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We calculate the evaporative cooling dynamics of trapped one-dimensional Bose-Einstein condensates

for parameters leading to a range of condensates and quasicondensates in the final equilibrium state, using

the classical fields method. We confirm that solitons are created during the evaporation process by the

Kibble-Zurek mechanism, but subsequently dissipate during thermalization. However, their signature

remains in the phase coherence length, which is approximately conserved during dissipation in this

system.
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The quasi-one-dimensional (1D) Bose gas in elongated
clouds of neutral ultracold atoms [1,2] differs markedly
from the Bose-Einstein condensate (BEC) in three-
dimensional geometries. One of the most remarkable fea-
tures is the presence of two characteristic temperatures
when the trapped gas is cooled [2]. Below Tc, the lowest
mode becomes appreciably occupied [3] but the phase
coherence length l� / 1=T is smaller than the size of the

system. This is called a quasicondensate. Below a second
temperature T�, l� grows to the size of the cloud, and the

state is a true BEC. The phase coherence in these states
have been extensively studied both experimentally [4,5]
and theoretically [2,3,6–9].

In thermal equilibrium, the variance in phase and one-
body density matrix have been calculated [2,6,9,10]. Their
short-range behavior gives the phase correlation length l�
near the center of the trap:

�1ðz; z0Þ ¼ h�̂yðzÞ�̂ðz0Þi � �1ð0; 0Þe�jz�z0j=l� : (1)

In equilibrium, the phase in a single experimental realiza-
tion varies smoothly over length scales l� [10].

On the other hand, phase fluctuations have also been
predicted from the Kibble-Zurek mechanism [11] (KZM)
after the onset of condensation, when the system is far from
equilibrium. These fluctuations are seemingly different in
nature than those discussed above. During evaporative
cooling, phase defects in the form of gray solitons appear
when crossing the characteristic temperature Tc. They are
born when local condensation occurs faster than distant
regions can communicate to agree on a common phase.
When the expanding initial phase domains meet, soliton
defects form on the interfaces between them. Therefore,
during the formation of a condensate the phase experiences
sudden jumps at the temporal position of every soliton, and
phase domains appear between them of a size equal to the
separation between neighboring solitons. A natural ques-
tion arises whether these preformed domains are somehow
related to the phase fluctuations in equilibrium. The aim of
this Letter is to show how the phase fluctuations in these

two cases are connected. What we find is that the coher-
ence length is conserved during dissipation, so that the final
phase fluctuations are the remnant of the initial solitons.
The number of solitons while crossing Tc has been

predicted as a function of the quench rate [7]. A calculation
where chemical potential was quenched at T ¼ 0 demon-
strated the KZM for a uniform gas [8]. Here we show that
the Kibble-Zurek scaling also applies for a realistic model
of evaporative cooling in a trap. We have simulated the
nonequilibrium evaporative cooling dynamics to the sta-
tionary thermal state using the classical fields method
(CFM) [12]. The observations imply that the solitons are
indeed the early stage of development of the final phase
fluctuations at equilibrium.
We consider a single-species Bose gas in a trap. We use

harmonic oscillator units with frequency !z. The initial
state is generated in a canonical ensemble at a temperature
of kBT ¼ 360@!z [13], well above Tc in the final state. The
description of the system in the CFM is in terms of an
ensemble of classical field amplitudes c ðzÞ evolving under
a generalized Gross-Pitaevskii mean-field evolution equa-
tion from thermally randomized initial conditions. This is
equivalent to a truncated Wigner description [14], but with
quantum fluctuations omitted. It is accurate provided spon-
taneous processes can be neglected and most modes are
appreciably occupied. This is the case here. Related mod-
els are compared in [15]. The evolution in time is given by

i@tc ðz; tÞ ¼ ½Hðz; tÞ � i�ðz; tÞ�c ðz; tÞ; (2)

with the Hamiltonian

Hðz; tÞ ¼ � 1

2

@2

@z2
þ Vðz; tÞ þ g1Djc ðz; tÞj2 (3)

including kinetic energy, contact interactions with strength
g1D ¼ 0:31 (corresponding to N ¼ 104 87Rb atoms in a
10� 1000� 1000 Hz trap, very similar parameters to
recent experiments [16]), and the time-dependent external
potential (shown in Fig. 1)
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Vðz; tÞ ¼ UðtÞ½1� e�ðz2=2UðtÞÞ� (4a)

UðtÞ ¼
8
<

:

U0 þ ðUr �U0Þ t
tr
; t � tr;

Ur þ ðUmax �UrÞ t�tr
tmax�tr

; t > tr:
(4b)

The first stage (t < tr) is the evaporative cooling ramp.
VðzÞ is a Gaussian dip of constant trap frequency (!z ¼ 1
in the units chosen) near z ¼ 0, and standard deviation
ffiffiffiffiffiffiffiffiffi
UðtÞp

. The depth of the dip decreases linearly from
U0 ¼ 100 to Ur ¼ U0=3. The ramp time tr is varied to
obtain different final states.

