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Complex wave fields in the interacting one-dimensional Bose gas
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We study the temperature regimes of the one-dimensional interacting gas to determine when the matter wave
(c-field) theory is, in fact, correct and usable. The judgment is made by investigating the level of discrepancy in
many observables at once in comparison to the exact Yang-Yang theory. We also determine what cutoff maximizes
the accuracy of such an approach. Results are given in terms of a bound on accuracy, as well as an optimal cutoff
prescription. For a wide range of temperatures the optimal cutoff is independent of density or interaction strength
and so its temperature-dependent form is suitable for many cloud shapes and, possibly, basis choices. However,
this best global choice is higher in energy than most prior determinations. The high value is needed to obtain the
correct kinetic energy, but does not detrimentally affect other observables.

DOI: 10.1103/PhysRevA.97.053607

I. INTRODUCTION

The classical field, or “matter wave,” description has
become an irreplaceable workhorse in the quantum gases
community. It allows one to deal with a zoo of dynamical and
thermal phenomena, particularly those that are nonperturbative
or random between experimental runs. The idea of the c-field
approach is to treat the low-energy part of the system as an
ensemble of complex-valued wave fields when mode occupa-
tions are large. The general aim here will be to quantitatively
judge the accuracy of the c-field approach and circumscribe
the physical parameters of the matter wave region. This will
make calculations more confident in the future.

To say that a system’s state is well described by such matter
waves implies a host of important physical consequences.
Among them: the system behaves like a superfluid at least
on short scales; all relevant features come from a collective
contribution of many particles; the capability for quantum
wave turbulence and nonlinear self-organization [1]; and single
realizations of the ensemble correspond to measurements of
many particle positions in an experimental run [2–4].

A rapid growth of interest in these kinds of phenomena has
occurred as soon as they became accessible experimentally.
Their theoretical study and comparison to experiment has
relied on the various flavors of classical field descriptions
[5–7]. This is because c-fields are typically the only non-
perturbative treatment of quantum mechanics that remains
tractable for large systems. Examples include defect seed-
ing and formation [8–12], quantum turbulence [1,13,14], the
Kibble-Zurek mechanism [15–17], nonthermal fixed points
[18,19] and vortex dynamics [20–23], the BKT transition
[20], and evaporative cooling [11,24,25]. Related effective
field theories using complex-valued fields have been developed
for polaritons [26,27], superfluid Fermi gases [28,29], or for
Yang-Mills theory [30].
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The general understanding of c-fields for the past 15 years or
so has rested on two widely applicable qualitative arguments.
First, that the bulk of the physics must take place in single-
particle modes that are highly occupied. This allows one to
neglect particle discretization and the noncommutativity of
the Bose fields �̂(x) and �̂†(x). Secondly, that the subspace
of modes treated with c-fields should be limited to below
some energy cutoff Ec, at which mode occupation is of
the order of one to ten. At this level particle discretization
(which is impossible to emulate using a complex amplitude)
becomes important. Such a cutoff also prevents the ultraviolet
catastrophe that occurs because of the equipartition of kBT

energy per each mode in classical wave equilibrium. A variety
of prescriptions for choosing the cutoff have been obtained in
the past [22,31–38], but they were usually tailored to correctly
predict one particular observable.

For a general treatment of a system with classical fields,
however, one desires something broader: that at least all
the usual measured observables are close to being described
correctly at the same time. This is particularly important for the
study of nonlinear dynamical and nonequilibrium phenomena
such as quantum turbulence or defect formation times, for
which significant errors in one quantity will rapidly feed
through into errors in all others. As we will show, the key to
a better understanding of the situation is that some quantities
are much more sensitive to cutoff than others. Moreover, their
dependence can come in two flavors depending on whether
they are dominated by low-energy (IR) or high-energy (UV)
modes.

Past cutoff studies concentrated primarily on static observ-
ables dominated by low-energy modes (condensate fraction
[31,33,36], phase [37], and density correlation functions [38]).
For damping and long-time dynamics, though [34,39–41], the
influence of higher-energy modes comes out more strongly.
A cutoff determination that would cover such nonequilibrium
processes has been lacking. Here we will take the approach
that, to describe them well, at least the energy and its compo-
nents (kinetic, interacting) should be correct. Accordingly, we
will determine the cutoffs needed for both static and energetic
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observables to be accurate simultaneously, and explicitly
bound this accuracy.

In this paper we consider the one-dimensional Bose gas
with repulsive contact interactions. This system underpins
a very large part of ultracold gas experiment and theory.
Moreover, there exist beautiful exact results for the uniform gas
to compare to [42,43]. To judge when matter wave physics is an
accurate description, we generate c-field ensembles, construct
a robust figure of merit, and study its dependence on the
cutoff. This follows the same tested route that was used in
a preliminary study of the ideal Bose gas in [44].

An overview of the classical field method and system prop-
erties is given in Sec. II. Next, Sec. III reports the dependence
of observables on the cutoff, while in Sec. IV the procedure
used to judge the overall goodness of a c-field description is
presented. The practical limits of the matter wave region and
the globally optimal cutoff are found in Sec. V. Subsequently,
analysis of the optimal cutoff for nonuniform and/or dynamical
systems can be found in Sec. VI, along with a comparison to
earlier results. We conclude in Sec. VII. Additional detail on a
number of technical matters is given in the Appendixes.

