�

ðbÞ
k ðtÞ

� 	
�i:

ð5Þ

Here the noise matrix b is the solution to bikbjk ¼ �i�ij, and the noises are delta
correlated, so that h�ðaÞi ðtÞ�ða

0Þ

j ðt0Þi ¼ �ij�
ða, a0Þ�ðt� t0Þ.

The earliest example of this technique was the prediction of quantum squeezing of
solitons in optical fibres [16], using the positive-P representation. In this case the
relatively high occupations of modes means that a truncated form of the Wigner
representation is also very useful. These predictions have been recently confirmed
to high accuracy. There are many other applications, including simulation of
evaporative cooling [17], spin squeezing [18], correlation dynamics in a uniform
gas [19], the quantum evolution of large numbers of interacting atoms in a single
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well [20], the dynamics of atoms in a 1D trap [21], and molecular down-conversion to
atoms [22].

4. Examples

In the remainder of this paper, we shall focus on some novel results.

4.1 Direct quantum simulations of BEC formation

A thorough treatment of the initial state of a quantum experiment ideally should
include a theory of state preparation. While it is certainly possible to use phase-space
techniques starting from the common assumption of a canonical ensemble at finite
temperature, there is a more fundamental question of interest in ultra-cold atom
Bose–Einstein condensation. Is the concept of a thermal equilibrium at finite
temperature always applicable in these experiments? This question arises because
the experiments are fundamentally non-equilibrium in nature, with no external
reservoir at a fixed temperature as in most condensed matter experiments.

The true state of an atom laser or BEC is the result of cooling through
evaporation. Therefore to try to answer this question, one must simulate the actual
evaporative cooling process that leads to condensate formation. The process itself
is depicted schematically in figure 2. Collisions of hot atoms lead to condensate
formation together with the escape of even hotter atoms from the trap, as there is
an overall energy conservation in the collisions.

In our simulations, we use a model identical to that used in [17]: a small ð3þ 1ÞD
system with an initial 240 nK thermal distribution. We suppose there are N ¼ 104

bosonic atoms of mass m ¼ 1:5� 10�25 kg, initially confined to a box of

Figure 2. Diagram of the physics of evaporative cooling. Two atoms collide, one losing
energy and becoming condensed, while the other gains energy and escapes from the trap.
(The colour version of this figure is included in the online version of the journal.)
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side L ¼ 10 mm. At t ¼ 0þ a smooth trapping potential is switched on. It is of the
form

Vðx, tÞ ¼ V0ð1� t=t0Þ
XD
j¼1

sin2
pxi
2L

� 	
, ð6Þ

where kBV0 is similar to the initial temperature and t0 is the length of the
relaxation—about 100ms. This potential is chosen so that atoms can escape more
readily as time evolves, which should lead to a continual lowering in the average
energy of the remaining atoms. This cooling strategy also reduces the effective trap
frequency with time, leaving a cloud of untrapped atoms at the end of the process.
In the simulations, the lattice boundary is absorbing, so that atoms reaching the edge
of the simulation region are simply removed through localized linear damping.

4.1.1 Definition of COM temperature. While it is widely accepted that the
evaporative cooling strategy leads to formation of a Bose–Einstein condensate,
the question of which mode is condensed is not so easily answered. Simulations
indicate that the condensate is in motion, with a centre-of-mass effective temperature
that may both increase as well as decrease during evaporative cooling. In other
words, while the relative motion of particles is being cooled, it is possible for
the centre of mass (COM) to become hotter, since these degrees of freedom are
largely decoupled.

We can directly apply the equipartition theorem to arrive at an estimate of the
COM temperature. We assume that the COM energy can be written

ECOM �
hjPj2i

2mhN̂i
þ
1

2
m !effðtÞð Þ

2hjN̂Xj2i

hN̂i
, ð7Þ

where !effðtÞ is obtained from Vðx, tÞ by assuming small deviations of the COM
position from zero, in which case sin2 x ’ x2. We then estimate that the effective
temperature is given by

TCOM ’
ECOM

DkB
, ð8Þ

where D represents twice the number of COM degrees of freedom (e.g. 6 for a
trapped 3D gas).

4.1.2 Positive-P simulation results. Figure 3 gives a full three-dimensional
simulation of this evaporative cooling scenario, focusing on the effective temperature
of the centre of mass.

It is clear from these results that a strong evaporative heating of the centre-
of-mass degree of freedom occurs simultaneously with the evaporative formation
of a Bose condensate. This can be understood from physical arguments. The Bose
enhancement of scattering into moving modes randomly condenses the gas into
a moving condensate. Here the coherence properties of the gas means that all
the condensed atoms have the same velocity, which enhances the effective centre-
of-mass temperature, even while the condensate forms. The final cooling of the
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centre-of-mass temperature is due to enhanced evaporative losses of more rapidly

moving condensates, as the trap walls are lowered. We note here that these results

are limited by the sampling error, depicted by the error bars in the figure.

