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We show that solitons occur generically in the thermal equilibrium state of a weakly interacting

elongated Bose gas, without the need for external forcing or perturbations. This reveals a major new

quality to the experimentally widespread quasicondensate state, usually thought of as primarily phase-

fluctuating. Thermal solitons are seen in uniform 1D, trapped 1D, and elongated 3D gases, appearing as

shallow solitons at low quasicondensate temperatures, becoming widespread and deep as temperature

rises. This behavior can be understood via thermal occupation of the type II excitations in the Lieb-Liniger

model of a uniform 1D gas. Furthermore, we find that the quasicondensate phase includes very

appreciable density fluctuations while leaving phase fluctuations largely unaltered from the standard

picture derived from a density-fluctuation-free treatment.
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Solitons, or nondestructible local disturbances, are im-
portant features of many one-dimensional (1D) nonlinear
wave phenomena. In ultracold gases, they have long been
sought and were first observed to be generated by phase
imprinting [1,2]. More recently, their spontaneous forma-
tion in 1D gases was predicted as a result of the Kibble-
Zurek mechanism [3,4], rapid evaporative cooling [5], and
dynamical processes after a quantum quench [6]. Here we
show that they actually occur generically in the thermal
equilibrium state of a weakly interacting elongated Bose
gas, without the need for external forcing or perturbations.
This reveals a major new quality to the experimentally
widespread quasicondensate state. It can be understood via
thermal occupation of the famous and somewhat elusive
type II excitations in the Lieb-Liniger model of a uniform
1D gas [7].

A mathematically distinct class of soliton equations are
the completely integrable systems. Among them, the
Gross-Pitaevskii [8,9] equation describes weakly interact-
ing bosons in a 1D geometry in the mean field approxima-
tion. The corresponding multiatom Lieb-Liniger model
of N bosons on the circumference of a circle interacting
by contact forces [10] has elementary excitations of two
kinds: those of a Bogoliubov type and an additional type II
branch [7]. These additional excitations have been associ-
ated with solitons of the mean field [11–14]. Although the
trapping potential removes integrability, from the early
days experimenters have searched for gray solitons. See
Ref. [15] for a review.

Typically, by irradiating one part of the condensate, one
engineers a phase difference with the remainder, and a dark
soliton forms at the interface between the phase domains

[1,2]. Other proposed schemes involve taking the system
away from equilibrium [3–6]. Our results show that sol-
itons are in fact present spontaneously even in equilibrium.
However, engineered solitons have been easier to identify
with the standard destructive imaging measurements be-
cause their position does not vary from shot to shot.
Here we generate a classical field ensemble that de-

scribes the weakly interacting Bose gas at thermal equilib-
rium [16] and then show that gray solitons indeed are
already there. This is demonstrated by tracing the time
evolution of a single copy of the system. We find spectral
properties consistent with Lieb type II excitations.
Moreover, we will also show that the presence of gray
solitons in thermal equilibrium remains valid for very
elongated traps that are no longer strictly 1D.
First, let us consider the simplest situation: a uniform

1D weakly repulsively interacting gas in free space with
periodic boundary conditions, as per Lieb and Liniger [10].
To obtain the equilibrium state, we apply the classical field
approximation (CFA) [17,18]. Within this approach, the

usual bosonic field operator �̂ðzÞ which annihilates an
atom at point z is replaced by an ensemble of complex
wave functions �ðzÞ obtained by using a Monte Carlo
sampling algorithm [16] (see Supplemental Material [19]
for details ).
In Fig. 1, we show the time evolution of the density and

phase for single realizations in equilibrium at several
temperatures. The starting conditions are randomly chosen
from the collection of wave functions for the canonical
ensemble obtained in the CFA. Subsequent time evolution
of these chosen realizations in the CFA is via the Gross-
Pitaevskii equation of motion.
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The only relevant dimensionless parameter appearing
in the Lieb-Liniger model of a 1D interacting Bose gas is
� ¼ mg=@2�, where g characterizes the atom-atom inter-
action and � ¼ N=L is the linear density of the system.
In what follows, we will use L, mL2=@, @2=mL2, and
@
2=mL2kB as the units of length, time, energy, and tem-

perature, respectively.
First, the top panels show the system at the relatively low

