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Abstract

Number fluctuations in a one-dimensional Bose gas consist of contributions from grainy fluctuations
oflocalized domains (the density grains). We have derived a set of extended integral equations from
the Yang—Yang solution for finite temperature that exactly determine all higher-order moments of
number fluctuations. These moments are closely related to the statistics of the localized (but not zero-
range) density grains. We directly calculate the mean occupation of these fluctuations, and the
variance, skewness, and kurtosis of their distribution across the whole parameter space of the gas.
Findings include: large mesoscopic density grains with a fat-tailed distribution in the thermal
quasicondensate of the dilute gas and in the nonperturbative quantum turbulent regime; regions of
negative skewness and below-Gaussian kurtosis in a part of the fermionized gas, and an unexplained
crossover region along T' ~ Tj /+; the existence of a peak in the density—density correlation function
at finite interparticle spacing. We relate these density grain statistics to measurable behavior such as
the statistics of coarse imaging bins, and finite-size scaling of number fluctuations. We propose how to
experimentally test the relationship between thermodynamically independent density grains and
density concentrations visible in single-shot images.

1. Introduction

One of the many ways in which one-dimensional (1D) quantum Bose gases are intriguing is that while they have
highly quantum matter wave behavior, such as, e.g. superfluidity, they exhibit no off-diagonal long-range order
such as a condensate. Hence, they must be composed of more or less microscopic scale, localized domains or
grains that survive into the thermodynamic limit. Very visually striking demonstrations of such domains have
been seen in experiment, especially for multicomponent gases, where the value of the local pseudospin acts as a
marker, and spin domain walls are also not uncommon [1-3]. The characteristics of the domains in a single-
component gas are alittle more elusive since such clear-cut local markers are not available. The most familiar
domains in this case are phase grains—known to occur in the quasicondensate regime. Experimentally, their
existence can be inferred from the behavior of a cloud after expansion [4-8]. There is also a warmer regime with
profuse spontaneous solitons [9—12] separating phase and density domains. Overall, due to the lack of a
condensate, phase grains of various sorts are also to be expected in other regimes.

Density granularity, in the sense of fluctuating local-scale structures, is also expected due to the localized
behavior of the density—density correlation function ¢‘»(z) in all regimes of the 1D Bose gas [13—16]. The
statistics and qualities of these density grains are what we reveal here, having developed a technique to study them
in the exact quantum solution for the thermodynamic limit.

The uniform one-component Bose gas in the thermodynamic limit has an exact solution at T = 0 due to
Lieb and Liniger [17, 18], extended to the T' > 0 case by Yang and Yang [19]. The basic quantities calculated
from this solution, such as density, pressure, energy per particle are intensive system-averaged quantities and
they do not meaningfully relate to localized elements of the gas. Extracting other observables from the exact
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solution is usually nontrivial. In a broad effort, a selection of microscopic properties have already been found.
The local among them are the density—density correlation g (0) [15, 20,21], g®(0) [22, 23], and some other
quantities [16, 24, 25]. The second kind are two-body: dynamic and static structure factors [26—28], response
functions [29], and two-body correlations [13, 14, 16, 30—-34] in some physical limits. In particular, thek = 0
static structure factor (denoted Sp) gives information about occupation fluctuations in imaging bins, in the limit
of coarse-enough bins, and has been used in this capacity to interpret experimental measurements [35—-42]. The
link to physics on the localized but not zero-range scale is evident. Furthermore, it can be obtained from an
appropriate thermodynamic derivative of the total number of particles in the system, N [38].

What we found at first was an alternative method to calculate S, from the exact Yang—Yang solution. This
method quite naturally lends itself to a whole hierarchy of extensions that allow one to calculate higher moments
of N. Furthermore, by considering a natural criterion of independence for density fluctuations—that the
variance of the total atom number be the sum of variances of the independent fluctuations—we find a way to
relate the system-size scaling of some extensive quantities to the behavior of mesoscopic physical elements in the
gas—the density grains.

In consequence, we are able to determine the statistics of the independent density fluctuations in the gas
across the whole range of physical regimes: the quasicondensate, the dilute degenerate gas including the
quantum turbulent regime, the classical gas, and the strongly interacting fermionized regime, as well as all the
crossovers. We explicitly obtain the mean number of correlated particles in a fluctuation, how Poissonian/sub-
Poissonian the occupations are, the skewness of their distribution, and its kurtosis. Interestingly, neither
skewness nor kurtosis could be obtained merely from considering known results on two-body correlation
functions. We note both tail-heavy distributions in the quasicondensate, as well as platykurtic and/or negatively
skewed distributions in the nonzero temperature fermionized gas. To the best of our knowledge, exact quantum
results for mesoscopic objects that can involve many particles have not been studied earlier in this system.