II. DESCRIPTION OF THE SYSTEM

A. Classical wave fields

The classical field description of a system can be succinctly
summarized as the replacement of quantum annihilation (cre-
ation) operators âk (â†

k) of single-particle modes k in the
second-quantized field operator by complex amplitudes αk

(α∗
k ). With mode wave functions ψk(x), it can be written

�̂(x) =
∑

k

âkψk(x) → �(x) =
{ ∑

k∈C
αkψk(x)

}
. (1)

This is warranted when occupations are sufficiently macro-
scopic. Evidently, occupations will become not sufficiently
macroscopic for modes with high enough energy. For this
reason it is necessary to restrict the set of modes to a low-energy
subspace (often called the “coherent” or “c-field” region [6]),
which is denoted by C. This set is usually parametrized by a
single cutoff parameter, at a given mode energy Ec. Note that,
in general, the system’s state is represented using an ensemble
{. . .} of complex field realizations, each with its own set of
amplitudes αk . Each member breaks the gauge symmetry of
a typical full quantum ensemble in a manner similar to single
experimental realizations, but the ensemble preserves it [2,45].
This naturally allows, e.g., for the presence of spontaneous
nonlinear many-body defects, and many interesting non-mean-
field phenomena that are very difficult to access using other
approaches.

For in-depth discussion of the subject, we refer the reader
to [5–7,45] and the earlier reviews [46–48].

B. Interacting 1D gas

Here, we consider the one-dimensional Bose gas with re-
pulsive contact interactions. The exact Yang-Yang solution for
the uniform gas at a given interaction strength and temperature
[43] will provide the benchmark to which the c-field method
will be compared.

To obtain results independent of the trapping geometry,
density profile, etc., we will focus on systems that are amenable
to a local density approach (LDA). In this, it is assumed that the
ensemble averaged density n = 〈|�(x)|2〉 varies more slowly
than other relevant quantities, and the system can be treated
using sections of the gas of a given density n. The local density
|�(x)|2 in a single realization can still vary strongly within the
section, which is sufficient to include defects and turbulence
phenomena.

Working thus in the LDA with a uniform section of a larger
gas, the grand canonical ensemble is the natural choice, as
the rest of the system acts as a particle and thermal reservoir.
Results that are independent of finite-size effects are the most
useful. Therefore, we impose the thermodynamic limit by
using a section with uniform density n and periodic boundary
conditions of a length L sufficiently large to contain the longest
length scale in the system. Usually this is the phase correlation
length, and it is equivalent to requiring the first-order (“phase”)
correlation

g(1)(z) = 1

n
〈�̂†(x)�̂(x + z)〉 (2)

to drop to zero when z � L/2.
For uniform systems, a basis of plane-wave modes k ≡ k

is natural. The energy cutoff for the low-energy subspace C is
equivalent to a momentum cutoff kc so that only modes |k| < kc

are included. Its dimensionless form is

fc = kc

�T

2π
= h̄kc√

2πmkBT
, (3)

in terms of the particle mass m and thermal de Broglie
wavelength �T at temperature T . The corresponding energy
cutoff is

εc = h̄k2
c

2m
= π f 2

c kBT . (4)

The properties of a uniform one-dimensional (1D) gas
for a given density n with contact-interaction strength g are
encapsulated by two dimensionless parameters

γ = mg

h̄2n
, τd = T

Td

= 1

2π

mkB

h̄2

T

n2
(5)

(provided there are no finite-size effects). The first parameter
quantifies the interaction strength, moving from dilute Bose
gases for γ 	 1 to a strongly interacting fermionized regime
when γ 
 1. The second one is a dimensionless temperature,
in units of quantum degeneracy temperature Td .

The parameter space of the system has been classified by
the behavior of density fluctuations [49,50] into a number of
regions separated by crossovers.

©C Classical gas: τd � 1/(4π ) (physics described by clas-
sical particles, not waves).

©D Quantum degenerate gas:
√

γ � 4πτd � 1 (low-energy
modes occupied by more than one particle, density fluctuations
large).

©T Thermally fluctuating quasicondensate: γ � 4πτd �√
γ (phase coherence on appreciable scales, small density

fluctuations dominated by thermal excitations, weak bunching
of atoms).

©S A soliton region: between regions ©D and ©T [51,52].
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©Q Quantum fluctuation dominated quasicondensate:
4πτd � γ � 1 (phase coherence on long scales, small
density fluctuations dominated by quantum depletion, weak
antibunching).

©F Fermionized gas: γ � 1 (physics dominated by strong
interparticle repulsion; overlap between single-particle wave
functions becoming small).

A series of c-field ensembles was generated for each of
many chosen parameter pairs (γ , τd ) in parameter space. Each
series contained separate uniform ensembles for a range of
values of fc. We primarily used a Metropolis algorithm for
a grand canonical ensemble as described in [44,53]. For a
few parameter pairs, in the large γ , low τd region where the
Metropolis method was very inefficient, the ensemble was
generated by evolving a projected stochastic Gross-Pitaevskii
equation (SPGPE) to its stationary ensemble. Details of our
implementations are given in Appendix A.

III. OBSERVABLES

For a correct treatment of the physics of the system all the
low-order observables that form the staple of experimental
measurements should be calculated correctly. Further, for
correct dynamics, the energy and energy balance (kinetic
vs interaction) must also be correct. Any discrepancies will
rapidly feed through into the other quantities in a nonlinear
system, whether in the form of energy mixing or dephasing
in integrable systems. This argument becomes even more
important in nonuniform systems, because discrepancies in the
density dependence of energy will immediately lead to bogus
expansion or contraction.

