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Classical fields in the one-dimensional Bose gas:
Applicability and determination of the optimal cutoff
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To finalize information about the accuracy of the classical field approach for the one-dimensional (1D) Bose
gas, the lowest-temperature quasicondensate is studied by comparing the extended Bogoliubov model of Mora
and Castin [Mora and Castin, Phys. Rev. A 67, 053615 (2003)] to its classical field analog. The parameters for
which the physics is well described by matter waves are now presented for all 1D regimes and, concurrently, the
optimal cutoff that best matches all observables together is also provided. This cutoff rises strongly with density
when the chemical potential is higher than the thermal energy to account for kinetic energy. As a consequence,
clouds that reach this coldest quantum fluctuating regime are better described using a trap basis than plane
waves. This contrasts with higher-temperature clouds for which the basis choice is less important. In passing,
estimates for chemical potential, density fluctuations, and kinetic and interaction energy in the low-temperature
quasicondensate are obtained up to several leading terms.
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I. INTRODUCTION

The question of under what conditions the classical field
description of ultracold gases is accurate has been widely
discussed in the field [1–13]. In parallel, the companion
question is what high-energy cutoff should be chosen for best
results [7,9,12–20]. The importance of these matters stems
from the widespread utility of the method for nonperturbative
and thermal calculations [1,8,11,21–32] and its interpretation
in terms of matter waves.

Previous work on the one-dimensional (1D) Bose gas
gave detailed quantitative answers to these questions for most
degenerate temperatures [12,13] by comparing classical field
ensembles with the exact Yang-Yang results [33–35]. However,
the full picture was not obtained because there were technical
difficulties in assessing the colder quasicondensate for which
quantum fluctuations become significant. In practice this meant
that when thermal energy kBT is comparable to or lower
than the chemical potential, the status of the classical field
description of the center of a gas cloud was unclear.

Here, to obtain complete coverage, we reanalyze the case
of the quasicondensate by comparing the extended Bogoliubov
theory of Mora and Castin [36] with its classical field coun-
terpart [37]. The present analysis conforms with the previous
results but also extends the determinations down to zero
temperature. In this way, a comprehensive assessment across
all regimes of the 1D Bose gas is now provided in this work.

The structure of the paper is as follows. Section II gives the
background information. Section III describes the extended
Bogoliubov description and its classical field version that we
will use to study the quasicondensate. Section IV explains
how classical field accuracy will be judged there. Section V
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compares full quantum and classical field predictions and gives
the main results, i.e., the limits of the matter wave region
and the optimal cutoff prescription. Section VI discusses the
physical reasons for the high cutoff found in the quantum fluc-
tuating region and its consequences. We summarize in Sec. VII.
Additional technical details are given in the Appendixes, as
well as a number of analytic estimates for the main observables
in the Bogoliubov regime.

II. BACKGROUND

The interest in a precise characterization of the classical
field description is twofold. The practical aspect is the usage
of the classical field method to simulate dynamics. Many
kinds of nonperturbative phenomena have become accessible
experimentally in recent years [30,31,38–40], but in a vast
range of cases, only classical fields remain tractable for very
large systems. Furthermore, they also give access to predic-
tions for single experimental runs [1,2,4,8,21,41–44]. Several
flavors of c-fields have been developed [6,8,17,45,46] and
applied to defect seeding and formation [23,25,27,30,47–51],
quantum turbulence [31,52–54], the Kibble-Zurek mechanism
[26,55–57], nonthermal fixed points [58–61], vortex dynam-
ics [18,49,62], the Berezinskii-Kosterlitz-Thouless transition
[49], evaporative cooling [25,32,63,64], and more.

All c-field varieties tend to suffer from ambiguity regarding
the best choice of high-energy cutoff, because predictions of
observables can depend sizably on the cutoff choice. A range of
prescriptions for choosing a cutoff has been developed [8,9,12–
16,18,20,37,65] but generally no particular choice is ideal. For
example, a cutoff that leads to correct predictions of density
and one additional observable will inaccurately describe other
quantities [13].

The physical aspect of characterizing classical field de-
scriptions is that they describe the physics of matter waves
while neglecting effects due to particle discretization. In the
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ultracold-atom domain this is not at all the same as so-called
classical physics. However, it does mean that wave-particle
duality is insignificant whenever a classical field description
is good. Hence, by studying its accuracy, one can show the
regimes in which wave-particle duality is relevant or not.

Quantitative studies were begun in Refs. [12,13] and are
continued here. A figure of merit minRMS, first identified
in Ref. [13], bounds the discrepancy in all the standard
observables and provides a cutoff value optfc that minimizes
inaccuracies. A good classical wave description will only be
present if there is some cutoff choice that leads to small
discrepancies in all the relevant observables simultaneously.
Below 10% is a reasonable value, since experimental precision
is also of this order.

As in the analyses of [12,13], we will consider locally
uniform sections of the 1D gas in the grand canonical ensemble.
The latter corresponds to thermal and diffusive contact between
neighboring sections. Such assumptions enable wider usage of
the results for nonuniform gases via a local-density approach.
We also assume that the gas sections are large enough to be
in the thermodynamic limit with regard to the observables that
will be considered. In the Bogoliubov region, the limiting ones
are kinetic energy ε and the phase coherence.

Such a uniform 1D Bose gas section is fully characterized
by only two parameters: the dimensionless interaction strength
γ and dimensionless temperature τd ,

γ = mg

h̄2n
, τd = T

Td

= 1

2π

mkB

h̄2

T

n2
. (1)

Here n is the density, T the temperature, m the particle mass,
and g the contact interaction strength. When temperature
reaches the quantum degeneracy temperature Td , there is about

one particle per thermal de Broglie wavelength �T =
√

2πh̄2

mkBT
.

The physical regime that is particularly relevant for the
analysis here is the quasicondensate, lying in the range τ 2

d �
γ � 1, in which density fluctuations are small and the relation

μ ≈ kBT
γ

2πτd

(2)

holds. The quasicondensate consists of two physically different
regions characterized by the dominance of either thermal fluc-
tuations when kBT � μ or quantum fluctuations when kBT �
μ. This distinction makes a large difference for classical field
accuracy and cutoff dependence.

