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The quantum dynamics of colliding Bose-Einstein condensates with 150 000 atoms are simulated
directly from the Hamiltonian using the stochastic positive-P method. Two-body correlations between the
scattered atoms and their velocity distribution are found for experimentally accessible parameters.
Hanbury Brown–Twiss or thermal-like correlations are seen for copropagating atoms, while number
correlations for counterpropagating atoms are even stronger than thermal correlations at short times. The
coherent phase grains grow in size as the collision progresses with the onset of growth coinciding with the
beginning of stimulated scattering. The method is versatile and usable for a range of cold atom systems.
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The prediction of many-body quantum dynamics is a
long term goal of investigation in a variety of scientific
fields ranging from physics to chemistry, biology, and
computation theory. It is a pivotal problem for interacting
systems but challenging because of the complexity of a full
description of a quantum system, in which the number of
basis states grows exponentially with the number of parti-
cles. Experiments with Bose-Einstein condensates (BEC)
of ultracold atoms give excellent examples of phenomena
that are not well described by standard approximations
such as the Gross-Pitaevskii (GP) equation. This equation
treats the macroscopically occupied wave function but
neglects atomic correlations and fluctuations [1], which
are especially prominent in strongly interacting or dimen-
sionally reduced gases and in condensate collisions. In the
latter case, the GP equation fails because the scattering
initially occurs spontaneously into unoccupied modes,
which are ignored by a macroscopic wave function ap-
proach. Later, the scattering becomes Bose enhanced, and
a coherent, nonperturbative treatment of the scattered
modes is essential.

Treatments of BEC collisions have included a slowly
varying envelope approximation (SVEA) which estimates
the scattering cross section [2], perturbation theory [3,4],
and the semiclassical truncated Wigner method [5]. The
last method is nonperturbative, works well in one dimen-
sion [6], and appears to treat both the initial spontaneous
scattering and the later Bose enhancement. However, we
will show that it gives strongly incorrect results in 3D at
large momentum cutoff because the equations of motion
are truncated. Hence, there is a strong incentive to develop
a quantitative, first-principles method for these cases.

This Letter also has a broader focus than just BEC.
While path-integral Monte Carlo methods are now very
successful for calculating equilibrium properties, quantum
dynamics is not amenable to these techniques because of
the very rapid dephasing between different paths [7].
Phase-space distribution methods (such as the Glauber-

Sudarshan [8], positive-P [9], stochastic wave function
[10], gauge-P [11]) do not suffer from this problem, and
yet the scaling is still only linear in the system size. They
have been applied successfully to cold atom quantum
dynamics in increasingly large systems, including simula-
tion of evaporative cooling to form a BEC [12], spin
squeezing, and formation of two-component BECs [13],
correlation dynamics in a uniform gas [14], the quantum
evolution of Avogadro’s number of interacting atoms [15],
the dynamics of atoms in a 1D trap [10], and molecular
down conversion [16].

Here we demonstrate the maturity and ready-to-use
nature of the original positive P method for truly macro-
scopic systems. We simulate an average of 150 000 atoms,
requiring M � 1:08� 106 momentum modes. Since each
of M modes can have up to about N atoms, the full Hilbert
space contains at least D � MN � 101 000 000 orthogonal
quantum states (orD � 10200 000 if fixed total atom number
is assumed). This is one of the largest Hilbert spaces ever
treated in a first-principles quantum dynamical simula-
tion—made possible by probabilistic sampling rather
than brute-force diagonalization.

The use of such a first-principles, yet stochastic, simu-
lation confers several advantages in comparison with ap-
proximate methods. First, all uncertainty in the results is
confined to random statistical fluctuations, with no system-
atic bias. This uncertainty can be reduced by averaging
over more stochastic realizations, and even more impor-
tantly, can be reliably estimated from their spread. Second,
these methods lead to relatively simple equations of mo-
tion, which are easily adapted to realistic modeling of trap
potentials and local losses.

We consider the collision of two pure 23Na BECs, with a
similar design to a recent experiment at MIT [17]. A 1:5�
105 atom condensate is prepared in a cigar-shaped mag-
netic trap with frequencies 20 Hz axially and 80 Hz radi-
ally. A brief Bragg laser pulse coherently imparts a velocity
of 2vQ � 19:64 mm=s to half of the atoms, much greater
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than the sound velocity of 3:1 mm=s. At this point, the trap
is turned off so that the wave packets collide freely. In a
center-of-mass frame, atoms are scattered preferentially
into a spherical shell in momentum space with mean
velocities vs � vQ. As the density of atoms in this shell
builds up, Bose enhancement of scattering into it is ex-
pected to begin. Of particular interest are the distribution of
scattered atom velocities and correlations between those
atoms, which were recently shown to be experimentally
measurable [18].

