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Abstract. We argue that a complete characterization of quantum correla-
tions in bipartite systems of many dimensions may require a quantity which,
even for pure states, does not reduce to a single number. Subsequently, we
introduce multidimensional generalizations of concurrence and ®nd evidence
that they may provide useful tools for the analysis of quantum correlations in
mixed bipartite states. We also introduce biconcurrence that leads to a necessary
and su� cient condition for separability.

1. Introduction
Entanglement plays a central role in quantum information theory [1, 2]. Pure

state entanglement of bipartite systems is well understood in the sense that the
relevant parameters for its optimal manipulation by local operations and classical
communication (LOCC) have been identi®ed and analysed [2, 3]. Many e� orts
have also been devoted to the study of mixed-state entanglement. There, several
possible entanglement measures have been proposed. Among these, entanglement
(EF) of formation [4, 5] has attracted much attention, as it is closely connected
with the rate of production of mixed bipartite states out of pure states by LOCC
operations. It is, however, extremely di� cult to evaluate EF, with one exception:
the analytical formula for EF of a single copy of an arbitrary state of two qubits
obtained by Wootters [6]. Despite e� orts, there has not been much progress in
generalizing Wootters’ result to states in more than 2 £ 2 dimensions in [7], EF for
Woner states in arbitrary dimensions was obtained.

Wootters’ success in quantifying EF for two qubits can be attributed to
associating EF with concurrence which is easier to calculate than EF. Concurrence,
as introduced by Hill and Wootters [8], was de®ned via the operation of spin ¯ip.
More recently, Rungta et al. [9] made an attempt to generalize the notion of
concurrence to pure bipartite states in arbitrary dimensions by introducing the
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operation of universal state inversion. Similar operation has been independently
considered in [10] in a di� erent context. The universal inverter used by Rungra et
al. generalizes spin ¯ip to a transformation which brings a pure state jci into the
maximally mixed state in the subspace orthogonal to jci. In the same way that the
spin ¯ip generates concurrence for a pair of qubits, the universal inverter generates
a number which generalizes concurrence for joint pure states of pairs of quantum
systems of arbitrary dimensions. Generalized in this way, concurrence measures
entanglement of pure bipartite states in terms of the purity of their marginal
density operators.

As is known [3], a complete characterization of quantum correlations in
bipartite systems of many dimensions may require a quantity which, even for
pure states, does not reduce to a single number. A single number is su� cient only
for the asymptotic limit of many identical copies of bipartite pure states [11]. Take,
for example, two pure states represented by vectors c ˆ j11i ‡ j22i… †=2 and
u ˆ ac ‡ bj33i, with a ˆ x1=2 and b ˆ …1 ¡ x†1=2, where x º 0:2271 is a root of
xx 2 1 ¡ x… †‰ Š1¡xˆ 1. The two states have the same entanglement EF of 1 ebit;
nevertheless they have di� erent Schmidt numbers. Consequently, it is impossible
to convert locally a ®nite number of copies of one state into the same number of
copies of the other state.

In this contribution, we argue that a suitable generalization of spin ¯ip to
more dimensions should produce a multidimensional analogue of concurrence
rather than a single number. Such a concurrence would then describe not only
the amount of entanglement but also its structure, for example the size (the number
of dimensions) of the entangled spaces on each side. Our concurrence for pure
states is then associated with an operator transforming the exterior product of
Alice’s part of the bipartite Hilbert space with itself, that is HA ^ HA into the
exterior product of Bob’s part of the bipartite Hilbert space with itself, that is
HB ^ HB.

Having de®ned concurrence for pure states, we follow Wootters and generalize
the concept to mixed states by introducing a matrix of preconcurrence. The
elements of this matrix are matrices in their own right and, at the end, our
preconcurrence may be di� cult to analyse. At least partially, the di� culty can be
associated with the matrix dependence on the choice of the local bases. Therefore,
we also generalize the concept of concurrence in a somewhat di� erent direction.
We abandon the requirement for preconcurrence to be a second-order object in the
state’s ensemble. For this price we can de®ne a fourth-order object, a biconcurrence
matrix. This matrix is independent of the local unitaries and allows us to
reformulate the separability problem in terms of the matrix’s main diagonal.
Moreover, biconcurrence is a very simple function of the ensemble of the density
matrix and has many symmetries. Consequently, the necessary and su� cient
separability condition which follows from the structure of biconcurrence seems
to be the most promising one from an algebraic point of view.