Low temperatures with kBT � μ were difficult to access
using the methods employed previously [13]. Convergence to
the equilibrium state in the thermodynamic limit became very
slow there, both for the iterative algorithm that is used to solve
the Yang-Yang integral equations and for the generation of
classical field ensembles via the Metropolis [66] or stochastic
projected Gross-Pitaevskii equation [46]. This slowness was
compounded by the growth of the numerical lattices as tem-
perature falls.

III. QUASICONDENSATE DESCRIPTION

The quasicondensate is very well described by the extended
Bogoliubov model given by Mora and Castin [36], across
a wide range of temperatures. The model does not assume
a single phase-coherent dominant condensate mode like the

standard Bogoliubov model [67,68] but makes an expansion
in small density fluctuations instead. Section III A summarizes
the resulting fully quantum description for the uniform gas,
which will be our baseline for comparison, while Sec. III B
describes the corresponding classical field description.

A. Extended Bogoliubov model for a uniform 1D gas

The boson field �̂(x) in this model is expressed as

�̂(x) = eiθ̂ (x)
√

ρ̂(x), ρ̂(x) = ρ0 + δρ̂(x), (3)

with the help of operators for the phase θ̂ (x) and density
fluctuations δρ̂(x). The quantity ρ0 is the lowest-order density
estimate obtained from the Gross-Pitaevskii solution. The gas
section of length L is discretized into sites of length �x.
Two small parameters are assumed: |δρ̂(x)| � ρ0 (which
makes this a quasicondensate) and |θ̂ (x + �x) − θ̂ (x)| � 1
(which is needed to ensure that the discretization of space
corresponds to the continuum model). The latter is needed to
self-consistently define the operator θ̂ in Eq. (3). The exact
quantum model is then truncated to second or third order
in these small parameters, as the situation warrants, and the
Hamiltonian takes the form

Ĥ =
∑
k �=0

Ekb̂
†
kb̂k + g

2L
P̂ 2 + Eground. (4)

The b̂k (b̂†k) are quasiparticle annihilation (creation) operators
for excited plane-wave modes, with the usual commutation
relation [b̂k, b̂

†
k′ ] = δkk′ . The system’s description resembles

an ideal gas of Bogoliubov quasiparticles. The quasiparticle
energy is

Ek =
√

εk (εk + 2μ), (5)

in terms of the free-particle energy εk = h̄2k2

2m
and chemical

potential μ. The k = 0 mode is represented by the background
density ρ0, while P̂ is a dimensionless operator related to
fluctuations in the total number of particles. There is also an
operator Q̂, which is a zero-energy collective coordinate for
the global quantum phase. Both commute with all b̂k and b̂

†
k

and moreover satisfy the relation [P̂ , Q̂] = −i.
To evaluate observables, the wave-function elements in

Eq. (3) can be expanded as

δρ̂(x) =
√

ρ0

L

∑
k �=0

(ūk + v̄k )[eikx b̂k + e−ikx b̂
†
k] + P̂

L
,

θ̂ (x) = 1

2i
√

ρ0L

∑
k �=0

(ūk − v̄k )[eikx b̂k − e−ikx b̂
†
k] − Q̂, (6)

where the quasiparticle wave-function amplitudes are

ūk ± v̄k =
[

εk

εk + 2μ

]±1/4

. (7)

In thermal equilibrium all single operators b̂k , b̂
†
k , and P̂

and the anomalous average b̂kb̂k′ have zero mean, except
for the occupations 〈b̂†kb̂k′ 〉 = δkk′nk , which are Bose-Einstein
distributed:

nk = 1

eEk/kBT − 1
. (8)
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Also, 〈P̂ 2〉 = kBT L
g

. Averages involving Q̂ are usually unnec-
essary.

In the thermodynamic limit, the sum
∑

k �=0 can be replaced1

by L
2π

∫ ∞
−∞ dk. Under the above circumstances the equation of

state is given by an integral

n = μ

g
−

∫ ∞

−∞

dk

2π
[(ūk + v̄k )2nk + v̄k (ūk + v̄k )]. (9)

This allows one to retroactively obtain μ/kBT at given γ and
τd values. They determine g and n via (1), apart from the one
free scaling parameter kBT . Observables written in terms of
�̂(x) can then be explicitly evaluated (see Appendix B 1 for
expressions).

B. Classical field in the Bogoliubov regime

Let us now construct the classical field analog for the
extended Bogoliubov model. In general, a Bose field can
be written in terms of mode functions ψj (x) and mode
annihilation operators âj as

�̂(x) =
∑

j

âjψj (x). (10)

The underlying idea of classical field descriptions is that the
creation and annihilation operators â

†
j and âj , respectively,

of highly occupied modes can be quite well approximated
by complex amplitudes αj ≈ âj . This is because, for a
highly occupied mode with n̄j = 〈â†

j âj 〉, the commutator

[âj , â
†
j ] ≈ O(1) is much smaller than

√
n̄j . The Bose field

can then be approximated as

�̂(x) → �(x) =
∑
j∈C

αjψj (x). (11)

For in-depth discussion of classical fields, we refer the reader
to [1–4] and the earlier reviews in Refs. [6,8,45].

The c-field approximation corresponding to the extended
Bogoliubov model is constructed using the quasiparticle modes
b̂k in place of the âj . In the uniform case these modes are
plane waves with wave vector k = 2πj/L. Several changes
with respect to Sec. III A need to be introduced to obtain the
c-field description.

(i) The approximation (11) breaks down for high-energy
modes, since they will be poorly occupied. For this reason,
the available set of modes should be restricted to a subspace
C specified by an energy cutoff Ec. In a uniform system, Ec

is equivalent to a certain cutoff wave vector kc such that 0 <

|k| � kc. At the cutoff, the kinetic energy is εc = h̄2k2
c /2m, and

in the particlelike regime above phonon excitations Ec ≈ εc.
Using the scaling of (1) with respect to the thermal de Broglie
wavelength �T , one can express kc in dimensionless form

fc = kc

�T

2π
= h̄kc√

2πmkBT
. (12)

1This is notwithstanding the fact that the theory in Ref. [36] is
written in terms of a fine discretization of space with spacing �x. This
formally corresponds to

∫ π/�x

−π/�x
, but for any well-described physical

quantity the result must be unchanged in the limit �x → 0.