In present BEC experiments, the system can be de-
scribed to a high accuracy by the local interaction
Hamiltonian [19]:
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The operator �̂y� ~x� creates a bosonic atom at position ~x �
�x; y; z� and obeys commutation relations ��̂� ~x�; �̂y� ~y�	 �
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s-wave scattering length a (2.75 nm in the case of 23Na),
and for ~kmax 
 1=a one finds that g � 4�@2a=m.

To calculate time evolution, we employ the positive P
representation [9,14] because it preserves the full quantum
dynamics. This approach utilizes the completeness of the
coherent-state basis [8]. The density matrix �̂ is expanded
as a positive distribution P over off-diagonal coherent-state
projectors [9], thus preserving quantum correlations:
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�Ĥ; �̂	 [14], this leads to a Fokker-Planck or diffusion
equation in the probability P, which is equivalent to solv-
ing an ensemble of stochastic equations for the sampled
variables ~� and ~�. The equations are simplified on discrete
Fourier transforming to a conjugate spatial lattice ~x, where
�~x �

P
~k� ~k exp�i ~k � ~x�=

�����
M
p

:
 

i@
d�~x

dt
�

�
�

@
2

2m
r2 �

g
�V

�~x�~x �
�������
i@g

p
�~x

�
�~x

�i@
d�~x

dt
�

�
�

@
2

2m
r2 �

g
�V

�~x�~x �
������������
�i@g

p
~�~x

�
�~x:

(2)

Here, r2�~x is the discretized analogue of r2�� ~x� for a
field, and �~x and ~�~x are real Gaussian noises, independent
at each time step (of length �t) and lattice point, with
standard deviations 1=

�������������
�V�t
p

, where �V � V=M.
There is an equivalence between statistical averages of

moments of �~k and �~k, and corresponding normally or-
dered expectation values of operators a ~k, a

y
~k
. As the num-

ber of trajectories, S, grows towards1, the correspondence
becomes exact. These stochastic equations are just the

mean-field GP equations in a doubled phase space, plus
noise terms. Remarkably, these modifications incorporate
all effects beyond the GP equation, provided certain phase-
space boundary conditions are met [11,20].

Uncertainty in the observables is estimated by binning
trajectories, then calculating the observable predictions
from each bin and using the central limit theorem to
estimate the standard deviation in the final mean of bin
means. Lattice spacings �t and � ~x are chosen by reducing
them until no further change is seen. In the figures, results
are presented in terms of velocity space, ~v � @ ~k=m, the
Fourier transformed field �̂� ~v�, and the velocity space
density �� ~v� � h�̂y� ~v��̂� ~v�i.

Following earlier procedures [21], we discretize onto a
M � 432� 50� 50 lattice with kx;max � 1:4� 107=m
and ky;z;max � 6:2� 106=m. We begin the simulation in
the center-of-mass frame at the moment the lasers and trap
are turned off (t � 0). The kmax and lattice size are chosen
large enough to encompass all relevant phenomena but
small enough that the spacing (�=kmax) is much larger
than a. The initial wave function is modeled as the GP
solution of the trapped t < 0 condensate, but modulated
with a factor �eikQx � e�ikQx	=

���
2
p

which imparts initial
velocities vx � �vQ � �@kQ=m in the x direction. For
computational reasons, the mean number of atoms in the
system is 1:5� 105 here, compared to �3� 107 in the
MIT experiment [17]. As in other recent treatments [5], we
ignore thermal atoms and initial quantum depletion, for
simplicity. For our parameters, 10% thermal component
will occur at �0:38Tc [1], giving a �1% quantum deple-
tion of the ground state in the center of the cloud.

Figure 1 shows the formation of the scattered atom shell.
Careful inspection shows that the mean scattered atom
speed vs is less than the wave packet speed jvQj, as noted
in [4]. We also see a weak scattering process vQ&vQ !
3vQ&� vQ.

Ranged two-body correlations give insight into ty-
pical small-scale behavior during a single experimental
run. The first-order correlation function g�1�� ~v1; ~v2� �

h�̂y� ~v1��̂� ~v2�i=
������������������������
�� ~v1��� ~v2�

p
describes coherence be-

tween particles with velocity ~v1 and ~v2. The second-
order (number) correlation function g�2�� ~v1; ~v2� �

h�̂y� ~v1��̂
y� ~v2��̂� ~v1��̂� ~v2�i=�� ~v1��� ~v2� gives the aver-

age shape and size of ‘‘lumps’’ in the velocity distribution.
The dynamics of the correlations among scattered atoms

are shown in Figs. 2 and 3. Locally, the atoms are thermally
bunched with g�2�� ~v; ~v� � 2 in a ‘‘Hanbury Brown–Twiss’’
manner (Fig. 2). This behavior has been confirmed quali-
tatively in a similar recent He� experiment [22]. The local
region over which coherence is strong, dubbed a ‘‘phase
grain’’ by Norrie et al. [5], is described by jg�1�j. It closely
matches the condensate wave packets’ �� ~v� in size and is
wider than g�2� by �

���
2
p

(Fig. 2). We find that the orienta-
tion of these phase grains is constant throughout the whole
spherical shell. Interestingly, after t � 200 �s, the phase
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grains expand significantly in the radial direction (relative
to COM) (Figs. 2(a) and 3(b)). This onset of growth
coincides with the beginning of Bose stimulated scattering
(see below and Fig. 4(a), circles).

