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A controlled hybridization between full quantum dynamics and semiclassical approaches (mean-field

and truncated Wigner) is implemented for interacting many-boson systems. It is then demonstrated how

simulating the resulting hybrid evolution equations allows one to obtain the full quantum dynamics for

much longer times than is possible using an exact treatment directly. A collision of sodium BECs with

1:5� 105 atoms is simulated, in a regime that is difficult to describe semiclassically. The uncertainty of

physical quantities depends on the statistics of the full quantum prediction. Cutoffs are minimized to a

discretization of the Hamiltonian. The technique presented is quite general and extension to other systems

is considered.
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The calculation of the full quantum dynamics of a many-
body interacting system from the microscopic description
is a long-standing ‘‘difficult’’ problem with potential ap-
plications in many fields of physics—if only one could
make it numerically tractable. The difficulty is that the size
of the Hilbert space grows exponentially with the number
of particles or orbitals, while path integral Monte Carlo
calculation is foiled by the rapid appearance of random
phases. How new headway against this problem can be
made will be demonstrated below.

Outside of fully integrable systems or one dimension,
where MPS/DMRG-based methods are successful, simpli-
fied descriptions are used, e.g., mean-field theory,
Bogoliubov diagonalization, long-wavelength or strong
interaction expansions, and Wigner-distribution based
‘‘c-field’’ methods [1–3]. However, some interesting prob-
lems fall outside the regimes of validity of these, typically
where several competing effects are important or there is a
transition between regimes that require different approx-
imations. In quantum gases this occurs with rising density
when interactions between the coherent component and
incoherent particles already become of essence during
the evolution, but the gas is not yet dense enough for the
c-field descriptions to describe it with only highly occu-
pied modes. (See [3] for a comprehensive review of c-field
methods and their validity). This may occur, e.g., in
quenches of the gas [4], colliding BECs [5–7], dynamics
of the cooling and trapping, shock waves and the effects of
obstacles [8] or disorder [9].

This kind of dynamics is often amenable to phase-space
approaches that randomly sample the full quantum dynam-
ics, such as positive-P [10], stochastic wave functions [11],
and stochastic gauges [12]. They are successful when
collective behavior is important, but interactions between
individual particles are not too strong. The density matrix
�̂ of the system is redescribed in terms of a probability

distribution �̂ ¼ R
Pð ~vÞ�̂ð ~vÞd ~v of basis operators �̂ that is

subsequently randomly sampled. These samples ~v are then
evolved according to stochastic evolution equations that
are chosen to keep the entire quantum dynamics of the
microscopic description. A serious limitation is the ‘‘noise
catastrophe:’’ After some finite time, an exponential (or
faster) growth of the noise variance occurs, imposing a
maximum feasible simulation time tsim [13]. While some
phenomena can be simulated [14–16], an extension of tsim
is much sought after, and will be demonstrated here.
The underlying reasons why phase-space methods can

overcome the Hilbert space complexity, are that quantities
of physical interest usually involve contributions from
many particles, and that limited precision is sufficient if
it is well controlled. As in Monte Carlo methods, there is
no need to follow the amplitudes of all possible configu-
rations as long as one can predict physical quantities with a
well-controlled uncertainty. However—and now we come
to the central idea to be demonstrated here—this can be
taken further: There is also no true need to actually follow
the troublesome exact quantum evolution equations pro-
vided that one can still predict what they would give with a
well-controlled uncertainty.
How can such a roundabout prediction be achieved? If

one has at one’s disposal two, or more, independent ap-
proximate methods that produce evolution equations ‘‘A’’
and ‘‘B’’ without a noise catastrophe, but which bear
sufficient resemblance to the full quantum dynamics equa-
tions ‘‘Q’’, then hybrid equations can be constructed (pos-
sibly ad hoc) with a continuous blending parameter � in a
scheme resembling

HA ¼ ð1� �ÞAþ �Q; HB ¼ ð1� �ÞBþ �Q:

whose details will be nonuniversal. Here � ¼ 1 gives full
quantum dynamics, and � ¼ 0 the original approximate
methods. The hybrids will still contain a noise catastrophe,
but at a later time than the full quantum treatment Q.