Let us define a relative discrepancy between the classical
field value of an observable 
(cf) obtained using a given cutoff
and the true quantum observable 
:

δ
(γ,τd,fc) := �




=

(

(cf)(γ,τd,fc)


(γ,τd )
− 1

)
. (6)

We will always compare a classical field ensemble with
density n to exact results with the same density, so δn = 0 by
construction. This ensures equivalence between the physical
parameters γ and τd (5) for both CF and exact results. Next,
setting g and temperature T leaves one free technical parameter
fc for the c-field. Its value can often be chosen to make one
other observable match exactly, but not all of them.

In an earlier study [44], the dependence of the discrepancies
on cutoff was analyzed and one of the most important results
was that observables fall into two broad categories described
below.

The first kind are IR-dominated observables that display
falling values with growing cutoff. They are dominated by
low-energy modes and finally reach asymptotic values. This
group includes such quantities as the half-width of the g(1)(z)
correlation function given by (2) (i.e., the phase coherence
length), values of g(1)(z) at large distances z, the condensate
fraction n0, the effective temperature in a microcanonical
ensemble [54,55], or the coarse-grained density fluctuations.
These last are given by

uG := varN̂

〈N̂〉 = S0 = n

∫
dz[g(2)(z) − 1] + 1 (7)

and will play an important role in our analysis. Equation (7) is
also known as the k = 0 static structure factor S0. It is the ratio
of the measured number fluctuations to Poissonian shot noise
in regions that are wider than the density correlation length
and serves as a measure of the typical number of particles per
randomly occurring density lump [56]. It tends (i) to one in a
coherent state or at high temperature, (ii) to zero at T = 0 or
in a fermionized gas, and (iii) to large positive values in the
thermal-dominated quasicondensate. It is a density fluctuation
quantity that is quite readily measured in experiments [57–
59] because standard pixel resolution is sufficient, and is
an intensive thermodynamic quantity. These features are to
be contrasted to the microscopic density-density correlation
g(2)(z) = 〈�̂†(x)�̂†(x + z)�̂(x + z)�̂(x)〉/n2, which is usu-
ally neither intensive nor experimentally resolvable in situ.

The second category contains UV-dominated observables
which follow an opposite trend. They are underestimated for
low cutoff, because high-energy modes have a large contribu-
tion, and grow with increasingfc. The most prominent example
are energies per particle

Etot = Eint + ε = g

2

∫
dx �̂† 2(x)�̂2(x)

+
∫

dx
h̄2

2m
∇�̂†(x)∇�̂. (8)

Others are some collective mode frequencies in a trap [40] and
g(2)(0). The density n also behaves this way when changing
only kc, but is guaranteed matched in our approach.

We have inspected the discrepancies (6) for many locations
in (γ,τd ) space using the numerically generated ensembles.
Figure 1(a) shows a representative case for the quantum
degenerate region. A variant at larger values of γ when total
energy is dominated by interaction can be found in Appendix
A 4. The exact quantum observables Etot, ε, and N were
obtained according to [43], while the g(2)(0) according to [60].
The uG calculation uses a specially developed method [56].

FIG. 1. Example of accuracy assessment for a representative
choice of parameters. Panel (a): cutoff dependence of the discrep-
ancies δ of single observables in the case γ = 0.001, τd = 0.01, for
the coarse-grained density fluctuations uG (red), the total energy Etot

(purple), the kinetic energy ε (blue), the density-density fluctuations,
and g(2)(0) or the interaction energy Eint (green). Panel (b): cutoff
dependence of the global discrepancy RMS(fc) at τd = 0.0159
obtained numerically for several values of γ : 0.01 (square), 0.1
(circle), 0.2 (diamond), and 1 (rectangle). Dashed curves show the
fit [parabolic to (RMS)2] to numerical points near the minimum.
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Overall, we find that the same trends seen in the 1D ideal gas
are repeated in the interacting case for the relevant observables
such as kinetic energy ε and uG. For the interacting gas one
should also separately consider the interaction energy per
particle Eint = 1

2g n g(2)(0) and the total energy per particle
Etot. For the physical regimes studied, they are both found to
belong to the second category: discrepancy rising with cutoff.
In general, we can confirm that the two observable categories
hold also in the interacting gas.

IV. GLOBAL ACCURACY INDICATOR

In the ideal gas, the low-order observables with the most
disparate behavior are the coarse-grained density fluctuations
uG and kinetic energy ε [44]. Their mismatch is the strongest
restriction on the range of fc for which all δ
 errors are
small. Based on this, a global figure of merit was defined:
RMSid =

√
δ2
ε + δ2

uG
. This includes discrepancies of observ-

ables belonging to both classes. It had the convenient property
that it was an upper bound on the error of all the observables
that were treated.

The interacting gas brings with it several additional observ-
ables. Among them, the components of energy are particularly
important: a correct Etot is needed for an accurate description of
dynamics, Eint for local density fluctuations, while the kinetic
energy ε is closely related to phase-coherence length and the
momentum distribution.

A good figure of merit RMS(fc) for the interacting case
should be a bound both for δε and δuG

as well as for δEtot and
δEint . Inspecting the data, one finds that the discrepancies in the
total energy and interaction energy [same as for g(2)(0)] are
found to grow slower than ε, so that ε and uG always remain
the most extreme representatives of their groups. However,
at large interaction γ , it is observed that near the optimum
the errors in ε and uG can be exceeded by the error in Etot

(see Appendix. A 4). This happens when the dominant energy
contribution comes from interactions and the discrepancies of
Eint andEtot are about equal. Hence the overall conclusion is that
δEint can be omitted from the RMS without loss of generality,
but δEtot should stay.