Our generalization of preconcurrence is presented in section 2. Then, in section
3 we give an example to show how our multidimensional preconcurrence can be
used for the analysis of separability in arbitrary dimensions. There, we also discuss
possible limitations of such analysis. Subsequently, in section 4 we introduce
biconcurrence and formulate the necessary and su� cient condition for separability
in terms of its elements. Finally, in section 5 we present a brief discussion of the
results.
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2. Spin ¯ip and concurrence

2.1. Pure states
When acting in a two-dimensional vector space, a spin ¯ip transforms a vector

v into another vector ~vv equally long and orthogonal to v. In a bipartite system, a
spin ¯ip means that Alice performs a spin ¯ip on her qubit and Bob on his. This
gives a particularly simple expression for concurrence:

C c… † ˆ h~ccjci: …1†

The spin-¯ip operation and the concurrence which follows are well de®ned since,
in a two-dimensional space, there is only one direction which is orthogonal to a
given direction. One may further note that concurrence de®ned in equation (1)
together with the state’s normalization allow us to determine the eigenvalues of the
associated reduced density matrix and, via these, the pure state’s entanglement.
The eigenvalues are the squares of the singular values ¶1 and ¶2 of a 2 £ 2 matrix

c‰ Š of the coe� cients de®ning the state in the standard basis:

cj i ˆ
X

i; j

ci; j ij iA« jj iB: …2†

The singular values are then related to the concurrence via

Cj j ˆ 2 ¶1 ¶2 ˆ 2 det c‰ Š… †j j:

In general, in a d-dimensional space there are d ¡ 1 dimensions orthogonal to a
given direction. These can be represented by a d ¡ 1 antisymmetric form. From
this point of view, performing a spin ¯ip on a bipartite state means constructing a
double d ¡ 1 form (one side for Alice and one side for Bob) locally dual to the
double one-form representing the state vector cj i. Concurrence can then be
associated with the contraction of the form representing cj i with the form
representing ~cc

« ­­. The contraction gives a double d ¡ 2… †-form which is equivalent

to a double two-form and can be represented by a
d

2

³ ´
£ d

2

³ ´
matrix with the

following elements:

Ci1^ j1 ; i2^ j2 ˆ 2 Ái1 ; i2 Áj1 ; j2 ¡ Ái1 ; j2 Áj1 ; i2

¡ ¢
: …3†

These elements are easily identi®ed as twice the two-dimensional minors of matrix
‰cŠ. They describe the two-state contributions to the bipartite entanglement.

Regarding their structure, matrices C form a vector space with a natural trace
norm:

Cj j2ˆ Tr C Cy¡ ¢
ˆ

X

i^ j; k^l

Ci^j; k^l

­­ ­­2: …4†

Having constructed the concurrence matrix, one may proceed in the same spirit
and construct higher-dimensional minors of ‰cŠ (up to the Schmidt number). They
will represent those contributions to the bipartite entanglement which embrace
local subspaces of higher dimensions. We believe that, in principle, these con-
currences of order higher than two may be important for the quanti®cation of
entanglement even if the separability of a pure state is determined by the lowest-
order (i.e. two) concurrence. Clearly, a pure state (2) in arbitrary dimensions is
separable if C‰ Š ˆ 0.
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2.2. Mixed states
In order to generalize further the concept of concurrence to multidimensional

mixed states, we follow Wootters and introduce preconcurrence as follows. Given
a decomposition of state % into pure unnormalized states, that is

% ˆ
X

·

c·j i c·h j; …5†

we de®ne preconcurrences

C·¸
i1^j1 ; i2^j2

ˆ Á
·
i1 ; i2

Á¸
j1 ; j2

¡ Á
·
i1 ; j2

Á¸
j1 ; i2

‡ Á¸
i1 ; i2

Á
·
j1 ; j2

¡ Á¸
i1 ; j2

Á
·
j1 ; i2

The preconcurrences can be regarded as a set of
d

2

³ ´
£ d

2

³ ´
matrices in · and ¸

or, equivalently, as one matrix in · and ¸ with vector-like elements living in a
d

2

³ ´
£ d

2

³ ´
dimensional space.