After the ramp (tr < t < tmax), the evaporation is
stopped and the gas is allowed to thermalize for a longer
period to tmax ¼ tr þ 1000 in a much deeper potential
(rising to a depth Umax ¼ 10U0) that becomes effectively
harmonic in the region occupied by the gas cloud. It is also
necessary to include losses in the wings of the potential:
�ðz; tÞ ¼ �1½Vðz; tÞ=UðtÞ�� with �1 ¼ 10, � ¼ 50. This
loss acts as a high-energy knife in the region beyond about
two (t dependent) standard deviations of the Gaussian dip.
This is necessary to realistically model the experimental
properties of the trap by preventing once evaporated atoms
from returning back. A lattice of 1024 points on a length
L ¼ 120 is used. The number of trapped atoms we obtain
for t � tr is always around N � 1300. The widths and
shapes of the clouds agree very well with the radius zTF ¼
ffiffiffiffiffiffiffi
2�

p
and chemical potential � ¼ ½9ðg1DNÞ2=32�ð1=3Þ pre-

dicted by the Thomas-Fermi approximation.
Figure 2 shows the time evolution of a single realization

of the experiment in the quasicondensate (tr ¼ 75) and
BEC (tr ¼ 400) regimes. Animations for tr ¼ 250 are in
[17]. We see the emergence of a great number of defects on
the healing-length scale in the early part of the cooling
phase [e.g., around t ¼ 6–10 in Fig. 2(c)]. The density dips
in Figs. 2(a), 2(c), and 2(d) display all the characteristics
of gray solitons: passing through each other, turnaround
near the edge of the cloud when the central density reaches
zero, motion much slower than the speed of sound,
phase jumps, and width in agreement with the healing

length � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1Dð�0ðxÞ � �minÞ

p
. Here �0ðxÞ is the local

background density, �min the minimum density. The den-
sity profile of the dips is a good match to the solitonic

solution (�min þ ð�0 � �minÞtanh2½ðz� z0Þ=��, where the
dip is centered at z0. Note the broadening of the solitons
when they approach the edges of the cloud in Figs. 2(a) and
2(d). Very clear phase domains are seen between the
solitons in Figs. 2(b), and account for the majority of the
spatial phase variation.
As cooling progresses, many of the solitons are lost at

the edges, and the size of phase domains grows. We
observe that if the final state achieved is a quasicondensate
(see Fig. 3), some solitons remain at tr, while in the BEC
regime (large tr) all are already gone by this stage. Figure 3
quantifies the crossover from quasicondensate to BEC
as a function of ramp time tr.
The number of condensed atomsN0ðtÞ is calculated from

the maximal eigenvalue of the one-particle density matrix
�1ðz; z0Þ. Here, this is calculated as hc �ðzÞc ðz0Þis, with h�is
denoting averaging over realizations within the initial ca-
nonical ensemble. The condensate fraction n0 ¼ N0=N, is
shown as the ‘‘�’’ data in Fig. 3. Phase correlations are

characterized using the correlation function gð1Þðz; z0Þ ¼
�1ðz; z0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ðz; zÞ�1ðz0; z0Þ

p
. We use the width of the

FIG. 2 (color online). Density (a),(c),(d), and phase modulo
2� (b),(e) for a single realization during the cooling ramp. In
(a)–(c) tr ¼ 75 leading to a quasicondensate as t ! 1, in (d),(e)
tr ¼ 400 leading to a BEC. Top: at the end of evaporative
cooling. Center: The entire ramp time. Bottom: the loss of the
last soliton, leading to BEC formation.

-L/2 0 L/2

tr

tmax

Ur

U0

FIG. 1. The evaporative cooling potential Vðz; tÞ. Solid line:
initially (t ¼ 0), dashed line: at the end of the ramp (t ¼ tr),
dotted line: during thermal equilibration (t 	 tr).
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correlation function symmetric around zero to measure the

phase domain size, using: gð1Þð� 1
2 l1=2;

1
2 l1=2Þ ¼ 1

2 �
e�l1=2=l� . Hence, comparing to (1), l� ¼ l1=2= log2.

Figure 3 shows the transition between quasicondensate
and BEC behavior [2]. In the quasicondensate, the phase
domain width is much smaller than the cloud, and a sizable
part, or even a majority of the atoms are not condensed
into the lowest energy mode. In the condensate, a single
phase domain covers the entire cloud, and the condensate
accounts for the vast majority of the atoms. Notably, the
transition in phase correlation length l1=2 ¼ l� log2 around

tr ¼ 200 is much sharper than in condensate fraction n0.
As the state is nonthermal during the evolution, assign-