As a result, we define the measure of global error (at a given
cutoff) as

RMS(γ,τd,fc) =
√

(δuG
)2 + max

[
δ 2
ε ,δ 2

Etot

]
. (9)

We use the maximum of the energy discrepancies rather than
an rms of all three potentially extreme observables. In this form
it has a more convenient interpretation, because (*) we do not
wish to double count the importance of energy to keep the
interpretation of RMS as being close to the upper bound on the
discrepancies (not

√
2 times the upper bound) and (**) it will

remain consistent with the ideal gas results of [44]. Figure 1(b)
shows the dependence of (9) for a variety of cases.

The minimum of the global error quantity RMS(fc) will
provide the main results in this paper. Its value minRMS, will
be our figure of merit for the classical field description and its
location optfc is the globally optimal cutoff. Namely,

minfc>0[RMS] = minRMS = RMS(γ,τd,optfc). (10)

FIG. 2. Regime of applicability for classical wave fields. Con-
tours of minRMS (the upper bound on discrepancy of observables) are
shown at values of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The dashed lines
are ideal gas positions [44]. The diagram also shows the location of
numerical ensembles generated by Metropolis and SPGPE ensembles
as open and filled diamonds, respectively. The circled letters indicate
the physical regime, as explained in the text.

After generating ensembles with given values of γ , τd , and
fc, observable expectation values 
(cf) were calculated. They
were compared to corresponding exact quantum values to get
the discrepancies δ
(γ,τd,fc). At the end, the RMS(γ,τd,fc)
function was minimized numerically to get minRMS

and optfc. Details of these procedures are provided in
Appendix B 1.

V. RESULTS: CLASSICAL WAVE REGIME

The dependence of the figure of merit minRMS on physical
parameters γ , τd is shown in Fig. 2. This presents the regime
of applicability of classical fields, depending on how much
inaccuracy is to be tolerated. The quantity minRMS bounds the
inaccuracy for all observables studied. Open and closed points
indicate for which parameters ensembles were calculated.
Color contours specify given values of the estimated minRMS.

The white region in Fig. 2 was studied, and includes the
thermal quasicondensate ©T , the quantum turbulent soliton
region ©S , and the degenerate gas regimes ©D . The gray areas
include most of the classical region ©C , fermionized regime ©F ,
and the quasicondensate dominated by quantum fluctuations
©Q . These are listed and delineated in Sec. II B. We have no
reliable information for the gray areas because of technical
difficulties in obtaining ensembles in the thermodynamic limit.
For the coldest temperatures, especially when τd � γ , one
sees slow convergence during calculations and/or increasing
problems in removing finite-size effects.

Knowing that experimental uncertainties are typically of
the order of 10%, a value of minRMS � 0.1 tells us that the
physics in this region is in practice the physics of classical
matter wave fields.

Overall, the region dominated by classical wave physics in
Fig. 2 is larger than one could have conservatively supposed.
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FIG. 3. Globally optimal values of the cutoff, optfc (black con-
tours with values shown on the plot). For reference, green symbols
show the location of minRMS = 0.1 from Fig. 2. The salmon colored
area indicates a region in which there was insufficient precision in the
numerical ensembles to determine the position of the closely spaced
contours. The dashed gray lines are the ideal gas predictions for optfc.

Almost the entire thermal quasicondensate ©T is described
well, all the way until the crossover to fermionization kicks
in around γ = 0.018 to 0.075. The quoted values correspond
to discrepancies minRMS = 0.1 and 0.2, respectively.

The quantum degenerate gas ©D is correctly described for
all temperatures up to at least τd ≈ 0.008 (minRMS = 0.1)
and 0.03 (minRMS = 0.2). This is an important result, as it is
not immediately obvious that classical fields apply so far. What
this means is that not only do they cover the entire ©T regime but
a number of strongly fluctuating higher-temperature regions as
well. One of them is the region with prominent thermal solitons
©S in the range τd ∼ 0.04

√
γ –0.2

√
γ [51,52]. At warmer

temperatures1 τd ≈ 0.27
√

γ , the crossover to an ideal-gas-like
state that occurs when μ changes sign also lies well within
the classical wave region. This means that the changeover
from wavelike to particlelike physics occurs at much higher
temperatures than the crossover between Bogoliubov and
Hartree-Fock physics [61].

Finally, observing the left edge of Fig. 2, we can confirm
that our numerical results for minRMS match well to the ideal
gas results of [44].

Summarizing the criterion of 10% goodness of the c-fields
description, the limit of the matter wave region reaches (i)
τd ≈ 0.008 until γ � 0.001 and (ii) γ ≈ 0.018 below τd �
0.002. Between (i) and (ii), there is a bulge that extends to
τd ≈ γ ≈ 0.03.

Together with minRMS, also the optimal cutoff optfc was
obtained. Its behavior is presented in Fig. 3. Black contours
specify given values of optfc estimated from the Metropolis
and SPGPE data as described in Appendix B 2. The green
points are a copy of the minRMS = 0.1 location. For higher
temperatures the optfc values are changing slowly between
contours. This behavior specifies a flat region in which a
constant optfc ≈ 0.64 is a very good approximation.

Around τd ≈ 0.1γ a change in behavior occurs and the
cutoff begins to grow at very low temperatures, towards the
©F regime. This is evidenced by the large jump from values

1Obtained from exact Yang-Yang calculations [43].

of 1 to 10 on a similar contour spacing as between 0.65 and
0.64. This optfc growth corresponds also to a crossover from
the thermal to quantum fluctuation dominated quasicondensate
and to behavior like in Fig. 4 in Appendix A 4.