PRL 103, 130402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

0031-9007=09=103(13)=130402(4) 130402-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.130402


Therefore, long times t > tQsim that are not accessible byQ
will be accessible by some range of � 2 ½0; �maxðtÞ�.

If a physical quantity varies smoothly, preferably mono-
tonically, as a function of � for hybrid HAð�Þ, then an
extrapolation can be made to � ¼ 1, based on several
calculations in the accessible range ½0; �maxðtÞ< 1�. One
extrapolation is not yet very convincing; however, it can be
checked using the other independent hybridHBð�Þ. When
they all agree, one has an ‘‘interpolation between extrap-
olations’’ that is robust and much more reliable.
Conceptually this step is similar to comparing results
obtained using different summation techniques in diagram-
matic Monte Carlo calculations [17].

The remainder of this letter will demonstrate this pro-
cedure on a system of colliding BECs (schematic shown in
[18]). The parameters are chosen to be close to an early
experiment at MIT [7], but deliberately with fewer atoms,
to put the system in the dilute yet Bose-stimulated regime
where truncated Wigner and simple quasiparticle methods
fail: An N ¼ 1:5� 105 atom BEC of 23Na is prepared in
an elongated magnetic trap with frequencies 20� 80�
80 Hz, at a temperature low enough to discount the thermal
component (not unusual in experiments). A brief Bragg
laser pulse coherently imparts a velocity kick of 2vQ ¼
19:64 mm=s to half the atoms along the long (x) conden-
sate axis. The speed of the kicked atoms is supersonic
(sound velocity in the cloud is �3:1 mm=s). The trap is
simultaneously turned off so that the wave packets collide
freely, producing a halo of scattered atom pairs moving at
speeds �vQ relative to the overall center of mass. This

scattered halo exhibits a rich behavior, which has been the
repeated focus of experiments [5–7] and theory [15,16,19–
23].

The high-density regime of a similar system has been
treated in detail with c-field methods in [23]. Bogoliubov
expansions and/or a pair-creation simplification treat the
spontaneous regime, or special cases when BEC evolution
is negligible or speed is highly supersonic [20,21] (A
stochastic Bogoliubov treatment gives promising results
in broader cases [24]). However, major discrepancies be-
tween predictions for halo density and correlations arise
when BEC evolution or Bose stimulation is appreciable.
Correlations depend on the sizes of phase grains [23],
which develop a complicated and poorly understood shape
[16,22] and dynamics [15,19,23] in this case. Parallels to
unresolved questions in other fields of physics have been
noted, such as the ‘‘HBT puzzle’’ in heavy ion collisions
[25]. Trustworthy calculations that reach the end of the
collision (observed in experiments [6] but not reached by
positive-P [15,16]) could shed light on all these issues.

Figure 1 includes predictions from Gross-Pitaevskii
(GP) mean field, truncated Wigner, and Positive-P calcu-

lations. The time reachable by positive-P (tQsim) is less than
a half of the collision time tcoll � 1400 �s, and both GP
andWigner give an error. The first does not treat scattering,
while for a lattice fine enough to encompass all physics the

second becomes valid only for N * 106 atoms (one needs
*Oð1Þ atoms per lattice site [1]). Note the k-dependent
difference between g and its effective lattice value [1] is
&3% here, so it has not been corrected for.
Now let us turn to obtaining the full quantum dynamics

for times longer than with the positive-P. The dynamics
equations in the truncated Wigner, GP, and positive-P
treatments share the GP kernel with certain additions,
and turn out similar enough to play the role of the A, B,
and Q.
The dynamical GP equation for the complex field

c ðx; tÞ corresponding to the cold atom Hamiltonian Ĥ ¼R
d3x½�̂yðxÞHspðxÞ�̂ðxÞ þ g