T ¼ 104 ¼ �=2. There are numerous density disturbances
in the form of dips and peaks, traveling in both directions,
near the speed of sound (which is depicted by the super-
imposed red line). There exist both defects that travel faster
and those that travel slower than sound. The deepest dips
are slower—the slope of their trajectories on the plot is
higher than that of the superimposed red line. At low
temperature only fast-moving shallow defects are present.
Some of them correspond to packets of Bogoliubov pho-
nons, and others are solitons. This can be checked by
inspection of the phase jump across the defect (for a soliton
its sign is related to its direction of movement) and by
fitting the local density dip to a soliton solution [20].
However, shallow fast solitons can be hard to tell from
phonons.

For a higher temperature T ¼ 7� 104 (middle panels),
long-lived deep dips traveling far slower than the speed of
sound appear. These become prolific as the temperature

increases to T ¼ 10� 104 (lower panel). An analysis of
the parameters of slower-than-sound defects confirms
their interpretation as dark solitons. Indeed, one sees the
anticorrelation between the depths and speeds of the dips
that is expected for dark solitons. Near maximal depth, the
dips approach being stationary. One also sees numerous
soliton collisions, and associated phase shifts, with the
number of solitons usually conserved.
The match between dark solitons and Lieb type II ex-

citations is seen by comparing fitted parameters describing
the local density dips to the gray soliton solutions. To do
this, we fit a density profile (characterized by soliton depth,
local density, and soliton position) to each dip. If the rms
parameter errors are smaller than 10% of the local density
(for depth or density) or the healing length (for position),
we accept the dip as a soliton. We then calculate soliton
energy � and momentum p from the parameters [11],
collecting data from many time snapshots. The resulting
energy-momentum relation of the accepted dips is com-
pared with the Lieb type II excitation spectrum in Fig. 2 for
three temperatures. At the lowest temperature, the spectral
match is good and includes the negative curvature of the
type II branch. For higher temperatures, the fitted soliton
energy lies somewhat below the Lieb II line, retaining a
qualitative match. Interpretation of the shift is difficult, as
interactions between solitons are frequent at this tempera-
ture. Notably, one sees a filling of the high p spectrum with
temperature.
This allows us to explain the temperature dependence of

the appearance of deep solitons. These have the maximum
Lieb II energy and momentum [13]. For the parameters of
Fig. 1, that is about 105 in units of temperature (see
Supplemental Material [19]). Thus we would expect the
deepest solitons to appear when temperatures of this order
are reached. This is what is seen. We found similar agree-
ment for � ¼ 0:002.
It is appealing to think of the system as of a gas of

quasiparticles of two kinds—where two bosonic excitation

FIG. 1 (color online). Density (left) and phase (right) as a
function of time of a 1D Bose gas at equilibrium for a single
realization. Here � ¼ 0:02 (N ¼ 103), and the temperatures are
T ¼ 104 ¼ �=2 (top), 7� 104 (middle), and 105 (bottom) in
units of @2=mL2kB. The superimposed red line in the upper left
panel corresponds to travel at the speed of sound.
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FIG. 2 (color online). Comparison of the spectra of Lieb type
II excitations (solid black line) and dips in the thermal state
for three different temperatures: T ¼ 104 (medium red dots),
4� 104 (light green dots), and 105 (dark blue dots). Here � ¼
0:02 (N ¼ 103).
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families coexist like in the Lieb-Liniger model (see
Supplemental Material [19]). These two kinds—phonons
and solitons—interact with each other in an inelastic way,
so that solitons can be born from Bogoliubov excitations
and vice versa. Such interactions could allow the gas of
quasiparticles to reach the equilibrium state.