(ii) The operators b̂k are replaced by appropriate random
complex numbers bk , which will give the required ensemble
averages. The operator P̂ is replaced by random real values P

with variance kBT L
g

, which preserve its average, and Q̂ by a
real phase Q uniformly distributed on [0, 2π ).

(iii) Quantum expectation values of operators 〈·〉 are re-
placed by stochastic averages 〈·〉s of c-field amplitudes.

The change from operators to c numbers requires some care.
First, since we want to compare thermal equilibrium states, we
should keep in mind that c-fields equilibrate to Rayleigh-Jeans
occupations, not Bose-Einstein. The correct thermal averages
to use are then 〈b∗

kbk′ 〉s = δkk′n
(cf)
k , with

n
(cf)
k = kBT

Ek

(13)

and 〈bkbk′ 〉s = 0. The means 〈bk〉s and 〈P 〉s remain zero.
Second, now bk and b∗

k commute, so some observable expres-
sions in thermal equilibrium need to be slightly modified. For
example, 〈bkb

∗
k 〉s = 〈b∗

kbk〉s = n
(cf)
k , in contrast to 〈b̂kb̂

†
k〉 =

〈b̂†kb̂k〉 + 1.
In the thermodynamic limit, applying the above changes,

Eqs. (6) transform to

δρ̂(x) →
√

Lρ0

2π

∫ kc

−kc

dk(ūk + v̄k )[eikxbk + e−ikxb∗
k ] + P

L
,

θ̂ (x) →
√

L

4iπ
√

ρ0

∫ kc

−kc

dk(ūk − v̄k )[eikxbk − e−ikxb∗
k ] − Q.

(14)

The equation of state for classical fields becomes

n = μ(cf)(kc )

g
−

∫ kc

−kc

dk

2π
(ūk + v̄k )2n

(cf)
k . (15)

The chemical potential for a given density n is different from
the quantum one and depends on the cutoff. That is, μ →
μ(cf)(kc ) when evaluating ūk , v̄k , n

(cf)
k , or Ek .

Further quantities can be obtained using the same sequence
of steps, as in Ref. [36]. The local density–density correlation
g(2)(z) = 1

n2 〈�̂†(x)�̂†(x + z)�̂(x + z)�̂(x)〉 is expressed as

g
(2)
cf (z) = 1 + 2

n

∫ kc

−kc

dk

2π
(ūk + v̄k )2n

(cf)
k cos kz. (16)

The coarse-grained density fluctuations in imaging bins mea-
sured in experiments [69–74] are

uG := varN̂

〈N̂〉 , (17)

so substituting the Bogoliubov expressions, one obtains

ucf
G = 2 lim

k→0
(ūk + v̄k )2n

(cf)
k = kBT

μ(cf)(kc )
. (18)

The interaction energy per particle is trivially related to g(2)(0)
straight from the Hamiltonian

Eint = gn

2
g

(2)
cf (0) = μ(cf)(kc ) − kBT

γ

4πτd

. (19)
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The kinetic energy per particle is

ε = h̄2

2mn

∫ kc

−kc

dk

2π
k2

(
1 + 2v̄2

k

)
n

(cf)
k (20)

and the total energy is Etot = Eint + ε. Some additional expres-
sions are given in Appendix B 1.

IV. ACCURACY INDICATOR

The observables studied at hotter temperatures [12,13] were
the local-density fluctuations g(2)(z), coarse-grained density
fluctuations uG, and the kinetic ε, interaction Eint, and total
Etot energies. It was confirmed that three quantities (uG, ε, and
Etot) suffice to produce a bound on the maximum deviation
between c-field and exact predictions. The discrepancies in all
the other observables were consistently smaller. Based on this
observation, the maximum global error was defined as

RMS(γ, τd, fc ) =
√(

δuG

)2 + max
[
δ2
ε , δ

2
Etot

]
, (21)

with the relative error δ� for a given observable �.
We follow the same route here. The relative errors are

δ� =
[
�(Bog-cf)(γ, τd, fc )

�(Bog-q)(γ, τd )
− 1

]
, (22)

where the fully quantum value is �(Bog-q) and the classical field
value is �(Bog-cf). When comparing, we set the density n in fully
quantum and c-field results to be equal, so they correspond to
the same values of the γ and τd parameters.

In the colder quasicondensate, we have checked for various
parameter values that the three quantities used in Eq. (21) con-
tinue to have the largest errors compared to other observables.
(A representative case is shown in Fig. 6 in Appendix B 2.) In
this way we confirm that (21) is an adequate indicator of c-field
accuracy in the entire quasicondensate regime.

The minimum of RMS, minRMS, gives a figure of merit
for the classical field description and the value fc = optfc at
which it occurs gives the best cutoff to use. Some analytic
estimates are given in Appendix D.

V. COMPLETE CLASSICAL WAVE REGIME AND
OPTIMAL CUTOFF TO USE

We have calculated minRMS and optfc in the entire quasi-
condensate regime by evaluating the appropriate integrals for
observables. This supplements the earlier results for kBT � μ.
Figures 1 and 2 show a synthesis of these data sets and are our
main results. It is pleasing to note the perfect compatibility
(contact) between the red contours obtained from the Bogoli-
ubov theory and the blue contours obtained previously [13].
Raw results are shown in Fig. 8 in Appendix B 2.

Figure 1 describes the accuracy of the c-field description.
The light orange area in which accuracy is better than 10%
covers all temperatures from τd = 0.008 in the quantum de-
generate region down to T = 0 and covers the whole dilute gas
up to around γ = 0.018. It also extends somewhat further up
to around τd ≈ γ ≈ 0.03, for reasons that are not understood
at the moment.