To systematize this picture, it may also be convenient to view C as an operator
in the tensor product of two spaces. The ®rst, H1 is the exterior product HA ^ HA

(or, alternatively HB ^ HB). Thus H1 ˆ Cd2¡d=2. The space H2 is the space of `lists’
of vectors for decomposition of the state. In principle we should allow this space to
be in®nite dimensional, as one can consider in®nite decompositions. However, it is
likely that dimension d4 is su� cient. For example, a separable state can be
certainly decomposed into no more than d4 product states [12]. Similarly, there
always exists an optimal decomposition for entanglement of formation containing
no more than d4 components [13].

Matrix C viewed as an operator acting on H1 « H2 has simple transformation
rules under …i† change of decomposition and (ii) local unitary transformations of
the state. Operations of type (i) transform the preconcurrence matrix according to

C· 0¸ 0 ˆ
X

·¸

U· 0· C·¸ U¸ 0¸ ; …7†

with U being a unitary matrix changing the decomposition of the state into pure
states [14]. This transformation can be represented as

C ! C 0 ˆ I « UCI « UT; …8†

where the subscript T stands for transposition. Similarly, a unitary transformation
of the local bases

ei1 « fi2j i ˆ
X

k1k2

êek1
« f̂fk2

­­ ¬
Vk1 i1 Wk2 i2 …9†

(matrices V and W unitary) changes the components of the elements of C·¸

according to

ĈC·¸
i1^j1 ; i2^j2

ˆ
X

k1 l1k2 l2

Vi1k1
Vj1 l1 Wi2k2

Wj2l2 C
·¸
k1^l1 ;k2^l2

ˆ
X

k1<l1 ;k2<l2

Vi1k1
Vj1 l1 ¡ Vi1 l1 Vj1k1

¡ ¢

£ Wi2k2
Wj2 l2 ¡ Wi2 l2 Wj2k2

¡ ¢
C·¸

k1^l1 ;k2^l2
;

…10†
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which can be represented as

C ! ĈC ˆ V « W… † « I C …VT « WT† « I: …11†

3. Concurrence and separability

The preconcurrence matrix de®ned in the previous section sheds some inter-
esting light on the separability of mixed states. Obviously, a given bipartite state %
is separable if there is a decomposition for which all the diagonal elements C·· are
zero vectors. The non-separable states can then be divided into two classes:

(a) the states for which there is a pair of local bases such that for at least one

µ0 ˆ i01 ^ j01; i02 ^ j0
2 , the diagonal of C·¸

µ0
cannot be brought to zero by any

transformation (7).
(b) the states where, for every single component µ ˆ i1 ^ j1; i2 ^ j2, there exists

a decomposition with all the diagonal elements C··
µ zero (di� erent

decompositions for di� erent multi-indexes µ); this property must hold
irrespective of the choice of the local bases.

The states in class (a) contain two-qubit entanglement and as such are
distillable [15]. Class (b), on the other hand, contains all the bound entangled
(BE) states [12, 16]. Indeed, two-qubit entangled states are distillable; hence a BE
state cannot contain two-qubit entanglement. A known open question in this
context is whether class (b) is equivalent to the BE states or whether it is strictly
larger. In [16] it was shown that state % is distillable if for some number k state %«k

has two-qubit entanglement. Call such a state k-copy-pseudo distillable (following
the notation of [17]). The question of whether the set of BE states is equal to class
(b) can then be rephrased as follows: does k-copy pseudo-distillability imply one-
copy pseudo-distillability? In principle, it might happen that the property of
having two-qubit entanglement is not additive; one copy would not contain it, but
two or more copies would. For some Werner states there is strong evidence that
this is the case [17, 18]. In [19] a possible equivalence of the considered sets was
connected with some `binarization’ of conditional information in cryptography
based on mixed quantum states.