All in all, there appear two regions (on either side of
τd ∼ 0.1γ ) in which the dependence of optfc on γ and τd is
either flat or significant. In the flat region dominated by thermal
fluctuations (up to minRMS � 0.2) one can state that

optfc = 0.64 ± 0.01, (11a)

i.e.,

kc = (1.60 ± 0.03)

√
mkBT

h̄
, εc = (1.29 ± 0.04) kBT .

(11b)

Confidence in our results is added by the fact that they are
consistent with the ideal gas from [44] which reported optfc →
ζ (3/2)/4 = 0.653 till τd � 0.00159.

Analytical approximations for opt fc and minRM S

Some useful analytical approximations regarding optfc and
minRMS are readily obtained for the flat optfc region using
the ideal gas. From [44] we know that the discrepancy in uG

becomes very flat for a wide range of fc, while discrepancy in
ε remains always highly sensitive. In fact, this kind of behavior
is typical for many parameters, not just the ideal gas [see
Fig. 1(a)].

The quantum prediction for ε in the thermodynamic limit
L → ∞ at γ = 0 is ε(q) = 1

2πn

∫ ∞
−∞dk h̄2k2

2m
n

(q)
k with Bose-

Einstein mode occupations

n
(q)
k = [e(h̄2k2/2m−μ)/kBT − 1]−1, (12)

while the corresponding c-field quantity ε(cf) uses the cutoff∫ kc

−kc
and Rayleigh-Jeans occupations from equipartition:

n
(cf)
k = kBT

/[
h̄2k2

2m
− μ

]
. (13)

Now, simple calculations lead to

δε = 4fc

ζ
(

3
2

) − 1 + O
(
τ

1
2

d

)
,

δuG
= √

τd

[
6

fcπ
+ 3ζ

(
1

2

)]
+ O(τd ). (14)

Analysis of (14) shows that no positive fc value can satisfy
δuG

= 0. In effect, the optimal cutoff value, i.e.,

optfc ≈ ζ
(

3
2

)
4

≈ 0.653, (15)

is set only by the location of δε = 0. In turn, from the δuG

expression one has an estimate of

minRMS = √
τd

∣∣∣∣∣ 24

πζ
(

3
2

) + 3ζ

(
1

2

)∣∣∣∣∣ ≈ 1.46
√

τd . (16)
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The estimated values of τd = 0.0047 and 0.019 for the location
of minRMS = 0.1 and 0.2, respectively, are relatively close to
the actual numerical values.

VI. BEYOND THE UNIFORM GAS

A. Nonuniform density

In a nonuniform gas, neighboring sections described by the
LDA have different densities, so results assigned for them are
placed differently on Figs. 2 and 3. In thermal equilibrium they
follow the line τd (n) ∝ γ 2. The central core of the gas cloud
is not usually in the quantum fluctuation region ©Q because
cooling that far is difficult. Instead, the central core is typically
in the constant optfc ≈ 0.64 region, and so are the remaining
gas sections, apart for the dilute tails. In that case all the sections
can be described together using the same common cutoff kc on
a common grid.

A further conjecture under these conditions would be that a
good description can be obtained regardless of whether a plane
wave or a harmonic-oscillator basis is chosen (at least if one
uses optfc). The agreement seen between numerical studies
of trapped gases using plane-wave bases and experiment
[38,51,62] corroborates the above statement.

B. Comparison to past results

In the history of the subject, the cutoff has been given either
in terms of the highest single-particle energy Ec (equivalent
to the wave vector kc), or in terms of the c-field occupation
Nc = 〈|α|k|=kc

|2〉 of the cutoff mode.
The relationship between Nc and Ec is the following:

Nc ≈ kBT

Ec

. (17)

Our finding of optimal cutoff optfc = 0.64 indicates Nc =
1

π(optfc)2 = 0.78 in 1D.
How does this compare to other studies? The fundamental

observation in the early work was that it should occur some-
where around Nc ∼ O(1–10) [54,63]. Since the focus was
mainly on qualitative results, cutoffs were simply postulated.
This has also been done in later approaches which used Nc = 1
[32] or Nc = 2 [22].

The authors of [33,47] obtained Nc = 0.6–0.7 in 3D by
matching condensate fraction n0 to the ideal gas value. Al-
though a 40% discrepancy in ε arose, getting n0 correct was
considered much more important. In turn, others found that
changing the cutoff value of Ec by 20% introduced only a few
percent difference in n0 [9].

In turn, the authors of [31] optimized the cutoff to minimize
the mismatch in the full distribution of the excited fraction in an
ideal gas. They find Nc = 1 (hence optfc = 0.56) in a 1D trap
in the canonical ensemble, whose local LDA density segments
are comparable to the treatment here. The cutoff obtained by
[31] was used for weakly interacting gases by the authors
of [64,65], who found a good match for condensate fraction
fluctuations, but 10% discrepancies in g(2)(0).

Most previous cutoff determinations were based on opti-
mizing single, IR-dominated observables. In contrast, we also
include observables from the UV-dominated group and show
that the discrepancy δε tends to be more sensitive to fc than

the other δ
. What was not noted before is that the modes that
contribute most to ε are not the same as for the majority of the
other observables. Hence raising the cutoff in energy to optfc

does not significantly affect the observables of the first kind.

C. Relevance of high cutoff for dynamics

The lower cutoffs (like those proposed in the past) generate
a large error in kinetic energy. This can be problematic for
nonlinear dynamics, where correct energies become crucial.
Any errors in energy in one part of the system rapidly infect
the rest with errors through the nonlinearity, and for example
lead to spurious movement of mass.