ing a time-dependent temperature is moot, and we use the
condensate fraction n0 (always a well-defined quantity,
unlike T) as the analogous parameter. For interpretation,
several approximate results will be useful [3]: n0 � 1�
T=Tc, when n0 is not too close to zero, and where the
characteristic temperature Tc is given by N ¼ Tc logð2TcÞ.
For N ¼ 1300, this is Tc ¼ 214. Hence, the temperature
appearing in estimates of the coherence length [2,6] can be
replaced by T ! Tcð1� n0Þ. The location of the BEC/
quasicondensate transition in Fig. 3 can be compared using
this T with the prediction T� ¼ N=� [2]. The latter leads

to n0ðT�Þ ¼ 1� N=ð�TcÞ � 0:84, which compares favor-

ably with the data.
To verify that the Kibble-Zurek mechanism (KZM) is

at work here, we wish to compare the scaling of the
number of solitons (predicted in [7]) with the rate that
the characteristic temperature Tc is crossed. We count
solitons by fitting the density in the solitonic solution in
the same manner as in [8], using a local background
density. To make the comparison, we should also calculate
the quench time of the relative temperature �Q in which

the KZM is expressed [7]. The prediction is Nsoliton /
��ð1þ2�Þ=ð1þ�z�Þ
Q where dT

dt ¼ �Tc=�Q, and � and �z� are

critical exponents for healing length and relaxation time at
T ¼ Tc, respectively. Here, because the system is certainly
not in thermal equilibrium during the evaporative cooling
phase, neither a value for Tc nor dT

dt is forthcoming. The

most reasonable straightforward estimation is that the
quench time is proportional to the ramp time: �Q / tr.

This leads us to use tr as the ‘‘quench time’’ parameter
in Fig. 4 where the scaling is examined.
We see that the KZM power law scaling holds quite well

in the quasicondensate regime for power law exponent
unity in 1=tr, which is the value expected for mean field
[7]. As one might expect, the scaling law breaks down
once the true condensate is reached for tr * 200, since the
correlation length reaches or exceeds the size of the system
in the BEC regime. This suppresses the slowing down near
Tc that is an assumption of the KZM.
In contrast to the elongated 3D case of [7], no conden-

sation front is apparent here. This may be an effect of the
slow internal thermalization of 1D gases. We conjecture
that a front might still occur in 1D if the local temperature
were set externally by contact with an external reservoir,
as, e.g., in buffer gas cooling, or previous work on the
KZM in cold atoms [8,18].
Let us now consider the thermal equilibrium state at

t ¼ tmax. We observe that there are indeed no solitons

present. The phase domain size calculated from gð1Þ is
shown by solid circles Fig. 5(e), where we also compare
to the equilibrium theoretical prediction of [2] (dashed).
The agreement is quite good deep in the quasicondensate
regime, with a 2�–3� discrepancy for 0:5 & n0 & 0:8.
We note that experiments also tend to show coherence
lengths longer than the theoretical estimate shown [4,10].
Having calibrated our results with the two phase fluctu-

ating situations, a connection between them can be made.
We observe that the soliton creation time scale here is very
short in comparison with the thermalization time. A pos-
sible hypothesis is that initial contact of coherent phase
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domains formed via the KZM results in a soliton, which
then converts into smooth phase fluctuations only on the
long thermalization time scale. Such a temporal mismatch
between phase and density fluctuation behavior is also
reminiscent of recent experiments in ultracold helium
[19]. A symptom of such a process would be to see the
disappearance of solitons without change in the coherence
length. Indeed, in the quasicondensate, Figs. 5(a) and 5(c)
show no appreciable change from tr to tmax, despite the
disappearance of solitons in the meantime. A ‘‘soliton’’
measure of the phase domain size is the mean distance d
between them. If phase fluctuations are ‘‘born’’ as solitons,
then d at earlier times should match the final phase domain
width l1=2 in equilibrium. Figure 5 compares dðtrÞ at the
end of the ramp with l1=2 at equilibrium. The match is

remarkably good, strongly backing up the above hypothe-
sis that solitons can be considered the precursors or seeds
of the equilibrium phase fluctuations when the gas is
evaporatively cooled.

That remnants of the KZM survive in changed form into
the final equilibrium state is by no means obvious. In fact,
the usual procedure when investigating the KZM has been
to look soon enough after the transition to catch the phase
defects before they dissipate. Such transformed remnant
fluctuations may also occur in other KZM situations.
For example, in cosmology, if such transformed remnant
fluctuations occur, they would possibly allow a new kind
of indirect observation of the early Universe. For 2D gases

the situation is intriguing, as defects (vortices) remain in
simulations at long times [20]. We have also seen long-
lived solitons under some conditions.
In conclusion, we have calculated the evaporative cool-

ing dynamics of a 1D gas through to the quasicondensate
and BEC regimes in an experimentally realistic model. The
simulations confirm the action of the Kibble-Zurek mecha-
nism for soliton formation, and their subsequent decay into
long-wavelength phase fluctuations. The match between
intersoliton distance at the end of the ramp and phase
coherence length at long times shows that the equilibrium
phase fluctuations are the transformed remnant of the
solitons formed by the KZM.
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