The paper is organized as follows: section 2 introduces the system, its basic parameters, and the Yang—Yang
solution, as well as a visualization of the iteration procedure used. The Poissonian/sub-Poissonian statistics of
the density grains and the underlying method we use to obtain it is derived in section 3. Section 4 shows how the
mean number of particles partaking in such independent fluctuations can be ascertained. The skewness and
kurtosis of the density grain distribution are found in sections 5 and 6, respectively. We make physical comments
about the main results obtained (presented in figures 3—5) as we go along. Suggestions on how these quantities
can be experimentally observed are given in section 7. We conclude in section 8.

2. System and exact solution

2.1. System and units
We will be considering a uniform gas described by the basic ultracold atom Hamiltonian

H:]&%ﬁb{-%ﬁ%]wm+§-@uymm% 1)

ina 1D box of length L, with

ﬁ:f@@hﬁm )

particles. Imagine a section of the gas that stays in diffusive contact with more cloud (at the ends, or in higher
transverse excited states). Then, the expected equilibrium ensemble will be a grand canonical one with chemical
potential p. This is also the ensemble assumed in the Yang—Yang exact solution for the nonzero temperature gas
in the thermodynamic limit [19].

First, a minor but often confusing matter of variables. The Lieb-Liniger [17, 18] and Yang—Yang Bethe
ansatz solutions are given in units of 7 = 2m = 1 = kg, with a coupling strength c and chemical potential A.
Here, we will use the /2 = m = 1 units more familiar in ultracold atoms to avoid a ‘factor of two’ curse when
comparing to other cold atom work. The distance units (for k, L, etc) will stay the same as in the Lieb—Liniger
description. These steps result in the following relationship: the mass and time units are twice as large in Lieb—
Liniger than standard cold atom fare while energy T'and coupling g have units that are two times smaller in Lieb—
Liniger. Therefore, if we denote quantities appearing in the Lieb-Liniger, Yang—Yang, and related papers with
subscript 11, and the standard 72 = m = kg = 1 case without subscripts, one has: E = Ej; /2, u = ArL/2,
T="TyL/2,k=kypand g = .
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2.2. The plain equations
To use the Yang—Yang Bethe ansatz solution [19] in practice, one first solves the following integral equation:

3

k* T foc dq log[1 + e =@/T]

= —p+ =
=0 SR mdox g2+ (k—q)?

The spectrum-like quantity ¢ (k) depends on wavevectors k'. A continuum of wavevectors is considered, since
the theory is for the thermodynamic limit of sufficiently large L. Equation (3) is usually solved by iteration,
starting with the free particle form

kz
eOk) = —p + > (4)
Subsequently, the following Fredholm integral equation
> _ dqp(@
2mp(0)[1 + e®/T =1 + 2 f 40D )
’ et o
is solved for a function p(k), which gives the density of occupied quasimomenta. This step is also done by
iteration, starting from
PO*) = ®)

2 [1 + es®/TY

Figure 1 shows some typical behavior during this iterative procedure. Convergence can be fast or time
consuming depending on the physical regime. The quasicondensate regime v < 1, 7 < /7 has particularly
slow convergence, while convergence is very fast in the strongly fermionized regime when v > 1.

Using the above solution, the following physical quantities are obtained in a straightforward manner [19]:
the density

N_(N) _
=—=—= k)dk, 7
n=—== [ 0® @
the energy per particle E/N:
E (HY 1 p>
g:—:T:— kkzdk, 8
N ® J o ®
the entropy S, and the pressure P:
T o]
P=— dk log[1 + e~=®/T]. 9
— [ dklogl ] ©

In order to obtain another important observable characterizing the system, namely the local density—density
correlation function [20, 21], one can further use the Hellman—Feynmann theorem as follows:
1 ~ - 1 (0P
g9(0) = (T2 = —=| | . (10)
n n*\ Og T

Intense numerical calculations based directly on the Bethe ansatz have also been used to obtain dynamic
structure factors and correlations [26-28].