2 �̂
yðxÞ2�̂ðxÞ2� is i@ _c ðxÞ ¼

½HspðxÞ þ gjc ðxÞj2�c ðxÞ. An initial condensate wave

function �GPðxÞ normalized to
R
d3xj�GPðxÞj2 ¼ N leads

to initial conditions c ðx; 0Þ ¼ �GPðxÞ. Expectation values
of observables hÔi are calculated by making the replace-

ments �̂ ! c and �̂y ! c � in Ô. For example, the
density is �nðxÞ ¼ jc ðxÞj2.
In the truncated Wigner method, the dynamics is ob-

tained by standard methods (e.g. [26]) based on the basis
operator identities (x dependence implied)

�̂�̂¼
�
c �1

2

@

@c �

�
�̂; �̂y�̂¼

�
c �þ1

2

@

@c

�
�̂ (1)

whose importance for us will be seen below. The equation
of motion is as for GP but with the replacement jc j2 !
ðjc j2 � 1Þ on the RHS. However, in the initial conditions
the condensate field is admixed with half a virtual particle

per mode as c ðx; 0Þ ¼ �GPðxÞ þ �ðxÞ= ffiffiffi
2

p
, where �ðxÞ is

a local complex Gaussian noise with the ensemble aver-
ages h�ðxÞi ¼ h�ðxÞ�ðx0Þi ¼ 0 and h�ðxÞ�ðx0Þ�i ¼
�3ðx� x0Þ. To calculate observables one ensemble aver-

ages a modified expression f½Ô� that is obtained via hÔi ¼
Tr½Ô �̂� ¼ R

d ~vPð ~vÞTr½Ô �̂� and subsequent replace-

ments (1), which give
R
d ~vPð ~vÞfð ~vÞ. E.g., �nðxÞ ¼

hjc ðxÞj2 � 1
2 i.

The positive-P method uses two independent fields
c 1ðx; tÞ and c 2ðx; tÞ and the identities
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FIG. 1 (color online). Wigner (purple), positive-P (red), GP
(dashed) and hybrid HA calculations at various blending pa-
rameters �. (a): Total number of scattered atoms, from integra-
tion of k-space density (excluding the narrow BEC region). (b):
Peak density of the halo (at vx ¼ vz ¼ 0, vy ¼ 9:37 mm=s in

velocity space). Triple lines show 1� uncertainty.
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�̂ �̂ ¼ c 1�̂; �̂y�̂ ¼
�
c �

2 þ
@

@c 1

�
�̂;

�̂�̂y ¼ c �
2�̂; �̂ �̂ ¼

�
c 1 þ @

@c �
2

�
�̂:

(2)

The c j obey the Ito stochastic equations

i@ _c 1ðxÞ ¼ ½HspðxÞ þ g�ðxÞ � ffiffiffiffiffi
ig

p
�1ðx; tÞ�c 1ðxÞ

i@ _c 2ðxÞ ¼ ½HspðxÞ þ g�ðxÞ� � i
ffiffiffiffiffi
ig

p
�2ðx; tÞ�c 2ðxÞ

(3)

with ‘‘complex density’’ �ðxÞ ¼ c 1ðxÞc 2ðxÞ�. Here the �j

are delta-correlated real Gaussian noise fields with the
ensemble averages h�jðx; tÞi ¼ 0 and h�iðx; tÞ�jðx0; t0Þi ¼
�ij�ðt� t0Þ�3ðx� x0Þ. Initial conditions are c jðx; 0Þ ¼
�GPðxÞ and observables are obtained with the replace-

ments �̂ ! c 1 and �̂y ! c �
2.

The next step will be to hybridize the truncated Wigner
with the positive-P into treatmentHA. It is most straight-
forward to proceed from hybrid operator identities for an
off-diagonal expansion

�̂ �̂ ¼
�
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�
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(4)