4.2 Long-range or strong particle interactions

The positive-P and related phase-space representations are also readily applicable

to strongly interacting situations where the range or shape of the interparticle

interaction cannot be ignored. Quantitative dynamics for such systems have been

very difficult to obtain apart from some special systems.
Here, instead of pre-calculating scattering behaviour for two- (or more-) body

collisions, we remain with the raw Hamiltonian that explicitly gives an interparticle

potential. This corresponds to the nonlocal form of the lattice Hamiltonian given

above. As a proof of principle, we have calculated the dynamics of a small strongly

interacting cloud of cold bosons confined in a one-dimensional trap whose width

is of the same size as the range of the interparticle potential [23].
At t<0, bosons with negligible interparticle interaction are prepared in

a harmonic trap with trapping potential V extðxÞ ¼ ð1=2Þm!2
hox

2, which has a

harmonic oscillator length aho ¼ ð�h=m!hoÞ
1=2. Initially they are in the coherent

zero-temperature ground state obtained by solving the Gross–Pitaevskii mean

field equations [24]. The mean number of atoms in the trap in this example

is �N ¼ 10 ( �N ¼ 100 was also simulated, albeit for a shorter time span). At t¼ 0,

interparticle interactions are turned on across the system. This kind of effect is most

commonly induced in practice by utilizing a Feshbach resonance. A ‘breathing’

400

300
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T
em

pe
ra

tu
re

 (
nK

)

100

0 20 40

Time (ms)

60 80

Figure 3. Full 3D positive-P results for COM heating. The solid curve represents the
full COM temperature estimate, where the large initial spike is due to the rapid switch-on
of the trap. The dotted and dashed curves represent the contributions of kinetic and potential
energy, respectively.
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of the atomic cloud is also induced by switching the trap to a more confined
harmonic potential with double the trapping frequency.

We model the interparticle interactions by a Gaussian interparticle potential

UðxÞ ¼ �ð�h!hoÞ
1

	Uð2pÞ
1=2


 �
exp �

1

2

x

aho	U


 �2
" #

: ð9Þ

Here � is a dimensionless strength parameter and 	U is the standard deviation of
the potential’s shape (in units of aho).

For �N ¼ 10, �¼ 0.4 and 	U ¼ 1, one obtains the results shown in figure 4.
The simulation was carried out on a M¼ 60 lattice with L ¼ 12aho, and S ¼ 104

Contours of g (2) (0,x )

w
ho

 t

w hot = 0.6

x /aho

x /aho

x /aho x /aho

w hot = 1.25 w hot = 1.65

3

2.5

1.5

1

0.5

0

1.1

1

g (2) (0,x )

g (2) (0,0)

r(x ) shape

|g (1) (0,x )|

0.9
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1

0.9

1.1

1

0.9
−2 −2−1 0 01 2 −2 −1 0 1 22

−2 −1 0 1 2

2

3

2.5

2

1.5

1

0.5

0
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D
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A A

Figure 4. Dynamics of correlations with long-range interactions.
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trajectories. We calculate the correlations between particles in the middle of

the cloud and in the wings. Such ranged two-body correlations give insight into

what behaviour may be expected to be typical during a single experimental run.

The first-order correlation function,

gð1Þð0, xÞ ¼

�bCyð0ÞbCðxÞ
�

½�ð0Þ�ðxÞ�1=2
, ð10Þ

describes coherence between particles, where the density is �ðxÞ ¼ hbCyðxÞbCðxÞi.
The second-order (number) correlation function,

gð2Þð0, xÞ ¼

�bCyð0ÞbCyðxÞbCð0ÞbCðxÞ
�

�ð0Þ�ðxÞ
, ð11Þ

describes number correlations. That is, when gð2Þð0, xÞ> 1, the likelihood of
observing a pair of particles with one in the centre of the trap (‘0’), and one at

x is increased with respect to the baseline case where the occupation at these points

is uncorrelated and given purely by the local densities. In the largest panel, contours

of the number correlation function gð2Þ are plotted, with solid contours indicating

gð2Þð0,xÞ � 1, dashed contours indicating gð2Þð0, xÞ < 1. Contour spacing is 0.01.

The thick grey lines indicate the rms width of the cloud density �(x). In panels

A–D, triple lines indicate one-sigma uncertainty, solid lines show gð2Þ, dashed lines

show the coherence jgð1Þj, and solid thick grey lines the density �(x).
Notable features seen include the following.

(a) In the middle of the trap, there is an oscillation between bunching

(gð2Þð0, 0Þ > 1) and antibunching (gð2Þð0, 0Þ < 1).

(b) This oscillation is out of phase (by approximately p=2) with respect to the

breathing motion of the gas cloud, and the behaviour of pair correlations

is quite counter-intuitive. In particular,

(i) when the particle cloud is contracting, anti bunching appears at the centre
of the trap despite a net motion of particles into this region, while

simultaneously there is an enhanced likelihood of pairs of atoms with

one in the outer region of the cloud and one in the centre;
(ii) during expansion, on the other hand, the particles in the centre of the

trap tend to appear there in pairs despite the net flow of particles out of

this region, while pairs of particles with one in the tails, one in the centre

are suppressed.