2.3.Parameter space and scaling
Now in the thermodynamic limit of a uniform gas with density n = N/L there are only two essential parameters:
an interaction strength

mg
= 2 11
7 hn (an
and a relative temperature
- 2mkg T 47TT' (12)

V3 2112 B Td
Here, Ty = /?n*/2m is the usual ideal-gas degeneracy temperature, while the 47 factor has often been used in
the context of density fluctuations.
The Yang—Yang Bethe ansatz description is given in terms of three input parameters g, T, 1, and the density
is then a function of these as per n (i1, T, g). Due to this, a pair of physical parameters (vy, 7) corresponds to
continuous families of gases in the thermodynamic limit and we will use them to describe the parameter space.

1 . . _ . . .
Note that we also rescale this quantity to 7# = m = 1 unitsso that ¢ = €1 /2 compared to the quantity ey, used in [19].

3
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Figure 1. Integration kernels and iteration details for two characteristic cases. In the top two panels: a weak quasicondensate with

v = 7 = 0.1.In the bottom two panels: a moderately high-temperature fermionized gas with v = 10, 7 = 1. The top plot in each
pair shows the shift of the spectrum-like quantity € (k) from the free particle form, é¢ = e (k) — (k2/2 — u) = e(k) — £©(k), while
the lower shows the quasimomentum occupation density p (k). The cyan lines are the initial estimates 6 (k) = 0 and p® (k). The
blue lines are the results of subsequent iterations, and the red lines are the final self-consistent solutions of the integral equations.

Typically, the main regimes of density fluctuations have been classified using the local microscopic quantity

g?(0)[20].

A fermionized regime (y > 1and 7 < ~2) with strong antibunching ¢ (0) < 1. An intriguing high-
temperature fermionized regime occurs for 1 < 7 < 2.

A quasicondensate regime (y < land 7 < /) with small density fluctuations | ¢@(0) — 1] < 1. This
regime is further distinguished into a thermal fluctuation dominated region with g®(0) > 1for 7 > yanda
quantum-fluctuation dominated region with g (0) < 1for 7 < .

A decoherent quantum regime (/¥ < 7 < 1) in which density fluctuations are large €?0) — 1 ~ O1))
but the system is still quantum degenerate. Quantum turbulence occurs here.

A classical particle-like regime for higher temperatures in which g (0) = 2.

Two features in the decoherent quantum regime are also worth noting for later comparison.

* Aregime with frequently occurring thermally activated solitons in the vicinity of 7 ~ /¥ [9, 12].

+ The crossover between a Bogoliubov-like and a Hartree—Fock-like system occurs at temperatures near or just

above the soliton region, when (1 changes sign, as studied in [43].

4
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In this paper, we will choose T'to be the scaling parameter, and use the value T = 1 for numerical
calculations. Since n = (1 / 72)/2mkg T /7 and g = n~y/?/m, the whole family of solutions has the following
scalings:

n &
ﬁzﬂhzﬁ % = glr=1; T Elr=1
B ) ro_ .
F = plr=1; W = Plr—1; (13)

The energy and chemical potential scalings follow from the fact that they have the same units as temperature,
while the thermodynamical relation dP = (S/L)dT + n dyu indicates the scaling of pressure.

In calculations aiming for a given parameter pair (vy, 7), sought-after values of n and gare uniquely
determined after choosing T' = 1. However, we need to find the x that gives the appropriate value of the density.
This is a numerical inverse problem that can be solved by standard numerical techniques once we are able to
evaluate n(u, g, T). Typically, it takes from a few to a few tens of steps to get four to five significant digits of
accuracy in n, largely irrespective of the physical regime.

3. Density grains and their statistics

3.1. Coarse-grained density fluctuations
The local pinpoint density—density correlation function g (0) describes very small scale fluctuations. While it is
averyimportant quantity for the theoretical description of the gas, it is not what is usually observed. That is
because finite imaging resolution in a typical setup makes it inaccessible.

Under typical conditions, the finite resolution of the imaging apparatus, A, is comparable to or wider than
the width of the g (z) density correlation function

g9@) = = (T 0T x + 2T + 2T). (14)
n

This means that the statistics of the observed local fluctuations are in fact only the statistics of segments of the gas
oflength A. This is the case in most contemporary experiments”. For observations with finite resolution, the
results can be described by a sequence of bins of width A, with observed occupations N](A) in the jth bin.

Ensemble averages such as (NJ(A)) = (N®) will be independent of j for a uniform system. An in-depth
experimental study of such coarse-grained density fluctuations and their statistics has been carried out by the
Palaiseau group [38—41].