One obtains: �nðxÞ ¼ hc 1ðxÞc 2ðxÞ� � 1��
2 i and initial

c jðx; 0Þ ¼ �GPðxÞ þ �ðxÞ
ffiffiffiffiffiffiffi
1��
2

q
. The usual truncated-

Wigner-like discarding of high-order derivatives in the
relevant Fokker-Planck equations, gives Ito dynamics

i@ _c 1ðxÞ ¼ ½HspðxÞ þ g�0ðxÞ � ffiffiffiffiffiffiffiffi
ig�

p
�1ðx; tÞ�c 1ðxÞ

i@ _c 2ðxÞ ¼ ½HspðxÞ þ g�0ðxÞ� � i
ffiffiffiffiffiffiffiffi
ig�

p
�2ðx; tÞ�c 2ðxÞ

with �0ðxÞ ¼ �ðxÞ þ �� 1. As an aside, this corresponds
to a representation based on an off-diagonal operator basis
using s-ordered [27] coherentlike states with s ¼ � (See
[18] for details). Figure 1 shows the performance of this
hybrid for several values of � for two halo quantities of
interest. As desired, � < 1 calculations last for longer than
the full quantum dynamics. Here the simulation time scales
as tsim �/ 1=�, but this is not universal.

Hybridization of the GP and positive-P methods into
treatmentHB simply entails replacing

ffiffiffiffiffi
ig

p
by

ffiffiffiffiffiffiffiffi
ig�

p
in the

Eqs. (3) and following the positive-P prescription from
then on. Here tsim / 1=�2.

With hybrids in hand, extrapolations of the total number
of scattered atoms to the full QD limit � ¼ 1 are shown in

Fig. 2 for several times�tQsim. Halo peak density is in [18].
An issue here is deciding upon a fitting function—linear,

quadratic, otherwise? First, an acceptable fit must not have

any statistically significant mismatch with the data. Sec-
ondly, to exclude spurious ill-conditioned parameters, one
should choose a fit that minimizes the uncertainty in the
extrapolated value at � ¼ 1 (see below). One must also
beware of possible stiffness in the unseen �, and sensitivity
to this is the primary reason why several independent
hybrids are needed. Details of Fig. 2 are consistent with
a lack of stiffness in the unsimulated large � region: First,
for t at which the whole � sequence is seen, there are no
inflections. Second, the two hybrids approach the � ¼ 1
value from different sides but agree. Also, extrapolations
from only a low-� portion of the available data should
agree with ones that use the whole sequence. This is
confirmed in [18].
Agreement between the HA andHB extrapolations in

Fig. 2 is rather good at long times, but it remains to provide
a well-defined uncertainty for the final prediction. Methods
to obtain the statistical uncertainty of the � ¼ 1 extrapo-
lation are known [28]. In this endeavour it is very helpful to
know the underlying distribution of the data points vð�Þ,
which are ensemble averaged observables. Conveniently, it
is known to be Gaussian by the central limit theorem, and
the shown 1� uncertainty �vð�Þ is its standard deviation.
One rather simple way to proceed is to generate a number
NS � 1 of ‘‘synthetic’’ data sets, where in the jth set one
generates vjð�Þ ¼ vð�Þ þ �jð�Þ�vð�Þ, with �j being

Gaussian random variables of variance 1, mean zero. The
synthetic data vj are distributed with the same mean as the

original v but double the variance. Now one calculates an
extrapolated QD prediction vjð1Þ for � ¼ 1 for each syn-

thetic set j, and uses the distribution of these vjð1Þ to

obtain the final uncertainty �vð1Þ. Predictions from HA
andHB that match within statistical uncertainty are trust-
worthy to this accuracy. The final predictions from both
hybrid methods for the number of scattered atoms are
shown in Fig. 3, and for halo density in [18].
One sees that the useful simulation time has been ex-

tended several fold, allowing one to reach the end of the
collision here, and determine the total scattered atoms to be
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times �tQsim (symbols) and corresponding quadratic fits (dashed

line). Fitting is via minimization of rms deviation in units of 1�
data uncertainty. Data points use �300–1000 trajectories.

PRL 103, 130402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

25 SEPTEMBER 2009

130402-3



8800	 400 (at t ¼ 1:7 ms). The much worse precision of
the HA result stems from the inherent vacuum noise in
Wigner calculations and shorter segment of � values.
However, for halo density, it is HB that is more noisy.