An example of dynamics that is adversely affected are
collective-mode frequencies, studied by experiment [66], c-
fields, and other theory. The experiment determined a rapid
increase in the frequency of the m = 0 quadrupole mode from
about 1.85ω⊥ below T ≈ 0.6Tc to 2ω⊥ above T ≈ 0.7Tc. The
ZNG theory [67] and the second-order Bogoliubov of Morgan
et al. [68] fairly well matched this phenomenon. In contrast,
c-field calculations [40] with lower optfc did not predict a rise
in frequency. The disagreement was attributed to inadequate
description of the dynamics of the above-cutoff modes.

Interestingly, in [40] the relevant frequency rose up to 1.9ω⊥
at the highest 3D cutoff when 65% of the atoms were in
the c-field. The cutoff increase was not taken further due to
anxiety over including poorly described modes with small
occupation. Later, Ref. [41] used an even higher-energy cutoff
and recovered the frequency increase but at an excessive
temperature T ≈ 0.8Tc.

Our present result showing a weak cutoff dependence of
nonkinetic observables suggests that, with an even higher
cutoff, such as optfc, further improvement in the collective
mode’s description may be possible. There would also be little
detrimental effect on condensate fraction.

VII. CONCLUSIONS

We have determined the region of parameter space of the
1D interacting Bose gas in which matter wave physics applies.
It is shown in Fig. 2. For 10% error in standard observables or
less, the limits lie at γ = 0.018 and τd = 0.008 (i.e., τ = 0.1
in the notation of [49]), with an additional bulge extending
somewhat beyond these. We claim that quantitatively accurate
studies can be confidently carried out with the classical field
approach provided the system stays in this region, i.e., in the
thermal quasicondensate, the quantum turbulent regime, and
the whole crossover into Hartree-Fock physics.

The appropriate cutoff choice to capture the behavior of
many observables simultaneously and obtain the correct energy
in the system is shown in Fig. 3. For kBT � μ, when the fluctu-
ations are thermally dominated, optfc is uniformly ≈0.64. This
justifies the use of a single cutoff for plane-wave modes even
for inhomogeneous gases and suggests that different bases are
equivalent in this regime.

The globally optimal cutoff that we obtain is noticeably
higher in energy than most prior determinations. However, this
result is still consistent with earlier determinations because
when minRMS remains small, the discrepancies in the various
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observables remain small as well. The goodness of the c-field
description depends on how large minRMS is.

An important observation is that the energy per particle
(especially kinetic) is the most sensitive criterion for a correct
overall description in the interacting gas. This is especially
relevant for strongly nonstationary dynamics where errors in
energy feed through into errors in dynamics. As a result, the
best looking option for a consistent system description is c-
fields with a high cutoff.

Finally, the approach used here could also work in attractive
or multicomponent gases and in higher-dimensional systems,
where the cutoff dependence could be markedly different
[31,44]. It should also shed light on the question of whether the
inconsistency of c-fields in the 2D ideal gas identified in [44]
abates when interactions are present. There, simultaneously
accurate values of uG and kinetic energy were impossible to
obtain even in the limit T → 0. The greatest difficulty for such
a study is how to obtain accurate 2D and 3D results to compare
with the c-field description. In the high-temperature region,
Hartree-Fock methods can be exploited for this purpose,
because as temperature rises they eventually become more
accurate than classical fields [61].

A topic for a future paper will concern the fermionized and
quantum fluctuating quasicondensate at lower temperatures.
We were not able to reach these regimes here, but they can be
accessed with the extended Bogoliubov theory of Mora and
Castin [69].
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APPENDIX A: NUMERICAL CLASSICAL FIELD
ENSEMBLES

1. Overview

For each of the pairs of parameters γ,τd shown in Fig. 2,
about 10–15 ensembles of �(x) with different cutoff values
fc were generated and used to evaluate c-field observables

(cf)(γ,τd,fc). The values of fc were chosen individually for
each γ,τd pair to cover the region of the minimum of RMS(fc)
with a resolution that is sufficient to determine minRMS and
optfc to a satisfactory degree. This was usually 10–20 values,
as shown, e.g., by the data points in Fig. 1. Each ensemble
consisted of 103–104 members. The members were generated
using either a Metropolis algorithm (see Appendix A 2) or
a projected stochastic Gross-Pitaevskii (SPGPE) equation
simulation (see Appendix A 3). The former are shown as empty
symbols in Fig. 2 and the latter as filled symbols.

The generation of the ensembles is parametrized by the
values of T , μ, g, and the numerical lattice. This is not
immediately convertible to γ and τd , since these quantities
depend on n and n = 〈N〉/L depends numerically on the
actual ensemble generated. To deal with this inverse problem,
we proceeded as follows. First a target pair of γ target,τ

target
d

is chosen. This gives g and a target density ntarget from (5).
Next, the Yang-Yang exact solution [43] is obtained, giving the
value of μ that generates the target density in the full quantum
description.2 This is usually close but not exactly equal to a
chemical potential μ(cf)(fc) that would give the same density
of the c-field ensemble. In any case, μ(cf) depends on the chosen
fc. Nevertheless, since μ and μ(cf) are close, we simply use the
target quantum μ and various values of fc to generate each
ensemble, knowing that it will be close to γ target and τ

target
d .