A fundamental statistical quantity in this regard is

varN® , (15)
(N@)

which compares the bin occupations to Poissonian statistics. A value of unity indicates Poissonian variance,
values above one super-Poissonian variance, and below one: sub-Poissonian. The last can only occur at
sufficiently low temperatures when quantum fluctuations dominate. The quantity in (15) is evidently device-
dependent when A is small, because some density correlations may occur between neigboring bins.

Now instead of these imaging-limited bins, consider bin sizes £ that are sufficiently large to have statistically
independent occupations, but still £ < L. We then arrive at the following intensive thermodynamic quantity:

varN  varN®

SO - N - <N(£)> > (16)
which describes coarse-grained density fluctuations. The last equality in (16) follows from the assumption of
independence between the occupations N}’C), because the variance of the total particle number N grows as the
sum of the variances of the individual independent contributions. Sy depends neither on the ultimate size of the
box L, nor on the bin size £, provided the latter is sufficiently large. The matter of ‘sufficiently large’ can be
quantified by requiring that the density correlation function g‘®(z) decays to its background value of one when
z > L. We can see this relationship clearly by evaluating S, from (16), substituting N = f dx @T(x)\j(x) for the
number of particles in the system, and comparing to (14). The result is

So=1+ nf dz [g?(2) — 1. (17)
system

If the integral is over a greater extent than the width of the bulge in the correlation function at low z, then it
achieves its asymptotic value.

Special setups with single-atom detection in He * have been able to access ¢ (z) in detail, through [44-48].
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From (17) one readily sees several features: Sy < 1onlyif there is antibiunching (g'¥(z) < 1), an effect that
only occurs at temperatures low enough that quantum depletion becomes important. In the nondegenerate
classical gas, we achieve the Poissonian shot noise limit Sy — 1, since then both nand the range of g'¥(z), which
is of the order of the thermal de Broglie wavelength Ar, become small. In the condensate, when g(z) (z) = 1,we
again have a shot noise value of Sy = 1, but for a different reason.

The quantity Sy is also known as the k — 0 limit of the static structure factor S(k), which is the Fourier
transform of the density correlation function [49, 50].

3.2.Independent density grains
The quantity Sy is also a descriptor of the typical independently occurring lumps’ of density, regardless of any
considerations of an externally set bin size.

To see this, consider the following: if we have p independently fluctuating fragments of the gas labeled by,
which we will dub density grains, then

P P - —_—
N=(N) =) (N) =pN. (18)

j=1

We have denoted the number of particles in individual grains by ; in italics, and a bar will be used to indicate
averaging over grains. For example,

— 1 —
N == (Nj). (19)
j=1
is the average grain occupation. In the thermodynamic limit with many grains p — 00, an average over
independent grains in a single experimental realization will converge to the same value as the ensemble average.
So that

p—0

14
lim FOV) = %Zf(fvj) (20)
=1

also holds for general quantities f that involve only measured grain occupations M.
Consider now the second moment of the total atom number:

(K%)= S (NN = SN ) + 5 (V) (V)

7 -

ji j j=j’
=p[ N2 +(p— DN Q1)
Hence,
vatN=p [ N? — N = p varN. (22)

After all, we expect that the variance of a collection of independent random variables will be the sum of their
variances. That is what is often meant by independent. We can also see that

varN _ var\
N N

gives information about the statistics (sub-Poissonian, Poissonian, super-Poissonian) of the individual
independent density grains in the gas. Interestingly, this information is given without reference to the separate
question of how large such density grains are (i.e. the actual value of \V).

The defining quality of what we will mean by a density grain is that the local variances of independent grains
are additive to the global variance. One example is segments of sufficient length £. These will become
independent as boundary effects between them become negligible. Thatis, when £ > A.,and A, is the bin size
at which (15) begins to deviate from Sy. A different example would be fuzzy segments defined by an integral over
apoint spread function with width A > A.. We will return to the matter of the density grain size in more detail
in section 4.

So =

(23)

3.3. Calculating the density grain statistics

3.3.1. Basic thermodynamic relation

Following, e.g. [38], consider the grand canonical ensemble with fixed gand T. Denoting the grand canonical
partition function by Z = Tr[Z ], where Z = exp[—(H — pN)/T], one has that

Tr[NZ] kB_T(aZ)
T

e z \ou

®) - -

(24)
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Also,
= ke T)* (022
(W) = ﬁ(_z) , (25)
Z \ou o7
Denoting the fluctuations as
6N =N — (N) (26)

one immediately has the well-known thermodynamic relation [38]

(6N?) = varN = kBT(M] . 27)
ou T
Now using (16)and n = N/L = (N) /L one obtains
50— k_T(a_) | 08)
n \Ou oT