Atoms with velocities ~v and� ~v on opposite sides of the
spherical shell are not coherent (jg�1�j � 0) but are corre-
lated in number (Fig. 2(a)). Initially, correlations are ex-
treme: g�2��k;�k� � 2. This is analogous to a two-mode
mixed state pj1; 1ih1; 1j � �1� p�j0; 0ih0; 0j with a small
probability p of single atoms in both modes and otherwise
vacuum. There, g�2� � 1=p. At longer times, g�2� is seen to
decay in Fig. 3(a), although it is still much greater than the
thermal value of two for t * 200 �s when the phase grain
contains several atoms. To measure short time velocity
correlations, one might try to preserve them by suddenly
switching off the atomic interactions using a Feshbach
resonance during the collision. After expansion, they
would develop into position correlations [18].

Some previous correlation estimates are in qualitative
agreement: For longer times, g�2�� ~v; ~v� � 2, as well as
g�2�� ~v;� ~v� � 2 and g�1�� ~v;� ~v� � 0 were predicted [3].
Truncated Wigner calculations [5] saw the presence of
phase grains, but their orientation or dynamics were not
studied. High initial correlations may have not been seen
due to the known poor signal-to-noise ratio in that method.

The scattering rate (Fig. 4(a), circles) goes through two
distinct phases: The spontaneous regime of constant scat-
tering into almost empty modes is seen for 30 �s & t &

200 �s, followed by the stimulated (Bose-enhanced) re-
gime for times t * 200 �s, where there is a decided in-
crease in scattering rate despite a lessening overlap
between the colliding wave packets. We interpret this
transition as the onset of Bose enhancement of scattering
into the spherical shell around j ~vj � vs � 9:37 mm=s. As
a rough check, it should begin when the number of parti-
cles in a locally coherent region (‘‘phase grain’’) ap-
proaches one. Using the widths of g�1� from Fig. 3(b),
and the calculated density at j ~vj � vs, one finds �0:9
atoms per phase grain at 200 �s.

A comparison to approximate methods used previously
is instructive. Figure 4 shows our total predicted scattering
rate and the distribution of axial (x) velocities, compared to
the approximate truncated Wigner method. The accuracy
of that method is very poor with our parameters, even
surprisingly so. It adds a halo of false particles (detail in
Fig. 4(b)) out to about �2vQ, while at higher velocities
unphysical negative densities are obtained. Since it is a
hidden-variable theory, it must introduce half a virtual
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FIG. 1 (color online). Evolution of velocity distribution. The
distribution ��vx; vy� has been integrated over one transverse
dimension z. Shading indicates differing density (its range varies
between panels). S � 2048 trajectories.
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particle per mode in the initial conditions to model vacuum
fluctuations, but it does not distinguish them from the ‘‘real
particles.’’ Then, virtual particles at velocity ~v are scattered
by the condensates at � � ~vQ in the process ~v&� ~vQ !
~v0&� ~v� ~vQ � ~v0�. As a result, modes at high velocities
become depleted compared to the physical vacuum, while
the extracted virtual particles accumulate at lower veloc-
ities and take on the appearance of a real density, as was
also discussed previously [23]. For any single momentum
mode, this effect is small, but it becomes very significant
when a large number of modes are calculated. A relatively
higher momentum cutoff will increase the error, as the
fraction of virtual particles increases (or vice versa [5]).
This indicates a generic ultraviolet divergence of the error
with the truncated Wigner method.

The main limitation of the positive-P method is the
growth of sampling uncertainty with time. It eventually
reaches a size where it is no longer practical to produce
enough trajectories for useful precision. In our case, useful
results are obtained for t & 660 �s. This useful time range
depends on several factors, with coarser lattices, weaker
interactions, or smaller density all extending it [14].
Significant extensions appear achievable by tailoring sto-
chastic gauges [11,20] to particular systems.

In conclusion, we have simulated the quantum dynamics
of macroscopic interacting Bose gases from first principles,
obtaining momentum space densities and ranged correla-
tion functions for atoms scattered during the collision of
two BECs. Previous approximate calculations were partly
verified, while a variety of new phenomena are also pre-
dicted, including the growth of phase grains in the radial
momentum direction and strong correlations at short times
between scattered atom pairs. The truncated Wigner
method was confirmed strongly incorrect when there is
less than one condensed atom per lattice site.

This demonstrates that phase-space methods are a tool
that is ready to use for first-principles calculations for
experimentally realizable systems. Similar calculations
appear feasible for a broad range of cold atom systems

(including fermions [24]). A range of other phenomena
that are difficult to describe quantitatively with approxi-
mate methods (e.g., macroscopic EPR and entanglement
[25]) may be accessible with this approach.
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