Now a question that begs to be asked is whether solitons
will also be present in the less idealized case of a trapped
gas in the quasicondensate regime—a situation ubiquitous
in contemporary experiments. The CFA can be applied in
a similar way as above (see Supplemental Material [19]).
First, consider a harmonically trapped 1D gas. Figure 3
(left) shows its density evolution for two different tem-
peratures. The lower temperature case (left upper panel)
has T chosen such that the phase coherence length l� is

approximately equal to the size of the cloud W; i.e., it
corresponds to the temperature T�, which separates the

quasicondensate and true condensate phases, as first de-
scribed by Petrov, Shlyapnikov, and Walraven [21]. For
temperatures lower than this, only shallow fast solitons are
seen in the bulk of the cloud. At much higher temperature
(lower left panel in Fig. 3), a mass of deeper long-lived
solitons emerges. They remain within the main part of the
atomic cloud, and their number and depth increase with

temperature. One can easily check that for the lower tem-
peratures the solitons oscillate in the trap with a frequency

which within a few percent agrees with !=
ffiffiffi
2

p
from a

simple model [22]. At high temperatures, intersoliton col-
lisions come to dominate the oscillating behavior, making
that model inappropriate.
The center of the cloud can be considered as a uniform

gas under a local density approximation as confirmed
in recent experiments [23,24]. This is described by the
dimensionless interaction strength (� ¼ g=hni) and tem-
perature (� ¼ 2kBTm=@2hni2). In Figs. 3 and 4, the T ¼ 15
gas lies deep in the quasicondensate regime (� ¼ 0:0033,
� ¼ 0:0034), while the center of the T ¼ 260 cloud is a
decoherent quantum gas [25] (� ¼ 0:0059, � ¼ 0:19).
Here, Fig. 4 shows that significant local density fluctua-
tions �n=hni � 10–40% are present in the quasicondensate
phase � � ffiffiffiffi

�
p

. This is to be contrasted with the common

view that the only notable fluctuations in the quasiconden-
sate are those of the phase, a situation we see only at the
very lowest temperatures. (Note also the long-wavelength
density fluctuations in Ref. [24]).
Importantly, the CFA fluctuations agree with predictions

obtained from the exact local density correlation function
[25] in the Yang-Yang description [26] of the interacting
uniform gas. Note that we have taken account of the fact
that the CFA does not include zero temperature fluctua-
tions, so that the �n in Fig. 4 shows only the thermal

FIG. 3 (color online). Solitons in trapped clouds. The left
panels show the time evolution of a trapped 1D condensate
with parameters: N ¼ 1000, 1D interaction strength g ¼ 0:31
in units of @!zð@=m!zÞ1=2, and trap frequency !z ¼
2�� 10 Hz. The temperatures are kBT ¼ 15@!z (upper frame)
and kBT ¼ 260@!z (lower frame). The right panel shows the
evolution of the central density in a three-dimensional elongated
trapped cloud (horizontal direction). Here, the trap frequencies
are !z ¼ 2�� 10 Hz and !? ¼ 2�� 1000 Hz, with again
N ¼ 1000, and the (3D) interaction strength g3D ¼ 0:213 in
units of @!zð@=m!zÞ3=2. The temperature is 80@!z=kB.
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FIG. 4 (color online). Phase and thermal density fluctuations in
the center of the trapped 1D gas as a function of temperature.
Parameters are as in Fig. 3 except for varying T (in units of
@!z=kB). Purple circles show �n=hni in the center of the trap,
orange squares the ratio of the phase coherence length l� to the

cloud width W. The latter is taken to be the distance between
points at which the density has fallen to 10% of the central value.
Vertical gray bars indicate temperatures T� and an estimate of

the location of the quasicondensate–decoherent-quantum-gas
crossover at � ¼ ffiffiffiffi

�
p

[25]. Yang-Yang predictions (black solid

line) are for the average density in the center (jzj � 2) of the
cloud. Some statistical uncertainty is visible.
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contribution. The equivalent contribution in the Yang-Yang

solution is ð�nÞthermal=hni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2Þð0Þ � gð2ÞT¼0ð0Þ

q
, which is

shown as a black line. The level of agreement implies that
the solitons we have seen here in Fig. 3, that contribute a
large proportion of the density fluctuations, must also be an
essential feature of the Yang-Yang description.