FIG. 1. Regime of applicability for classical fields, shown in light
orange. In this region, observables are accurate to 10% or better.
The values of the minRMS indicator that bounds the accuracy are
shown as a contour plot, with values printed on the figure. The blue
contours are from [13], while the red lines are obtained with the
extended Bogoliubov theory used here. The dot-dashed line indicates
the location of the μ ∼ kBT crossover between quasicondensates
dominated by thermal and quantum fluctuations.

It can now be seen that all the low-order observables remain
well described in the quantum fluctuating region, even down to
T = 0. This is something that was not obvious a priori since
the weak antibunching that occurs due to quantum depletion
[g(2)(0) ≈ 1 − 2

√
γ /π [75,76]] cannot be correctly replicated

by classical fields. However, this has little effect on the coarse-
grained density fluctuation statistics

uG = n

∫
dz[g(2)(z) − 1] + 1. (23)

The reason is that the two contributions touG that are missing in
classical fields (shot noise +1 and antibunching in g(2)) cancel
in the full quantum description. In the c-field description,
g

(2)
cf (z) = 〈|�(x)|2|�(x + z)|2〉s/n2, and from the definition

(17) the number fluctuations are related by

ucf
G := n

∫
dz

[
g

(2)
cf (z) − 1

]
(24)

instead of (23). The shot noise +1 term is no longer present
and values of uG tending to zero can continue to be obtained
despite g

(2)
cf (z) > 1.

In turn, the dependence of the optimal cutoff optfc is
shown in Fig. 2. The standout feature is that there are different
behaviors depending on whether kBT � μ or kBT � μ, with a
changeover marked by the dot-dashed line near the optfc = 1
contour.

In the thermal upper part of the diagram studied already in
Ref. [13], one has a practically constant optfc = 0.64 ± 0.01,
indicating that one cutoff choice is appropriate for the whole
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FIG. 2. Globally optimal values of the cutoff optfc, shown with
contours. The notation is as in Fig. 1 and the light orange area indicates
an accuracy of minRMS < 0.1. The gray colored area indicates
a region from [13] in which there is insufficient precision in the
numerical ensembles to determine the position of the closely spaced
contours.

cloud when kBT � μ. The Bogoliubov data (in red) also show
this but are more precise at low temperatures. They indicate the
presence of a broad shallow trough, between dashed red lines
with values optfc = 0.64 in Fig. 2. The trough must disappear
at higher temperatures since it was not seen in Ref. [13], while
the correctness of the Bogoliubov decreases with increasing
temperature.

The lower part of Fig. 2 confirms the conjecture voiced in
Ref. [13] that a change of cutoff behavior begins when quantum
fluctuations dominate. A rapid growth of optfc is observed and
is approximated by

optfc = 1

12π2

(
γ

τd

)3/2[
1 − 7

√
γ

2π
+ 3π2τd

γ
+ · · ·

]
(25)

(see Appendix D 3). Concurrently,

minRMS =
√

5γ

π

[
1 +

√
γ

30π
+ π2 τd

γ
+ · · ·

]
. (26)

The dependence γ /τd ∝ gn/T means that the cutoff begins
to strongly depend on density in this region. This suggests that
a larger range of momenta k should be allowed in the center
of the cloud than in the tails. A plane-wave basis does not
provide such a possibility, but a harmonic oscillator basis does,
as studied in Ref. [9]. Hence, unlike at higher temperatures,
clouds whose central region reaches μ � kBT should use bases
that take into account the trap shape.

(a) (b)

FIG. 3. Optimal cutoff shown for two characteristic slices in
parameter space (in green): (a) γ = 1.2 × 10−4 and (b) τ = 10−6.
The black lines show the two approximations, optfc = 0.64 (dotted
line) and (25) (dashed line), as well as the hitherto rule of thumb (27)
(dot-dashed line).

VI. KINETIC ENERGY AND PREVIOUS
CUTOFF DETERMINATIONS

The reason why a high cutoff is needed in the low-
temperature quasicondensate is that the kinetic energy begins
to rise steeply with γ . It can be shown that ε ≈ kBT

6π2
γ 3/2

τd
there

(see Appendix D).
The kinetic energy is contained in repulsive quantum

fluctuations. In a c-field description quantum fluctuations are
absent, so to build up the correct level of kinetic energy, extra
modes (with kBT energy in each) should be introduced (details
in Appendix C). Adding these extra modes does not adversely
affect other important observables since their occupations are
small.

The main cutoff result (25) can be compared to the widely
used rule of thumb [4,8,77,78]. This rule of thumb says that the
single-particle energy at the cutoff should be ≈ kBT + μ, and
for a plane-wave basis this energy is εc = π (fc )2kBT . Using
(2) and (12) leads to

f thumb
c ≈

√
1

π

(
γ

2πτd

+ 1

)
. (27)

Note that both (27) and (25) grow with the ratio γ /τd , but the
global optfc (25) grows with a faster power law. The difference
can be seen in Fig. 3.

It is informative to look at the length scales allowed by
the two cutoffs. The smallest length scale accessible with a
kc cutoff in a plane-wave basis is about π/kc = �T /2fc. For
kBT � μ the accessible length scales reached up to the thermal
de Broglie wavelength. However, for kBT � μ, one should
resolve the healing length ξ = h̄√

mμ
. The rule of thumb cutoff

(27) leads to π/kc ≈ π√
2
ξ , so this resolution is achieved. In

turn, the optimum cutoff (25) allows smaller length scales down
to π/kc ≈ 3π ( kBT

μ
)ξ .

In the history of the field, the cutoff has also been char-
acterized by the c-field occupation Nc of the (quasi)particle
mode with the highest energy [8,16,79]. It is expected that
Nc ∼ 1 from general arguments. In a Bogoliubov quasiparticle
treatment one has

Nc ≈ kBT√
εc(εc + 2μ)

. (28)
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FIG. 4. Occupation of the highest-energy mode Nc when the
cutoff is given by optfc (black line) and the rule of thumb (27) (red
line). The asymptotic value at low γ is 0.746.