Regarding limits of applicability, at very long times the
uncertainty becomes excessive for all hybrids since the
short � intervals give badly conditioned extrapolations.
Hence the bare simulation time in the Q treatment must
not be too small to ensure a sufficiently long � interval. It is
also crucial that the blending � enter the dynamics in a
global way: Artificial boundaries [2,29] could make ob-
servables depend stiffly on the boundary position. For cold
gases low densities can be treated perturbatively, while at
high enough densities c-field treatments are valid, so that
one expects that the blending method will be most useful at
intermediate densities that ‘‘fall through the cracks’’ be-
tween these two methods. The relative simplicity of not
requiring a projection onto low-energy modes may also
make blending appealing in other regimes.

Finally, while the emphasis has been on cold boson
dynamics, the general equation-blending approach should
be broadly applicable. For hard-core boson or fermion
systems other approximations would have to be hybridized
with a different complete phase-space description Q. One
can also hybridize ‘‘imaginary-time’’ evolution for thermal
equilibrium states, or Monte Carlo path integrals with the
aim of predicting the ab initio result for longer 	 ¼ 1=T
than is normally allowed by the fermion sign problem.

Concluding, it has been demonstrated how the full quan-
tum dynamics of a macroscopic interacting 3D system can
be calculated for much longer times than was possible with
the previously most effective method, the positive-P rep-
resentation. Quantitative predictions for BEC collisions in
the dilute stimulated regime were obtained. The hybrid
dynamical equations used, while not actually simulating
complete quantum dynamics per se, can be used to con-
fidently predict the full quantum dynamics (within a given
accuracy) when several families of hybrids are available.
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Supplementary material

The BEC collision

original   
condensate 

atoms scattered into      

an ≈ spherical shell

second condensate  
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optical transition 

2v
Q

 

(a)

(b)

FIG. 1: The system simulated. (a): Schematic of the BEC collision

in real space in the lab frame. (b): Slice of the velocity distribution

ρ in the center-of-mass frame at vz = 0 and t = 670µs calculated

using the positive-P method. This is about a third of the colli-

sion time, and the maximum time achievable with that method.

The condensates are located around vx = ±vQ = ±9.82mm/s.
The halo of scattered atoms is clearly seen, as are the coherent

frequency doubling peaks at ±3vQ ≈ 30mm/s. The collision is
along the x axis.



2

The relationship of the hybridHA to s-ordered operators

First, a brief exposition of the standard formalism used in

deriving phase-space quantum dynamics will be necessary.

Writing the state of the system as a density matrix ρ̂, it can
also be expressed as a distribution

ρ̂ =

∫
d~vP (~v)Λ̂(~v). (1)

over a family of basis operators Λ̂(~v) parameterised by vari-
ables in the set ~v. If the distribution P (~v) is real and non-
negative, this corresponds, in turn, to an ensemble of S sets
of random variables ~v (“configurations”) chosen according
to the distribution P , in the limit when S → ∞. In prac-
tice one computes a finite but large ensemble (S ≫ 1) and
knows properties of ρ̂ to within a statistical uncertainty that
can be confidently estimated from the properties of the finite

ensemble.

The dynamics of the system is described by the master

equation

i~
∂ρ̂

∂t
=

[
Ĥ, ρ̂

]
, (2)

while expectation values of observables are

〈Ô〉 = Tr
[
Ôρ̂

]
. (3)

These are most readily related to the computational ensem-

ble of random variables through the use of the “operator

identities”, that are specific to each formulation.

For example, in the positive-P method one chooses Λ̂ to
be an off-diagonal coherent-state operator. Letting x label

discrete points in the computational lattice with∆V volume
per point, defining

αj(x) = ψj(x)/
√

∆V ,

one has

Λ̂PP (~v) =
∏

x

|α1(x)〉x〈α2(x)|x
〈α2(x)|x|α1(x)〉x

, (4)

where ~v = {α1, α2},

|α〉x = e−|α|2/2eαba†
x |0〉x

is a coherent state on the x lattice point with the complex

amplitude α and anihilation operator âx = Ψ̂(x)
√

∆V .
Then, one finds (omitting ubiquitous local x dependence)

the operator identities:

Ψ̂Λ̂PP = ψ1Λ̂PP ; Ψ̂†Λ̂PP =

[
ψ∗

2 +
∂

∂ψ1

]
Λ̂PP

Λ̂PP Ψ̂† = ψ∗
2Λ̂PP ; Λ̂PP Ψ̂ =

[
ψ1 +

∂

∂ψ∗
2

]
Λ̂PP ,

which are the source of the positive-P identities in the main

text. Combined with (1) and (2) these allow one to obtain

a partial differential equation for P (~v, t) that is equivalent
to the full quantum evolution of ρ̂(t). For the positive-
P representation, this is a Fokker-Planck equation, and it

corresponds exactly to the Langevin equations given in (5)

of the main text Combining the identities with (3) and

Tr
[
Λ̂PP

]
= 1 one finds

〈Ô〉 =

∫
P (~v)fO(~v)d~v

with a function fO that is obtained from Ô via the operator
identities, so that in the calculation it corresponds to an en-

semble average of fO. For example, for Ô = Ψ̂†(x)Ψ̂(x),
the function is1 fO = ψ∗

2(x)ψ1(x). The initial coherent
state corresponds to P =

∏
x,j δ

(3)(ψj(x) − φGP (x)).

It has been shown2 that the Glauber-Sudarshan P distri-

bution described by a coherent state operator basis

Λ̂GSP (ψ) =
∏

x

|α(x)〉x〈α(x)|x

(similar to the positive-P but diagonal) can be described as

the limit of a representation over s-ordered basis states

Λ̂GSP = lim
s→1−

Λ̂s

where s can take on continuous values from -1 to 1, and

Λ̂s(ψ) =
∏

x

D̂(α)xT̂ (0,−s)xD̂−1(α)x

Tr
[
D̂(α)xT̂ (0,−s)xD̂−1(α)x

] . (5)

Here

T̂ (0,−s)x =
2

1 + s

(
s− 1

1 + s

)ba†
x

bax

is a kernel operator that becomes the vacuum |0〉〈0| in the
limit of s→ 1− and the local displacement operator is

D̂(α)x = eα(x)ba†
x
−α(x)∗bax .

so that coherent states are |α〉 = D̂(α)|0〉. It was also
shown there that the Wigner distribution corresponds to

s = 0, hence a variation of s from 0 to 1 looks like a
good candidate to create the HA hybrid formulation be-

tween truncated Wigner and positive-P. The “truncation”

1 fO = ψ∗
1
(x)ψ2(x) can also be obtained, but gives the same value of

〈 bO〉 in the S → ∞ limit.
2 K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969); ibid. 177,

1882 (1969)
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refers to ad-hoc removal of third order3 partial derivatives

of the Wigner distribution P in its evolution equation to
make it interpretable as Langevin stochastic equations of the

samples. This removal is the reason why truncated Wigner

treatments do not reproduce the full quantum dynamics.

First, though, one must take into account the off-

diagonality that is responsible for the difference between

the Glauber-Sudarshan P and positive-P: Λ̂PP 6= Λ̂GSP .

Notably one of the bases4 that reproduces the positive-P is

Λ̂PP (~v) =
∏

x

d̂(~v)xT̂ (0,−1)xd̂
−1(~v)x

Tr
[
d̂(~v)xT̂ (0,−1)xd̂−1(~v)x

]

=
∏

x

d̂(~v)xT̂ (0,−1)xd̂
−1(~v)x (6)

where the “displacement-like” operator

d̂(~v)x = eα1(x)ba†
x
−α2(x)∗bax .

is obtained by the replacement α→ α1, α
∗ → α∗

2 in D̂(α),
and the second line follows because the trace in the denom-

inator evaluates to one. The reason for this particular re-

placement is that for the positive-P distribution one requires

Λ̂ to depend analytically on two separate complex variables,
hence their complex conjugates must be removed. Here

these analytic variables are α1 and α
∗
2.