(c) The oscillations of gð2Þð0, 0Þ (at the centre of the trap) become more

pronounced with time. This may indicate a resonance between the breathing

and the repulsion, although it is also possible that this is a transient initial

effect.
(d) Coherence between the centre of the trap and outlying regions of the cloud

deteriorates as time proceeds.
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5. General phase-space representations

Finally, we show how these coherence-theory methods can be generalized
to incorporate other kinds of correlation into the basis. Most generally, the phase-
space approach can be defined as an expansion of the density matrix b�, using
nonorthogonal operators bLðjÞ, such that

b� ¼

ð
PðjÞbLðjÞdj: ð12Þ

Provided suitable differential identities exist, and that it is possible to integrate
by parts, quantum dynamics is transformed to a set of stochastic trajectories in
the generalized phase-space variable j. A different basis choice leads to a different
representation. Thus, for example, in the positive P-representation, bLðjÞ is the
off-diagonal coherent-state projector appearing in equation (3). There are a number
of clear trade-offs, in that a variance can be transferred from the distribution to
the basis, in order to obtain reducing trajectory spread, leading to lower sampling
error. This is shown schematically in figure 5.

5.1 General M-mode Gaussian operator

Many possible basis sets can be used. As a generic form applicable to both fermionic
and bosonic cases, we may consider a Gaussian operator basis, defined here as the
normally ordered exponential of a quadratic form in the 2M-vector mode operator
�ba ¼ ðba,bayÞ � a, where a is a c-vector and ba is the vector of annihilation operators.
The bosonic kernel [25], with a similar result for fermions [26], is

bLðjÞ ¼ O���	���1=2 : exp ��ba y
r�1�ba=2h i

: : ð13Þ

Here the ‘quantum phase space’ is extended even further, to the vector:
j ¼ ðO, a,rÞ. This now includes the covariance r, which can be readily parametrized
in terms of normal and anomalous Green’s functions, denoted n and m, respectively:

r ¼
Iþ n m

mþ Iþ nT

� �
: ð14Þ

When n ¼ m ¼ 0, the representation reduces to that of the positive-P. However with
these new parameters, the representation is complete (for number-conserving

ρ

σρ

=

∼

P

σP

⊗

+

Λ

σΛ

Figure 5. Schematic diagram of how density matrix operator variances are composed
of a distribution variance and a basis variance. (The colour version of this figure is included
in the online version of the journal.)

2510 P. D. Drummond et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
v
a
n
 
A
m
s
t
e
r
d
a
m
]
 
A
t
:
 
1
5
:
0
1
 
2
 
F
e
b
r
u
a
r
y
 
2
0
1
0



systems) when the coherent amplitudes are zero, thus allowing for representation of
fermions.

In summary, the Gaussian representation phase space is j ¼ ðO, a, b, n,m,mþÞ,
where O is a weight factor, a, b are (for bosons) coherent amplitudes, n is number
correlations and m,mþ are squeezing correlations.

5.2 Weighted stochastic gauge equations

The use of phase-space methods has a fundamental philosophy of attempting
to transform hard quantum problems into tractable stochastic equations. However,
there are several ways to do this, due to the overcompleteness of the basis set. For
a basis set that is analytic in the phase-space variables, one can show that, provided
partial integration is possible, one can obtain an equivalence class of stochastic
equations. These include an arbitrary ‘stochastic gauge’ function g [27], and have the
generic structure:

dO=@t ¼ O Uþ g � f½ �,

da=@t ¼ Aþ Bðf� gÞ:
ð15Þ

In principle, the Gaussian basis allows a wide range of fermionic and bosonic
systems to be simulated from first principles [28]. Nevertheless, there are unsolved
problems that remain (see e.g. [29]). The chief issue is the sampling error, since
typically many stochastic trajectories are needed to control growing sampling errors,
which eventually become too large for useful results. The sampling error can be
improved through careful choice of the gauge function g, which is a function chosen
to stabilize trajectories, as well as the basis set itself, and the details of the simulation
method.

6. Summary

In summary, we have described areas of recent development—one experimental and
one theoretical—in many-body quantum physics that can be traced from the
coherence theory that originated in quantum optics.

Experiments in ultracold atoms are increasingly able to probe the quantum
correlations that arise from the many-body nature of the system. We have here been
able to describe just two—those involving dynamical collisions of dense clouds—but
there are many others.

In parallel, coherence theory has lead to a range of powerful phase-space
techniques to simulate many-body quantum dynamics. We have discussed the
positive-P approach and its generalization, the generalized Gaussian method.
These methods give rise to representations for bosons and fermions, and can deal
with either local or nonlocal interactions. One can readily perform three-dimensional
lattice simulations, with up to 1023 particles and 106 modes. The fact that sampling
errors increase with time is a serious limitation, however.
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Novel physical effects found in the simulations include evaporative heating

(not cooling) of centre-of-mass temperatures, and an unexpected atomic anti-

bunching effect during compression of a condensate with long-range interactions.
There are many interesting challenges and new quantum physics to be investi-

gated with these approaches. As well as ultra-cold atoms, other complex systems

may be investigated, ranging from nanotechnology, through to biochemistry and

genetics [30].
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