Figure 4 presents the value corresponding to the numerically
calculated optfc. Its analytic estimate for kBT � μ is

Nc = 18

(
2πτd

γ

)3[
1 + 7

√
γ

π
− 6π2τd

γ
+ · · ·

]

≈ 18

(
kBT

μ

)3

. (29)

At small γ ,Nc takes the value 0.746. It initially looks surprising
that Nc plummets to zero in the quantum fluctuating regime.
However, the rule of thumb (27) also predicts a rapidly falling
Nc behavior with γ (the red line in Fig. 4), only that the fall
is less steep: Nc ≈ 1√

3
(kBT /μ). One can see that these almost

empty modes are needed to allow physically important length
scales and correct kinetic energy. Such a relaxation of the usual
criterion of O(1) cutoff mode occupation has also precedents
in the truncated Wigner prescription [80].

VII. CONCLUSION

The effectiveness of the classical field description has now
been assessed across the whole 1D Bose gas, completing
the campaign started in Refs. [12,13]. Figures 1 and 2 are a
synthesis of the results: The first shows the accuracy that is
possible in many observables simultaneously, while the second
figure specifies the cutoff that achieves this. The light orange
region specifies the parameters for which accuracy is within
10% or better and the dominant physics is indeed that of matter
waves. Simulations can be confidently carried out provided the
system stays in this region. Conversely, outside of this region,
one or more of the standard observables are always going to
be inaccurate.

Basically, there are two main regions of interest. The first
is kBT � μ, characterized by an optimal cutoff optfc = 0.64
that depends only on temperature [13]. This result should be
applicable to nonuniform gases even in a plane-wave basis
and covers the thermal quasicondensate, the soliton regime,
and most of the degenerate gas.

The second region is the kBT � μ ≈ gn quasiconden-
sate regime, studied here, in which quantum fluctuations
are important. The optimal cutoff in this regime is optfc ≈

1
3
√

2π
(μ/kBT )3/2. It lies at energies well above kBT and

becomes strongly density dependent. This high cutoff is
needed to correctly capture the kinetic energy held in quantum
fluctuations. Importantly, it does not distort most observables,
because the occupation of the additional modes is very low
[Nc ≈ 18( kBT

μ
)3]. This goes against the common intuition that

the cutoff mode occupation should be of O(1).
A high cutoff here is actually a welcome result because

studies of defect evolution at low temperature use very-high-
resolution numerical grids that have an energy cutoff well
above kBT and would be suspect if Nc ∼ O(1) was required.
We can also conclude that a plane-wave basis will not be
accurate for nonuniform clouds whose central density exceeds
gn � kBT . Bases that take into account the trap shape are then
needed.

Looking forward, we have seen that the c-field variant of
the extended Bogoliubov model described in Sec. III B allows
one to easily reach the low-temperature limit. It can also be
used to investigate the case of 2D and 3D gases, which may
behave very differently.
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APPENDIX A: ACCURACY OF THE EXTENDED
BOGOLIUBOV THEORY

A figure of merit for the accuracy of the Bogoliubov theory
can be defined in a similar way to (21), by comparing to the
exact quantum solution

RMS (Q)(γ, τd ) =
√(

δ
(Bog)
uG

)2 + max
[(

δ
(Bog)
ε

)2
,
(
δ

(Bog)
Etot

)2]
,

(A1)

where

δ
(Bog)
� (γ, τd ) =

(
�(Bog-q)(γ, τd )

�(q)(γ, τd )
− 1

)
. (A2)

The accurate region with less than 10% error is shown in
Fig. 5 in dark blue, circumscribed by the red dashed line. We
restricted our use of Bogoliubov data in the synthesis of Figs. 1
and 2 to far within this accurate region.

APPENDIX B: CALCULATIONS WITH EXTENDED
BOGOLIUBOV THEORY

1. Observable expressions

Following on from Sec. III A, the fully quantum expressions
for the observables are [36]

g(2)(z) = 1+2

n

∫ ∞

−∞

dk

2π
[(ūk + v̄k )2nk+v̄k (ūk + v̄k )] cos kz,

(B1)
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FIG. 5. Accuracy of the extended Bogoliubov treatment with
respect to exact Yang-Yang theory. The plot shows contours (at
0.1,0.2,...,1.0) of (A1). The dark blue region together with a thick
red dashed line indicates the RMS (Q) � 0.1 contour.

leading via (23) to

uG = 1 + 2 lim
k→0

[(ūk + v̄k )2nk + v̄k (ūk + v̄k )] = kBT

μ
. (B2)

This is a convenient form like (18). The interaction energy per
particle continues to be related to g(2)(0) through (19), giving

Eint = μ − kBT
γ

4πτd

. (B3)

The kinetic energy per particle is

ε = h̄2

2mn

∫ ∞

−∞

dk

2π
k2

[(
1 + 2v̄2

k

)
nk + v̄2

k

]
. (B4)

Phase correlations are

g(1)(z)=exp

[
−1

n

∫ ∞

−∞

dk

2π

[
(ūk+v̄k )2nk+v̄2

k

]
(1 − cos kz)

]
.

(B5)

For the corresponding c-field description, one has the slightly
modified expression

g
(1)
cf (z) = exp

[
−1

n

∫ kc

−kc

dk

2π
(ūk + v̄k )2n

(cf)
k (1 − cos kz)

]
.

(B6)

Consideration was also given to the condensate mode
occupation N0, i.e., the number of atoms in the k = 0 mode.
This observable tends to a well-defined constant value as
the gas length grows, but of course it becomes negligible
compared to N in the thermodynamic limit of the 1D gas. It is
important for comparison to earlier cutoff determinations made
in low-temperature midsize systems with O(1000) atoms,
where the condensate fraction n0 = N0/N remained signifi-
cant [14,77]. Since the density in k space can be expressed as
ñ(k) = N

2π

∫ ∞
−∞ dz g(1)(z)eikz, (B5) can be used to obtain the

FIG. 6. Cutoff dependence in the quasicondensate. (a) and (b)
are in the thermally dominated regime γ = 4 × 10−6 and τd = 1.2 ×
10−6, and (c) and (d) are in the quantum fluctuation regime γ = 10−3

and τd = 8 × 10−6, with the notation g(2)(0) (green), uG (red), Etot

(purple), ε (blue), and N0 (orange). (a) and (c) show discrepancies
for single observables calculated with (22) and (b) and (d) global
discrepancy RMS calculated with (21).

occupation of the lowest-energy (k → 0) state

N0 = ñ(0)�k = n

∫ ∞

−∞
dz g(1)(z). (B7)

For the c-field description, N0 continues to be given by the
form (B7) but now using g

(1)
cf (z) from (B6).