We have also calculated the coherence length through

matching the phase correlation function gð1Þðz; z0Þ ¼
�1ðz; z0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ðz; zÞ�1ðz0; z0Þ

p
to an exponential decay

exp½�jz� z0j=l��. This is shown in Fig. 4 in orange and

is still in agreement with the canonical treatment that
ignores density fluctuations [21]. The one-particle density
matrix �1ðz; z0Þ is obtained by an averaging of h��ðzÞ�ðz0Þi
over the initial canonical ensemble. For the low temperature

case (T ¼ 15), l� ¼ 13:7a0 ¼ 13:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=!zm

p
, while the

cloud width W is 14:7a0. To compare, the standard quasi-
condensate expressions in Ref. [21] that consider only
phase fluctuations give an estimate of the temperature at

which l� ¼ W. It is Tphaseonly
� ¼ 3Nð@!zÞ2

8�kB
¼ 12:5@!z=kB for

these parameters, which is a good agreement with the
CFA calculation. Our agreement on T� with the standard

description is so good because it is a manifestation of
the fact that the correlation length obtained from a pure

phase dependence of the classical field, i.e., gð�Þðz; z0Þ ¼
expfi½�ðzÞ ��ðz0Þ�g like in Ref. [21]—where �ðzÞ is the
phase at point z—does not differ significantly from what is

obtained via the complete correlation function gð1Þðz; z0Þ
[27]. We conclude then that the 10–40% density fluctua-
tions and solitons that we see in the quasicondensate are not
inconsistent with the past calculations of phase fluctuations.
Rather, they are an inherent feature that had remained
unnoticed until this time due to the prevalent focus on phase
coherence.

These results raise an interesting issue regarding the
Kibble-Zurek mechanism of defect formation in 1D gases.
In a recent paper [3], it was conjectured that dark solitons
should be created by the Kibble-Zurek mechanism during
rapid cooling of the gas [28,29]. Simulations [5] of the
cooling of a 1D Bose gas in a harmonic trap indeed revealed
the presence of solitons. However, we know now that some
solitons are present even in thermal equilibrium. Only in the
case when the number of solitons at the end of the cooling
process exceeds that found in its corresponding thermal
equilibrium could simulations of that kind confirm the
Kibble-Zurek mechanism at work.

Finally, there is a question of whether these solitons can
still survive when the strict 1D trapped system crosses over
to one in a very elongated cigar-shaped trap. This is made
plausible by past workwhich showed that quasicondensate-
BEC-like transitions occur for cigar-shaped systems anal-
ogously with the true 1D gas [30–32]. The right panel of
Fig. 3 shows the evolution of a thermal state in a fully three-
dimensional calculation. Solitons are still clearly visible.

This indicates that they may be present, and indeed even
widespread, in many existing experiments.
The observation of thermal solitons with existing equip-

ment has been nontrivial because of two factors: The
soliton width in situ was typically significantly narrower
than the detector resolution, and an identification of sol-
itons by eyeballing is only straightforward if one has
access to observations of the in situ dynamics, not destruc-
tive snapshots. Looking at the edges of the gas offers an
indirect way of detecting the solitons [33]. As they bounce
between the edges of the gas, they approximately retain
their absolute depth while also increasing in width and
reaching close to 100% relative depth at the turning point,
making them accessible with realistic resolutions. We do
not see correspondingly deep phonon disturbances in our
images. Therefore [33], we have counted the density of
dips with over 90% relative depth in the wings of the 1D
cloud. The growth of the density of these solitons with
temperature is shown in Fig. 5.
Further progress could be made by recent experimental

advances such as high-resolution detection based on scat-
tering of an electron beam [34], analysis of momentum
spectra [6], phase-jump statistics [35] (phase domains are
larger than soliton dips), or with long [1,2,36] or anti-
trapped expansions [37] (see Supplemental Material [19]
for more detail).
In summary, we have found that solitons are a natural

and spontaneous feature of the 1D and elongated weakly
interacting Bose gases. While solitons have been studied in
such systems before by imprinting, the above results show
that they are in fact common. The good agreement with