The extension of this Λ̂ onto a family of s-ordered bases
is

Λ̂A
s (~v) =

∏

x

d̂(~v)xT̂ (0,−s)xd̂−1(~v)x

Tr
[
d̂(~v)xT̂ (0,−s)xd̂−1(~v)x

]

=
∏

x

d̂(~v)xT̂ (0,−s)xd̂−1(~v)x. (7)

This then interpolates towards the Wigner representation.

Note that since the truncated Wigner evolution is determin-

istic, then if one takes the formally off-diagonal basis set

with s = 0 but imposes δ(ψ1 − ψ2) in the initial condi-
tions, it will remain exactly equivalent to the normal trun-

cated Wigner formulation of (5) with s = 0.

3 And higher order terms if necessary, although for the cold atom Hamil-

tonian considered in this letter, only partial derivatives up to third order

are present in the Wigner representation.
4 Though not the only one. Other ways of writing Λ such as e.g.

bD(α1) bT (0,−1) bD(α∗
2
)/Tr[ bD(α1) bT (0,−1) bD(α∗

2
)] can also repro-

duce the positive-P formulation but are not useful for generalisation to

s < 1, and do not reproduce the same itermediate operator identities.

One obtains the identities5

Ψ̂Λ̂A
s =

[
ψ1 −

1 − s

2

∂

∂ψ∗
2

]
Λ̂A

s

Ψ̂†Λ̂A
s =

[
ψ∗

2 +
1 + s

2

∂

∂ψ1

]
Λ̂A

s

Λ̂A
s Ψ̂† =

[
ψ∗

2 − 1 − s

2

∂

∂ψ1

]
Λ̂A

s

Λ̂A
s Ψ̂ =

[
ψ1 +

1 + s

2

∂

∂ψ∗
2

]
Λ̂A

s

which are exactly the same as was obtained by a naive

blending of the operator identities in the main text provided

we identify λ = s.
Regarding initial conditions, the diagonal s-ordered rep-

resentation (5) for a coherent state |φGP 〉 was found by
Cahill and Glauber to be Gaussian

P (ψ) =
∏

x

2

1 − s
exp

(
−2|ψ(x) − φGP (x)|2

∆V (1 − s)

)
. (8)

When one additionally imposes ψ1 = ψ2 = ψ as is done
in the main text, this is equivalent to (7), justifying the ini-

tial conditions given in the main text that contain complex

Gaussian noise of variance (1 − s)/2.

5 For example, by comparison of expressions for LHS and RHS when
bT (0,−s) is expanded in number states.
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Halo density calculations
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FIG. 2: λ-dependent predictions of halo density (at vx = vz = 0,
vy = 9.37mm/s in velocity space) for several times (circles) with
uncertainty shown as vertical bars at the same location. The cor-

responding fits (dashed) are quadratic for the HB hybrid, and

constant-value for HA. Fitting is via minimisation of rms devi-

ation in units of 1σ data uncertainty. Linear or quadratic fits to

the HA hybrid data are not more statistically significant than the

constant-value fit, and hence would be poorly conditioned.
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FIG. 3: Predictions of halo density (at vx = vz = 0, vy =
9.37mm/s in velocity space) from hybrids HA and HB compared

with short-time full quantum dynamics and approximate methods.

Triple lines, where visible, are 1σ uncertainty. Prediction data

based on ≈ 10 − 20 values of λ, each with ≈ 300 − 1000 tra-
jectories, and quadratic / constant-value fitting for HA / HB hy-

brids, respectively. Note the agreement with truncated Wigner to

within statistical uncertainty. Times detailed in the previous figure

(above) are highlighted.

Extrapolation from partial λ segment
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FIG. 4: Predictions of the number of scattered atoms at several

times, as a function of the λ segment λ ∈ [0, λmax] used for ex-
trapolation from a quadratic fit to HA results. Triple lines, where

visible, are 1σ uncertainty. Dashed lines indicate the final pre-

dictions using all the available λ values. Data used was from the

same simulations as in Fig. 2 of the main text. There is no statisti-

cally significant trend with λmax visible, suggesting that the fitting

function that is a quadratic polynomial in λ is appropriate within

statistical precision.