2. Relative errors and optimization

The cutoff-dependent discrepancy of various observables in
the quasicondensate regimes are shown in Fig. 6, calculated
using (22). We observe that ε has the most extreme rising
behavior, while uG captures the strongest falling behavior in
the vicinity where all errors are small. Hence, the best cutoff
occurs at a point where there is a balance between these rising
and falling predictions. The goodness of the classical field
description depends on how large the actual discrepancies at
this point are. The maximal error at such an optimal cutoff can
be set by Etot or uG.

The behavior in the quantum fluctuating condensate is
somewhat similar to the behavior seen at large γ in Ref. [13],
reproduced here in Fig. 7. This figure also shows a flat-
bottomed minimum in RMS more clearly than in Fig. 6(d)
because it is much broader when γ is large. For more details
see Sec. VII.

In Fig. 8 one can see the results for minRMS and optfc

obtained from the Bogoliubov calculations here, overlaid with
the numerical ensemble results from [13]. The data analysis
procedure was described in detail in Ref. [13]. For the Bo-
goliubov case, the data are finely spaced and smooth, and a
simple application of the the Wolfram Mathematica algorithm
ContourPlot turned out to be sufficient for the task, without
the need for Lagrangian interpolation.
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FIG. 7. Cutoff dependence of the discrepancies δ� for the case
γ = 0.112 and τd = 0.001 25 (from [13]). The notation is as in Fig. 6.
The figure of merit RMS(fc ) is shown as the thick gray line. The
dashed blue line shows −δε as a reference.

APPENDIX C: KINETIC ENERGY AND CUTOFF
IN THE QUANTUM FLUCTUATION REGION

The exact Yang-Yang results for kinetic energy ε are shown
in Fig. 9 and display a rapid increase once the regime γ � 2πτd

is reached. The reason for this rapid growth can be tracked
to the kinetic energy present within the quantum fluctuations.
To see this, let us make some approximations to (B4) in the
μ � kBT regime.

First, consider the thermal part that contains nk . The main
contributing modes are in the phonon regime where Ek ≈√

2εμ = ξ |k|μ and their occupation can be approximated by
nk ≈ kBT /Ek . The quantity v̄2

k ≈ 1/2ξ |k| is much greater than

FIG. 9. Kinetic energy ε as a function of γ for the exact Yang-
Yang results. The magenta dashed line shows the approximation (C2)
for τd = 10−4.

one in this regime. Using all this, the thermal term in Eq. (B4)
can be written as

εth ≈ h̄2

2mn

∫ kBT /μξ

−kBT /μξ

dk

2π
k2 1

ξ |k|
kBT

ξ |k|μ =
(

kBT

μ

)2
μ

2πξn

≈ kBT τd√
γ

. (C1)

The other part of (B4) (the quantum fluctuation term)
contains just v̄2

k . This quantity decays rapidly v̄2
k ≈ 1/(kξ )4

in the particle regime and has a negligible contribution there.
Hence, just the phonon contribution is relevant. The crossover
in the behavior of v̄k to particlelike is at |k| = 21/3/ξ , so the

FIG. 8. Detailed comparison of raw Bogoliubov and numerical ensemble results. Contours of (a) minRMS and (b) optfc are shown with
numbered values on the plot, similarly to Figs. 1 and 2, respectively. Bogoliubov results are shown as solid contours between colored fields,
while contours derived from the numerical ensembles [13] are shown as joined symbols. The red dashed line is copied from Fig. 5 and shows
the location at which the error between the Bogoliubov and exact results reaches 10%.
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quantum fluctuation part is

εqf ≈ h̄2

2mn

∫ 21/3/ξ

−21/3/ξ

dk

2π
k2 1

2ξ |k| = μ

25/3πnξ
≈ kBT γ 3/2

4π222/3τd

.

(C2)

This is far larger than (C1) and indicates that kinetic energy is
indeed dominated by quantum fluctuations.

Let us now see what happens in the c-field description.
The expression (20) contains only a thermal term, but n

(cf)
k =

kBT /Ek does not decay as fast as in a Bose-Einstein distri-
bution and both phononlike and particlelike modes contribute.
Using again the crudest useful approximation, the phonon and
particle regimes meet at |k| = 2/ξ . Taking the leading terms

ε(cf) ≈ h̄2

mn

{∫ 2/ξ

0

dk

2π
k2 1

ξ |k|
kBT

ξ |k|μ +
∫ kc

2/ξ

dk

2π
k2 2kBT

μ(ξk)2

}

= kBT kc

πn

(
1 − 1

fc

√
μ

2πkBT

)

≈ kBT kc

πn
= 2kBTfc

√
τd . (C3)

The second term in the large parentheses on the second line
turns out to be small once the estimate (C4) is obtained. The
estimate (C3) corresponds to assuming a pure kinetic energy
per mode of exactly kBT . Since the vast majority of modes
are particlelike because of the high cutoff, this is actually a
reasonable approximation.

Equation (C3) can be compared to the quantum kinetic
energy (C2). Such a comparison gives the following prediction
for the cutoff based on kinetic energy alone:

fc ≈ 0.008

(
γ

τd

)3/2

. (C4)

Equation (C4) agrees remarkably well with the Bogoliubov
result (25) and the exact numerics.