Each ensemble with a different fc generates a slightly
different mean particle density n(cf)(fc) = 〈N〉/L, and corre-
sponding γ (cf)(fc), τ

(cf)
d (fc), which lie close to but not exactly

at γ target,τ
target
d . However, it is not necessary to hit exact

predetermined target values for our purpose of generating
contour diagrams. Instead, the value of n at the optimal cutoff
optfc was the one used to determine the operational values of

γ = mg

h̄2n(cf)(optfc)
, τd = mkBT

2πh̄2n(cf)(optfc)2
(A1)

used for the analysis (and shown in Fig. 2).
The numerical lattice itself is chosen according to the usual

criteria to obtain a system in the thermodynamic limit. The box
length L must be sufficient to capture the longest length scales.
The longest feature is the width of the g(1)(z) phase correlation
function, and L was chosen so that g(1) decays to zero before
reaching a distance of z = L/2. Namely, g(1)(L/2) found from
the ensemble falls closer to zero than its statistical uncertainty.
On the other hand, the lattice spacing �x must be sufficiently
small to resolve the smallest allowable features. These are the
density ripples of a standing wave composed of waves with
the cutoff momentum kc. That is, we need �x � π/(2kc). In
practice we took a several times finer spacing �x to smooth the
visible features. The numerical lattices contained M = 210–212

points.
Periodic boundary conditions were used in order to have

easy access to plane-wave modes through Fourier transforms.
The c-field was given support only within the low-energy
subspace C by keeping only the MC plane-wave components
of the Fourier transformed field with |k| � kc.

2. Metropolis algorithm

Our application of the Metropolis method to generate c-field
ensembles follows the approach of Witkowska et al. [53], with
minor modifications as used in [44]. The latter paper introduced
amendments to generate grand canonical ensembles, primarily
by removing the conservation of N used in [53]. This has the
additional advantage of removing the need for a small but tricky
compensation that is otherwise needed to preserve detailed
balance in the number-conserving case.

We aim to generate the grand canonical probability distri-
bution

P (�) ∝ exp

[
−Ekin(�) + Eint(�) − μN (�)

kBT

]
. (A2)

2There is one free scaling parameter in the description using γ and
τd , which we set in the Yang-Yang calculations using the arbitrary
choice kBT = 1.

053607-7



J. PIETRASZEWICZ AND P. DEUAR PHYSICAL REVIEW A 97, 053607 (2018)

where

N (�) =
∑

x

�x|�(x)|2, (A3)

and energies are

Eint(�) = g�x

2

∑
x

|�(x)|4, (A4)

Ekin(�) = h̄

2m

∑
k

�k k2 |�̃(k)|2. (A5)

The kinetic energy uses the Fourier-transformed field normal-
ized to make

∑
k �k |�̃(k)|2 = N , i.e.,

�̃(k) = 1√
2π

∑
x

�x e−ikx�(x), (A6)

with wave vectors k = 2πj/L = j�k and j integers.
The starting state was �0(x) = 0.

A random walk is then initiated which generates a Markov
chain with members �s(x) after each step s. A trial update
� trial(x) is generated at each step. The ratio of probabilities

r = P (� trial)

P (�s)
(A7)

is evaluated. The update is accepted always if r > 1 or with
probability r if 0 < r < 1. Then the next member of the
random walk �s+1 becomes � trial. Otherwise, the update is
rejected and �s+1 = �s .

We used two kinds of updates, chosen randomly at each
step, as follows:

(1) 99%/MC probability. A change of the amplitude of one
of the plane-wave modes k′, such that �̃ trial(k′) = �̃s(k′) + δ,
while the other modes are unchanged: �̃ trial(k �= k′) = �̃s(k).
The random shift δ is a Gaussian distributed complex random
number with amplitude chosen so that the acceptance ratio is
about 50%. The value of k′ to change is chosen randomly from
the MC plane-wave modes that lie below the energy cutoff.

(2) 1% probability. We found that it is necessary to some-
times slightly shift the center of mass of the system to break
the system out of getting stuck on a nonzero mean velocity. For
this, one generates �̃ trial(k) = �̃s(k ± �k), shifting all values
by one lattice point. The sign is chosen randomly and the wave
function �(k) at the marginal value of k = ±(kc + �k) that
overflows kc due to the shift is moved to the opposite end of
the spectrum at ∓(kc).

Since all of these updates preserve detailed balance in-
dividually, no additional compensation to r is required to
determine acceptance, unlike in the N -conserving algorithm
for the canonical ensemble.

The correlation of various quantities such as E, N , g(1)(z),
and the center-of-mass momentum kCOM over subsequent
steps s is tracked. Ergodicity is then exploited to obtain
independent ensemble members by placing only every �sth
member of the Markov chain into the final ensemble. The spac-
ing �s is chosen sufficiently large to make all the observables
uncorrelated. Also, the first ts � �s elements of the Markov
chain are discarded to allow for the dissipation of transients
caused by the starting state. The required �s and ts depend
on the regime studied. Generally speaking, when γ < τd , we

had �s = O(104–105), while in the opposite regime (γ > τd )
�s was even larger, causing us to switch to using the SPGPE
algorithm.

3. SPGPE algorithm

The projected stochastic Gross-Pitaevskii equation
(SPGPE) [70,71] is here

ih̄
d�(x)

dt
= (1 − iγC)PC

{[
− h̄2

2m

d2

dx2
− μ + g|�(x)|2

]
�(x)

+
√

2h̄γCkBT η(x,t)

}
. (A8)

This approach has been extensively used to generate grand
canonical ensembles of �(x) and described in detail in
[3,7,48,70]. The quantity η(x,t) is a complex time-dependent
white-noise field with the properties

〈η(x,t)η(x ′,t ′)〉 = 〈η(x,t)〉 = 0, (A9a)

〈η(x,t)∗η(x ′,t ′)〉 = δ(x − x ′)δ(t − t ′). (A9b)

It is generated using Gaussian random numbers of variance
1/(�x�t) where time steps are �t and the numerical spatial
lattice is �x. The PC is a projector onto the low-energy
subspace. A quantity PC{A(x)} is implemented by Fourier
transforming A(x) to k space, zeroing out all components with
|k| > kc, and Fourier transforming back again to x space.