FIG. 5 (color online). Number of solitons per micrometer on
the edges of the cloud, per snapshot, versus temperature. There
are 104 87Rb atoms in a 1D trap with !z ¼ 2�� 1:9 Hz. The
1D coupling assumes a Gaussian transverse profile correspond-
ing to !? ¼ 2�� 128 Hz. Counting was over 7 �m intervals
on either side of the cloud centered around the position where the
average density is 10 �m�1 (12% of peak). Dips whose central
density falls to below 10% of the mean density at their trap
position were counted.
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exact density fluctuations in Fig. 4 shows that quantitative
study of these phenomena is possible with the CFA and
possibly related methods. The 1D Bose gas at thermal
equilibrium is a system where two very different kinds of
bosonic excitations are present simultaneously. The system
actually contains much more than the standard picture,
especially in the quasicondensate regime. Here, in addition
to the well known phase fluctuations, appreciable density
fluctuations are found, including deep solitons. These
spontaneous solitons in the thermal state are analogous to
pairs of vortices present in a 2D gas near the Berezinskii-
Kosterlitz-Thouless transition [38].

We are grateful to Matthew Davis, Tilman Pfau, and
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Phys. Rev. Lett. 106, 135301 (2011).
[6] M. Schmidt, S. Erne, B. Nowak, D. Sexty, and T.

Gasenzer, New J. Phys. 14, 075005 (2012).
[7] E. H. Lieb, Phys. Rev. 130, 1616 (1963).
[8] L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961).
[9] E. P. Gross, Nuovo Cimento 20, 454 (1961).
[10] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605

(1963).
[11] P. P. Kulish, S. V. Manakov, and L.D. Faddeev, Theor.

Math. Phys. 28, 615 (1976).
[12] E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Qi,

Phys. Rev. Lett. 85, 1146 (2000).

[13] A. D. Jackson and G.M. Kavoulakis, Phys. Rev. Lett. 89,
070403 (2002).

[14] R. Kanamoto, L. D. Carr, and M. Ueda, Phys. Rev. A 81,
023625 (2010).

[15] D. J. Frantzeskakis, J. Phys. A 43, 213001 (2010).
[16] E. Witkowska, M. Gajda, and K. Rzążewski, Opt.
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The classical field approximation

Within this approach [1, 2] the usual bosonic field opera-
tor Ψ̂(z) which annihilates an atom at pointz is replaced by
the complex wave functionΨ(z). Technically speaking, we
first expand the field operator in the basis of one-particle wave
functions, appropriate for the problem considered. Then, ex-
tending the original Bogoliubov idea [3] to all macroscopi-
cally occupied one-particle modes, we replace the operators
corresponding to these modes byc-numbers. Restricting the
expansion only to these modes, the field operator is turned into
a complex wave function – the classical field. For a plane-
wave basis,

Ψ(z) =
∑

|k|≤kmax

αk
1√
L
eikz . (1)

The above expression is appropriate for bosons confined in a
box of lengthL with periodic boundary conditions. For a har-
monic trapping potential, the single-particle trap eigenfunc-
tions are more convenient. The summation is extended over
all modes up to the momentum cut-off~kmax. The optimal
choice of the cut-off is discussed in Ref. [4]. Fully three di-
mensional, elongated trap simulations require recalculation of
the optimal cut-off condition since the explicit results in[4]
are valid only for symmetric D-dimensional traps and, more-
over, are asymptotic for large number of atoms. Each classical
field,Ψ(z), shares many properties with the single-shot mea-
surements of the atomic cloud that occur in experiment. The
classical field satisfies the following equation of motion [1]:

i~
∂

∂t
Ψ(z, t) =

(

− ~
2

2m

∂2

∂z2
+ g |Ψ(z, t)|2

)

Ψ(z, t) , (2)

where g characterizes the atom–atom interaction and the
nonlinear term is projected on the subspace spanned by the
macroscopically populated modes.