APPENDIX D: BOGOLIUBOV ESTIMATES FOR opt fc AND
minRM S IN THE QUANTUM FLUCTUATING REGIME

The quantum fluctuating Bogoliubov regime has two small
parameters: γ � 1 and a temperature scaled with respect to
the chemical potential

t = 2πτd

γ
≈

(
kBT

μ
= uG

)
� 1. (D1)

The equality kBT /μ = uG follows from (B2) and (18). We will
make a self-consistent expansion of the required quantities in
these small parameters. We know from (C4) that the scaling
optfc ∝ t−3/2 holds in this regime, which will be confirmed in
Eq. (D21). Assuming that we will be working in the vicinity of
optfc, it is required to take this scaling into account to preserve
terms of the right order in the expansion. Therefore, we define
the prefactor pc via

fc = pc

t3/2
. (D2)

1. Chemical potential and related quantities

To obtain an approximation to μ, the equation of state (9)
is first evaluated to the form

1

t
= 1

uG

+ 1

π

√
γ

t uG

[
1− π2u2

G

12
+ π4u4

G

48
− π6u6

G

32
+ O

(
u8

G

)]
.

(D3)

In detail, the integral in Eq. (9) can be written as

− T

2π
√

μ

∫ ∞

0
ds

[
s

R(esR
√

2/uG − 1)
+ s − R

√
2/uG

2R

]
,

(D4)

with R =
√

1 + 1
2 s2uG = √

1 + �(s). While the second term

easily integrates, the first does not. However, the [esR
√

2/uG −
1]−1 factor cuts out any contributions at large s �

√
uG/2.

SinceuG � 1, then� takes on small values� � 1
4u2

G � 1 and
R ≈ 1. The first term in the integrand of (D4) can be written as
a MacLaurin series in r (s) = R − 1 � 1 as

∑
j Mj (s)r (s)j .

Its integration is still troublesome beyond the lowest terms,
so r (s) is further expanded in the small quantity s2uG/4 like

r = s2uG

4 − s4u2
G

32 + · · · . This then gives the series

− T

2π
√

μ

∑
jj ′>0

∫ ∞

0
ds Tjj ′ (s)

(
s2uG

4

)j ′

+
√

γ

π
√

tuG

, (D5)

in which all the integrals give (D3). We spare the reader from
explicit expressions for the Tjj ′ .

Now, to obtain a self-consistent expansion for μ, we
postulate an ansatz

μ = kBT

t

∑
j,j ′�0

cjj ′ t j γ j ′/2 (D6)

with coefficients cjj ′ to be determined. By equating subsequent
terms of the same orders of

√
γ and t appearing in Eq. (D3)

one obtains the series expansion

μ

kBT
= 1

t

[
1 −

√
γ

π
+ γ

2π2
− γ

√
γ

8π3

]

+ t
√

γ π

12

[
1 +

√
γ

π
+ 3γ

8π2

]
O(t3, γ 2). (D7)

For c-fields, the integral in Eq. (15) can be expressed as

1

t
= 1

u
(cf)
G

−
√

γ tu
(cf)
G

π
tan−1

⎡
⎣fc

√
πu

(cf)
G

2

⎤
⎦ (D8)

and the resulting series expansion is

μ(cf)

kBT
= 1

t
+

√
γ

2

[
1 − t

√
8

pcπ3/2
+ 4t3

√
2

3π5/2p3
c

]

− γ t

8

[
1 − t

√
8

π3/2pc

]
+ 5γ 3/2t2

64

[
1 − 8

√
8t

5π3/2pc

]

+O(t4, γ 2). (D9)

The leading correction terms in Eqs. (D7) and (D9), of
O(

√
γ ), have the opposite sign and no cutoff dependence.

This proves what was previously found empirically: No cutoff
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choice will match chemical potentials exactly in the quantum
fluctuating regime. Since all of uG, Eint = T/uG − T/2t , and
g(2)(0) = 2tEtot/T = 2t/uG − 1 depend simply on μ and the
control parameters γ and τd , they will never be exactly
matched by any cutoff. The leading-order terms for the various
observable estimates (which may be of use for future work) are

uG = t

[
1 +

√
γ

π
+ γ

2π2

]
− πt3√γ

12

[
1 + 3

√
γ

π

]

+O(t5, tγ 3/2), (D10)

u
(cf)
G = t − t2√γ

2
+ t3

[ √
2γ

π3/2pc

+ 3γ

8

]
+ O(t4, γ 2),

(D11)

g(2)(0) = 1 − 2
√

γ

π
+ γ

π2
− γ 3/2

4π3
+ πt2√γ

6

[
1 +

√
γ

π

]

+O(t4, t2γ 3/2, γ 2), (D12)

g(2)(0)(cf) = 1 + t
√

γ − t2√γ

[ √
8

π3/2pc

+
√

γ

4

]

+ t3γ

[
1√

2π3/2pc

+ 5
√

γ

32

]
+ O(t4, γ 2).

(D13)

2. Kinetic energy

The integral (B4) can be reduced to integrable terms in the
same way as the one in Eq. (9). Upon substituting (D7) and
keeping consistent orders, we obtain

ε

kBT
=

√
γ

3πt

[
1 − 3

√
γ

2π
+ 9γ

8π2
+ π2t2

4

(
1 +

√
γ

π
+ 3γ

8π2

)]

+O(t3, γ 2). (D14)

The integral in Eq. (20) can be performed, so

ε(cf)

kBT
=

√
2γ t

π

⎛
⎝fc − 1√

2πu
(cf)
G

tan−1

⎡
⎣fc

√
πu

(cf)
G

2

⎤
⎦

⎞
⎠.

(D15)

This leads to the expression

ε(cf)

kBT
= pc

√
2γ

t
√

π
−

√
γ

2
+ t

√
2γ

π3/2pc

− tγ

8
+ 3t2γ

pc

√
8π3/2

+O(t3, t2γ 3/2, γ 2) (D16)

with the discrepancy

δε = 3pc

√
2π − 1 + 9pc

√
γ√

2π
+ 27pcγ

4
√

2π3/2
− t2 3

(
p2

cπ
3 − 4

)
pc

√
8π

− 3πt

2

[
1 + 3

√
γ

2π
+ 9γ

8π2

]
+ O(t2√γ , γ 3/2, t3).

(D17)

Equating this to zero gives the optimum cutoff for kinetic
energy (only):

f (ε)
c = 1

3
√

2π t3/2

[
1 − 3

√
γ

2π
+ 9γ

8π2
+ 3πt

2
+ O(t2, γ 3/2)

]
.