In this context, our preconcurrence matrix allows for a simple argument which
shows that rank-2 states are either separable or one-copy pseudo-distillable (for the
original proof of non-existence of BE states of rank 2, [20]).

3.1. Rank-2 states are either separable or one-copy pseudo-distillable
Rank-2 states have 2 £ 2 preconcurrence matrices. A state which has a

decomposition where all the matrices are of the form

C1 ˆ
0 x

x 0

" #
…12†

is separable. A candidate for a non-separable and not one-copy pseudo-distillable
state must have at least two essentially di� erent preconcurrence matrices. In a
decomposition where one of the matrices is of the form (12), there must be another
matrix
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~CC2 ˆ ei’
a ei¬ b

b ¡a e¡i¬

" #

; …13†

with all the parameters real and a 6ˆ 0. This form is necessary since otherwise it
would be impossible for transformation (7) to make the diagonal of ~CC2 zero.
Moreover, a simple phase adjustment in the decomposition of the state can bring ¬
and ’ to zero, without changing ~CC1’s diagonal. With such an adjustment the
second matrix becomes

C2 ˆ
a b

b ¡a

" #

; …14†

with both a and b real. Now, a change in the local bases which (up to a normalizing
factor) produces

C 0
2 ˆ C2 ‡ i

0 xj j

xj j 0

" #

;

which shows that the state contains two-qubit entanglement, that is it is distillable.
Indeed, C 0

2 is of the form (13) with real non-zero a and complex b. Such a matrix
has two di� erent singular values. Consequently, no transformation (7) can reduce
its trace to zero. This implies two-qubit entanglement.

As a corollary to the above argument, one may notice that a rank-2 state is
separable if there exists a two-state decomposition of the state which simul-
taneously diagonalizes all the Cµ matrices so that all the matrices are essentially
of the same form

Cµ ˆ
xµ 0

0 ¡xµ

" #

: …15†

Indeed, if separability requires existence of a decomposition where, irrespective of
the choice of the local bases, all the Cµ matrices are of the form (12), then
transformation (7) with

U ˆ Uq ˆ 1

21=2

1 1

¡1 1

" #
…16†

transforms them into the form (15).
Analysis of separability of states of rank higher than two appears to be more

di� cult. In particular, an attempt to follow Wootters’ minimization procedure for
the expectation value of the concurrence’s norm is not simple since there is no
guarantee that transformation (8) can diagonalize matrix C (note that the elements
of C are vectors while the elements of U are numbers). One can, nevertheless,
diagonalize D ˆ TrH1

…CCy†. This leads to some simpli®cations in special cases, for
example when diagonal D implies diagonal C. Nevertheless, at the moment, we do
not have any general results for states of rank higher than 2.

4. Biconcurrence

Bearing in mind the di� culties, one may try to look at the generalized
concurrence from a somewhat di� erent perspective. For two qubits, preconcur-
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rence can be viewed as a bilinear form C…c; u† which distinguishes between
product vectors and entangled vectors. It satis®es the following crucial condition.

Condition 1: C…c; c† ˆ 0 if and only if c is a product vector.

In passing, one may note that a form which satis®es condition 1 cannot be
linear in one argument and antilinear in the other, since a linear±antilinear form
can be written as

C…c; u† ˆ hcjAui; …17†

where A is a linear operator acting on space H. However, form (17) which vanishes
on all the product vectors, vanishes everywhere, thus violating condition 1.
Consequently, the form must be bilinear (or biantilinear; it does not matter
which). In this context, Wootters’ concurrence de®nes a good form for
H ˆ C2 « C2. It is

C…c; u† ˆ h~ccjui: …18†

Wootters’ preconcurrence matrix is then simply

C·¸…%† ˆ C…c·; c¸†: …19†

Unfortunately, from [8], in higher dimensions there does not exist a bilinear form
satisfying condition 1. A possible way to generalize Wootters’ concurrence can
then be to look for a four-argument form B…c; u; µ; ³† which would satisfy the
following condition.

Condition 1 0: B…c† ² B…c; c; c; c† ˆ 0 i� c is a product vector.