The physical model in the SPGPE treats the above-cutoff
atoms as a thermal and diffusive bath with temperature T ,
chemical potential μ, and a coupling strength γC between the
low- and high-energy subspaces. We typically used γC = 0.02.
The long-time limit of an ensemble of many such trajectories
is the grand canonical ensemble with T and μ the same as
the bath. To obtain an ensemble we started with the standard
vacuum initial states �(x) = 0 and ran the simulation multiple
times, with new noises in each run to generate a new trajectory.
Ensemble-averaged quantities were tracked over time until all
reached stationary values. Then, the fields at this stabilized
time were taken as the members of the final ensemble, usually
with 400–2000 members.

Apart from faster convergence, this approach requires less
numerical tweaking than the Metropolis algorithm since it is
unnecessary to search for the correlation time �s in the Markov
chain, while the size of the fluctuations is chosen automatically
instead of optimizing δ to get reasonable acceptance rates. On
the other hand, only the grand canonical ensemble can be gen-
erated using (A8). However, a more complicated “scattering
term” SPGPE derived by Rooney [72] does conserve N , and
a simple modified SPGPE for canonical ensembles has been
derived recently [73].

4. Discrepancies at lower temperature

Figure 4 shows cutoff dependence for a representative case
of large interaction and low temperature that was calculated
with the SPGPE.
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FIG. 4. Cutoff dependence of the discrepancies δ of single observ-
ables for the case γ = 0.112,τd = 0.00125. Notation as in Fig. 1(a).
The symbols show results obtained numerically with the SPGPE (A8).
The figure of merit RMS(fc) is shown as the thick gray line. Error
bars are shown for δuG

, while the remaining error bars are below
resolution. The dashed blue line shows −δε as a reference. The arrow
indicates the choice of the optimal cutoff.

APPENDIX B: OPTIMIZATION PROCEDURES

1. Calculation of optimal cutoff and figure of merit

For numerically generated ensembles, the set of data we
use has been described in Appendix A 1: about 10–15 c-field
ensembles of �(x) generated for different cutoff values fc but
the same μ, as shown in Fig. 1(a). The target was to obtain a
resolution that is sufficient to determine minRMS and optfc

to a satisfactory degree.
To match these ensembles, exact quantum results were

obtained using the Yang-Yang theory, but now with a chemical
potential chosen individually for each fc to obtain the same
density as n(cf)(fc). Observable discrepancies δ
(fc) were
calculated according to (6). Then the values of RMS(fc) were
calculated using (9). All these were inspected on plots like
those shown in Figs. 1 and 4.

The approach taken to identify optfc depends now on the
behavior of the minimum of RMS(fc).

A rounded minimum occurs when the interaction energy
has only a minor contribution near optfc. Behavior of this
kind is seen in Fig. 1. It happens typically in the hotter part
of parameter space when thermal fluctuations dominate and γ

is relatively small (it was already seen in the ideal gas [44]).
Both δuG

and δε are approximately linear in the region near the
minimum of RMS, whereas δEtot ≈ δε. Then (RMS)2 is given
approximately by a sum of two parabolas—i.e., a parabola in
fc. Accordingly, we make a least-squares fit of the numerical
values of RMS to the parabola

RMS(fc)2 = a(fc − optfc)2 + (minRMS)2, (B1)

with fitting parameters optfc, minRMS, and a in the vicinity
of the minimum. Examples are seen in Fig. 1(b). The fitted
optfc and minRMS are our final estimates.

The other possibility is a flat-bottomed minimum like that
shown in Fig. 4. This occurs when the error in g(2)(0) (and
by implication in Eint and Etot) is sufficiently large near the
minimum to compete with or exceed the error in uG. In the
region in which |δε| � |δEtot |, the error in ε becomes negligible,
and so RMS =

√
δ2
uG

+ δEtot . Both of these two remaining
errors usually depend weakly on fc. In this case, we choose
the smaller of the two RMS values at the “corners” of the
flat-bottomed minimum that occur at δε = δEtot as minRMS and
the corresponding value of fc as optfc. Some rare intermediate
cases, such as when the maximum error swaps between δuG

and δEtot within the flat-bottomed minimum, are dealt with on
a case-by-case basis after inspection of the plot of RMS(fc).

2. Generation of contour lines

The contours in Figs. 2 and 3 were obtained using La-
grangian interpolation of a function of two variables. Trian-
gular polygons are successively selected using three corner
points (labeled below as i = 1,2,3), chosen from among those
shown in Fig. 2. Within such a triangle, the interpolation of a
function F that takes values Fi at the corner points is given by

F (γ,τd ) =
∑

j

Ni(γ,τd )Fi. (B2)

Here

Ni(γ,τd ) = 1

2A
(αi + βiγ + ζiτd ), (B3)

A is the area of the triangle, and the coefficients are

αi = γi+1τd,i+2 − γi+2τd,i+1,

βi = τd,i+1 − τd,i+2, (B4)

ζi = γi+2 − γi+1,

where the indices i + 1 and i + 2 are understood as being
modulo 3. The locus of a contour is obtained by requiring
a given value of F (e.g., F = 0.1) at chosen locations.

A precise determination of the behavior of optfc in the light
orange colored region of Fig. 3 proved elusive, however. Much
larger numerical ensembles than those we generated would be
necessary to get higher precision, as well as a finer spacing
in γ,τd parameter space. It seems that this light orange region
is of little practical importance since minRMS becomes large
there and a c-field treatment is no longer recommended.
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