(D18)

One can see that the leading factor of (D18) when converted to
γ , τd variables is f (ε)

c = 1
12π2 (γ /τd )3/2(1 + · · · ). The prefac-

tor 1
12π2 = 0.008 44 is a remarkably close match to that seen in

Eq. (C4). To include the other observables and get an estimate
for minRMS, analysis of the full RMS figure of merit is
necessary.

3. Analytic optimization

The discrepancy for total energy is

δEtot = √
γ

[
4

3π
+ 2pc

√
2

π
− πt2

3

]
+ γ

[
16

9π2
+ 8

√
2pc

3π3/2

]

− t2γ

(
31

18
+ 2pc

√
2π

3

)
+ O(t3, γ 3/2). (D19)

Zeroing out the leading term requires negative pc, but pc must
be positive and was assumed O(1), so δEtot is always positive
in the vicinity of the optimum cutoff that interests us. In fact,
δEtot ≈ 2

√
γ /π at the f (ε)

c cutoff.
As a corollary to the above, the term M = max[δ2

ε , δ
2
Etot

] in
Eq. (21) must take on the flat-bottomed shape seen in Fig. 6(c).
The ends of the flat-bottomed part will occur when δEtot = ±δε,
i.e., when

f ±
c = 1

3
√

2π t3/2

[
1 + (±4 − 3)

√
γ

2π
+ (59 ∓ 32)γ

24π2
+ 3πt

2

±t
√

γ + (4 ∓ 1)γ t

6π
+ O(γ 3/2, t2)

]
. (D20)

When the full RMS(fc ) in the flat-bottomed region is con-

structed, we have RMS2 = δ2
uG

+ δ2
Etot

= γ ( 25
9π2 + 16

√
2 pc

3π3/2 +
8p2

c

π
+ O(t,

√
γ )). The leading order of this always has positive

gradient with fc. This implies that the leftmost edge corre-
sponds to the overall minimum of minRMS, i.e., optfc = f −

c ,

optfc = 1

3
√

2π t3/2

[
1 − 7

√
γ

2π
+ 91γ

24π2
+ 3πt

2
− t

√
γ

+5γ t

6π
+ O(t2, γ 3/2)

]
. (D21)

The global figure of merit at this point is

minRMS =
√

5γ

π

[
1 +

√
γ

30π
+ πt

2
+

√
γ t

6
− t2

(
6 + π2

12

)

+γ
1889

1800π
+ O(tγ, t2√γ , γ 3/2, t2)

]
. (D22)
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M. Gajda, K. Rzążewski, and M. Brewczyk, Phys. Rev. Lett.
109, 205302 (2012).

[28] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M.
Schreitl, I. Mazets, D. A. Smith, E. Demler, and J. Schmied-
mayer, Science 337, 1318 (2012).

[29] C. V. Parker, L.-C. Ha, and C. Chin, Nat. Phys. 9, 769 (2013).
[30] I.-K. Liu, R. W. Pattinson, T. P. Billam, S. A. Gardiner, S. L.

Cornish, T.-M. Huang, W.-W. Lin, S.-C. Gou, N. G. Parker, and
N. P. Proukakis, Phys. Rev. A 93, 023628 (2016).

[31] M. C. Tsatsos, P. E. Tavares, A. Cidrim, A. R. Fritsch, M. A.
Caracanhas, F. E. A. dos Santos, C. F. Barenghi, and V. S.
Bagnato, Phys. Rep. 622, 1 (2016).

[32] I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou, F.
Dalfovo, and N. P. Proukakis, Commun. Phys. 1, 24 (2018).

[33] C. N. Yang and C. P. Yang, J. Math. Phys. 10, 1115 (1969).
[34] K. V. Kheruntsyan, D. M. Gangardt, P. D. Drummond, and

G. V. Shlyapnikov, Phys. Rev. A 71, 053615 (2005).
[35] J. Pietraszewicz and P. Deuar, New J. Phys. 19, 123010

(2017).
[36] C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
[37] A. Sinatra, E. Witkowska, and Y. Castin, Eur. Phys. J.: Spec.

Top. 203, 87 (2012).
[38] S. Donadello, S. Serafini, M. Tylutki, L. P. Pitaevskii, F. Dalfovo,

G. Lamporesi, and G. Ferrari, Phys. Rev. Lett. 113, 065302
(2014).

[39] S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, F. Larcher,
F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. Lett. 115,
170402 (2015).

[40] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, Science
347, 167 (2015).

[41] R. A. Duine and H. T. C. Stoof, Phys. Rev. A 65, 013603 (2001).
[42] R. J. Lewis-Swan, M. K. Olsen, and K. V. Kheruntsyan,

Phys. Rev. A 94, 033814 (2016).
[43] J. Javanainen and J. Ruostekoski, New J. Phys. 15, 013005

(2013).
[44] M. D. Lee and J. Ruostekoski, Phys. Rev. A 90, 023628 (2014).
[45] N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).
[46] C. W. Gardiner and M. J. Davis, J. Phys. B 36, 4731 (2003).
[47] C. Lobo, A. Sinatra, and Y. Castin, Phys. Rev. Lett. 92, 020403

(2004).
[48] A. S. Bradley, C. W. Gardiner, and M. J. Davis, Phys. Rev. A

77, 033616 (2008).
[49] R. N. Bisset, M. J. Davis, T. P. Simula, and P. B. Blakie,

Phys. Rev. A 79, 033626 (2009).
[50] B. Damski and W. H. Zurek, Phys. Rev. Lett. 104, 160404

(2010).
[51] T. Simula, M. J. Davis, and K. Helmerson, Phys. Rev. Lett. 113,

165302 (2014).
[52] N. G. Berloff and B. V. Svistunov, Phys. Rev. A 66, 013603

(2002).
[53] N. G. Parker and C. S. Adams, Phys. Rev. Lett. 95, 145301

(2005).
[54] T. M. Wright, R. J. Ballagh, A. S. Bradley, P. B. Blakie, and

C. W. Gardiner, Phys. Rev. A 78, 063601 (2008).
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Phys. Rev. A 81, 013629 (2010).

[66] E. Witkowska, M. Gajda, and K. Rzążewski, Opt. Commun. 283,
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