A possible form satisfying condition 1 0, linear in two arguments and antilinear
in the two others is closely related to the Rungta et al. concurrence [9] and to our
preconcurrence matrix. For instance, one can take a slightly simpli®ed version of
concurrence in [9] as a departure point and de®ne

B…c† ˆ ¡hcjI « L…jcihcj†jci: …20†

where L is the positive map used in the reduction criterion of separability [20]:

L…A† ˆ Tr…A†I ¡ A.
One ®nds that B…c† ˆ 1 ¡ Tr%2, where % is a reduction of c. It is then clear that

B satis®es condition 1 0. The corresponding biconcurrence matrix is then

B·¸mn ˆ B…Á·; Á¸; Ám; Án† ˆ ¡hÁ·jI « ¤…jÁ¸ihÁmj†jÁni: …21†

After some algebra this can be rewritten as

B·¸mn ˆ hÁ·jÁ¸ihÁmjÁni ¡ Tr…‰Á·Šy‰Á¸Š‰ÁmŠy‰ÁnŠ†; …22†

which is simply a partial contraction of a product of preconcurrence matrix with its
complex conjugation:

B·¸mn ˆ 1
4

P
i^j;k^l

Cn¸
i^j; k^l Cm·

i^j; k^l

± ²¤
: …23†

Biconcurrence is invariant under local unitary rotations of the state. Changes in the
state’s decomposition, on the other hand, transform biconcurrence as follows:
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~BB·¸mn ˆ
X

¬;­ ;a;b

…U·¬†¤…Uma†¤B¬­ abU¸­ Unb: …24†

If we treat matrix B as an operator acting on a tensor product of Hilbert spaces
with Greek (italic) indices for ®rst (second) space, we obtain

~BB ˆ U¤ « U¤B…U¤†y « …U¤†y: …25†

One can see that matrix B contains the whole information about a possible
separability of state %. Moreover, irrespective of the decomposition, the elements
on the main diagonal of B are real and non-negative. Therefore, in terms of
biconcurrence, separability is equivalent to the existence of a unitary U such that,
in equation (25),

tr…~BB† ˆ 0; …26†

where tr with an initial lower-case t is here understood as the sum of the elements
on the main diagonal:

tr~BB ˆ
X

·

~BB····: …27†

Note that the elements ~BB···· are always non-negative. Therefore it su� ces to
minimize equation (26) over unitary matrices U and to check whether the mini-
mum is zero.

Within the picture of B acting on a product of Hilbert spaces, one can express
the condition as follows:

min
U

‰Tr…U « UPUy « UyB†Š ˆ 0; …28†

where P ˆ
P

i jiiihiij with jiji being the standard product basis.
Condition (26) seems to be quite simple, and we hope that it will lead to a more

operational condition for separability.

5. Conclusions

In conclusion, we argue that the multidimensional generalizations of concur-
rence which we have introduced in this contribution put the question of separ-
ability of bipartite quantum states in a new perspective.

First, we introduced the concept of a preconcurrence matrix. The matrix was
designed to distinguish between the contributions to the entanglement which
embrace pairs of di� erent two-dimensional subspaces of the bipartite system. In
this way, our preconcurrence matrix contained all the information necessary to
identify separability of a given state. Nevertheless, its dependence on the particular
choice of the local basis made it often di� cult to analyse in detail.

Therefore, we also generalized the concept of concurrence in another direction
and abandoned the requirement for it to be a second-order object in the state’s
ensemble. We arrived at the concept of biconcurrence matrix. This matrix is of the
fourth order in the state’s ensemble; however, because of this, it is invariant under
local unitaries. Biconcurrence can be easily derived from a given bipartite state
directly. It can also be constructed by a suitable contraction out of our preconcur-
rence matrix. The resulting separability condition is probably the easiest possible
from the algebraic point of view.
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Regarding a complete characterization of entanglement, on the other hand, our
generalizations of concurrence matrix may not be enough. The main reason for
this is that in order to specify the singular values of c‰ Š, in addition to the length of
the preconcurrence de®ned in equation (4), one needs the lengths of all its
trilinear, . . . , d-linear analogues. We hope to return to this point in the near future.
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