Thermal states

To obtain the thermal equilibrium state of a 1D Bose gas
within the CFA, we numerically generate members of the

canonical ensemble of states [5], i.e. states populated accord-
ing to the probability distribution given by:

P ({αk}) =
1

Z
e−EΨ/kBT , (3)

whereZ is the canonical partition function andT is a temper-
ature. The energy,EΨ, accumulated in the classical field is
given by :

EΨ =

∫

L

dzΨ∗(z)H0Ψ(z) +
1

2
g

∫

L

dz|Ψ(z)|4 . (4)

whereH0 is the single-particle Hamiltonian

H0 = Vtrap(z)−
~
2

2m

∂2

∂z2
(5)

with the trapping potentialVtrap(z). An extra constraint on
the amplitudes{αk} should be fulfilled:

∑

|k|≤kmax

|αk|2 = N , (6)

whereN is the number of atoms. An efficient way to ob-
tain states belonging to the canonical ensemble at given tem-
peratureT is a Monte Carlo method using the Metropolis
algorithm[6]. Here, a random walk in the phase space of the
system is performed and all visited states become the mem-
bers of the canonical ensemble. These states are used to cal-
culate statistical averages of any observable. Details forultra-
cold Bose gas systems are given in Ref. [5].

Temperature at which deep solitons appear

Assuming the excitations observed within the CFA are Lieb
type II excitations, we are able to estimate the temperatureat
which deepest solitons appear in the thermal state of a uniform
system. To obtain the dispersion curve for the type II excita-
tions, one is required to solve the inhomogeneous Fredholm
integral equations [7]. This can be done numerically, and for
γ = 0.02 the dispersion curve, i.e. energy versus momentum
ǫ(p), is found to be well approximated byǫ(p) = aρp+ bp2,
wherea = 0.125 andb = −0.021. Maximal excitation energy
occurs for the highest momentum on the curvepmax = πN

(see [7] for details), and corresponds to the deepest, stationary
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solitons. It is then given by the formulaǫmax = πN2(a+ πb)
in our units, which forN = 1000 is about105. Therefore, for
γ = 0.02, the deepest solitons are expected at temperatures of
this order or higher.

Spectral analysis

Further arguments for the simultaneous presence of both
kinds of excitations (Type I – Bogoliubov phonons, and Type
II – solitons) in a 1D Bose gas at the equilibrium come from a
spectral analysis of the classical field. Fig. 1 shows the space-
time spectral density|Ψ(ω, k)|2 of a single realization at equi-
librium. Like in the three-dimensional case (see Ref. [8]),two
curves crossing at a frequency equal to the chemical potential
µ = 2× 104 are clearly visible. The low-momentum slope of
each curve is just the speed of sound. The parts of these curves
below the chemical potential are necessary to construct the
phonon-like section of the excitation spectrum [8, 9] and fade
at momenta at which the dispersion curve changes its charac-
ter from linear to parabolic. This part of the spectrum proves
the existence of Bogoliubov phonons in thermal equilibrium.

Figure S 1. Spectral density of a 1D Bose gas at equilibrium for
γ = 0.02, T = 104 within the classical field approximation (up-
per panel, detail – lower left panel). In addition to the Bogoliubov
phonon nature of the main curves, the spectral density exhibits a
checkerboard pattern for low momenta. This pattern is related to the
presence of solitons in the system. Bottom right panel: spectral den-
sity of two dark solitons propagating in opposite directions. Soliton
velocities are±0.8c, with c the speed of sound. The checkerboard
pattern again appears on top of the main structure consisting of two
linesω = ±uk. It is interpreted as a result of interference between
solitons.

However, in addition to the phonon-like behavior, the
spectral density exhibits a phenomenon absent in the three-
dimensional system – in the region of low energies and mo-
menta a checkerboard pattern appears (see Fig. 1). This is a
signature of the presence of solitons. We confirm this inter-
pretation by considering the spectral density of two counter-

propagating dark solitons moving with the same velocityu

(and depth), shown in the lower right panel of Fig. 1. These
solitons are obtained from the Zakharov solution [10], and its
subsequent evolution according to the nonlinear Schrödinger
equation. Finally, the dispersion curve of a single dark soliton
consists of only a single lineω = uk. Hence, the checker-
board pattern appears as a result of interference between the
solitons, and thus it is a strong signature of the existence of
dark solitons in the system. Indeed, the checkerboard pattern
becomes more regular when the number of solitons increases.

The classical field approximation in one dimension

The classical field approach[1] and the very closely related
PGPE (Projected Gross-Pitaevskii Equation) approach[2]
have been benchmarked on numerous occasions — see de-
scription in the reviews [1, 2], or [11]. To demonstrate its
applicability to the density fluctuations of 1D gases as consid-
ered in this article, we have compared CFA results to a recent
experiment that measured density fluctuations[12].

Using the actual parameters of [12] and the prescription for
the cut-off parameter used in this article, we obtained the very
good agreement illustrated in Fig S2.
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Figure S 2. Local atom-number variances,δ2n, as a function of
the mean local atom density in a weakly interacting quasi 1D gas
confined by a harmonic potential. Red circles are taken from Fig.
1c. in [12]. Blue crosses are the results of our 1D simulation
with parameters from the experiment [12]:g1D = 2~ω⊥a =
2.06~ωz(~/mωz)

1/2 is the coupling constant,a = 5.7nm is the
3D s-wave scattering length, andω⊥ = 2π× 3.9 kHz,ωz = 2π× 4
Hz are the frequencies of the transverse and longitudinal harmonic
confining potentials, respectively.T = 0.09~ω⊥/kB = 88~ωz/kB .

Possible detection schemes

Let us now turn to the question of experimental observation
of solitons in the thermal state. Unfortunately, they are not
straightforward to directly detect because of two factors:(1)
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The soliton width in-situ, being a fraction of aµm, is signif-
icantly narrower than the usual detector resolution (typically
severalµm). However, a recently developed detection scheme
based on scattering of an electron beam could overcome this
difficulty [13]. Also, (2) an identification of solitons by “eye-
balling” is only straightforward if one has access to observa-
tions of the in-situ dynamics – a single-time density slice typi-
cally shows many density dips, and it is not easy to distinguish
the fast “phonon-like” ones from bona-fide solitons.
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Figure S 3. Experimental signatures of thermal solitons in the uni-
form gas — phase-jump frequency (log scale) atγ = 0.02 for low
temperature (no deep solitons – blue,T = 104) and high tempera-
ture (many deep solitons – red,T = 10 × 104). Columns show the
effect of different imaging resolutions in units of healinglengthξ (
= 1/N

√
γ in our units), which is the half-width of a deep soliton.

Resolution worsens from left (belowξ) to right (unable to resolve
soliton dips). Note the strong resistance of the differencein shape
of the distribution (parabolic / extended) even into regimes where
individual solitons cannot be resolved.

However, several approaches hold promise of overcoming
one or both of the above issues. One is a direct observation of
deep solitons in an expanding cloud. After about10ms of ex-
pansion of a typical cloud, the soliton size can exceed detector
resolution. The method was successfully used in engineered
soliton experiments [14–16].

Another promising approach is to look for the expected
large phase jump between phase domains that occurs at the
soliton. If relatively recognizable phase domains are present
between solitons, then the phase jump of close to±π that
occurs at deep soliton defects should be detectable with an
imaging resolution that is sufficient only to resolve the phase
domains [17]. These are much wider than the solitons if the
soliton density is not extreme.

It turns out that even with very noisy domains, a qualitative
difference can be observed between clouds with and without

solitons. Fig. S3 shows the phase-jump histogram (for phase
jumps between neighboring pixel pairs) atγ = 0.02 for both
low temperature and high temperature. The low-temperature
system has a Gaussian distribution of phase jumps (parabolic
on the plot, which has a log scale), which broadens but does
not change shape as the resolution is worsened. This reflects
the addition of more and more random small phase fluctu-
ations that arise primarily from Bogoliubov excitations. In
stark contrast, when deep solitons are present, phase jumpsof
π appear quite frequently, and – most significantly – the distri-
bution flattens out for large jumps. This qualitative difference
(flattening-out / Gaussian) survives even to resolutions that are
incapable of resolving the actual density dip of the solitons.

The anti-trapping technique may also be quite promising.
This technique has been used to image short wavelength
shock waves in elongated gases [18], which have some phe-
nomenological features in common with solitons. An inverted
parabolic potential is rapidly applied to the gas along the long
direction to prevent the evolution of in-situ density to momen-
tum density in that direction, but to instead magnify the den-
sity profile.

Finally, a recent work has presented signatures of soli-
tons in the form of characteristic features of the momentum
distribution[19]. It analyzed solitons formed after a quantum
quench, but is also appropriate for the randomly placed ther-
mal solitons discussed here.
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