3.3.2. Inefficient gradient approach

The most straightforward way to calculate S is to proceed by converting the partial derivative in (28) to finite
differences. This is what has usually been done for the microscopic local density fluctuations g (0) using the
prescription (10) [21]°. In that approach, a small shift Ag < g (say, Ag = 10~%¢)is chosen,and P(g + Ag/2)
and n(g) are evaluated, keeping T'and y constant. They are used to estimate

P(g+ +Ag) — P(g — 1A
L) ~ 1 : g+ ;A8 — P(g— ;A% . (29
n(g) Ag
We have found, however, that when applying the same gradient procedure to evaluate Sy via (28), a
numerical unstability appears, especially at low temperatures. For this reason we have developed another
method.
3.3.3. Efficient integral approach
A more accurate (and ultimately more efficient) approach is found as follows. From (7), we see that
(@) - [ * 20 g (30)
ou oT —c0  Op
Defining
oy = 228, G1)
o
and differentiating the equation (5) we find that p’(k) obeys its own integral equation
’ 00 ’
P ([ 4 ec®/T] 4 Mes(k)ﬁ = gf M (32)
T mJoo g2+ (k — g)?
where
e'(k) = M (33)
o

This quantity, in turn, can be obtained from a second integral equation that comes from differentiating (3):

i g [ dq €'(q) 1
€ = lJr7rf—oo g2+ (k—q@)? 14 ec@/T" G4

The above two integral equations can also be solved by iteration once we know ¢ (k) and p (k). Itis most
convenient to use the same numerical lattice for k and g in all the integral equations. The starting forms for the
iteration are

The formula using P from [21] is more convenient in practice than the better known one using free energy that was derived earlier in [20].

7
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Figure 2. Iterations for the calculation of the derivatives £/(k) and p’(k) via (34) and (32) (top two rows); for the calculation of the
corresponding second derivatives via (58) and (59) (middle two rows); and the third derivatives via (77) and (78) (bottom two rows).
Notation and colors as in figure 1. The left column shows the quasicondensate case v = 7 = 0.1, while the right shows the
fermionized v = 10, 7 = 1.

eOk) = —1 (35)
and
1 p(k)e'(k)
1(0) [ S Sl S
POW =~ (36)
Then the final formula is
So = Vj:]N - % I © ok dk. (37)

Examples of the iterations are shown in the top two rows of figure 2.

3.4. Phase diagram for density grain statistics
Armed with the algorithm of section 3.3.3, we calculated S, for a wide range of physical parameters. Its behavior
is shown in figure 3 as a contour plot, along with some representative transects at constant yand constant 7.

To our knowledge, this is the first time that the behavior of Sy has been comprehensively described. Previous
calculations using the Yang—Yang model in support of experiments have reported plots of (§N2) versus (N) or Sy
[39—41, 51] for several ranges of densities at constant temperature (7 o< y2). The region that was explored
corresponds to samples of the bottom-left part of figure 3(a), with values that differ from Sy = 1by several
factors. Calculations of density fluctuations were also made at higher 7[38, 40, 51]. These used the modified
Yang—Yang description [52] of quasi-1D gases with appreciable transverse mode occupation. The values
obtained differ appreciably from the strictly 1D values of S reported here.

In the discussion below, we refer to the different physical regimes described in section 2.3. For clarity, we
keep in mind that the different regimes are separated by continuous crossovers not phase transitions. All the
transitions come together in the neighborhoodof vy = 7 = 1.

Asafirst point, let us note the Sy = 1line in figure 3(a) that separates the regions of super-Poissonian and
sub-Poissonian statistics. It liesat 7 /& 2y in the quasicondensate (7 < 1), and shifts slope to 7 ~ ~? in the
high-temperature, high-gamma region. The latter lies in the middle of the crossover between a normal classical

8
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log10(7)

-4 2 2 4 -4 -2 0 2 4
logy(7) log 1(7)

Figure 3. Top: contours of Sy in the parameter space of the 1D Bose gas (values of S indicated on the plot). This quantity indicates
number variance as compared to Poissonian statistics, as well as the typical number of particles partaking in independent density
fluctuations because N~ Sy. Two reference lines are also shown in thick dashed style: the location at which perfect second order
coherence occurs (g?(0) = 1)in purple, and the ;1 = 0 crossover in gray. Bottom: behavior of Sy along 7 = 0.1 (left) and v = 0.01
(right).

gas and a high-temperature fermionized one. Note also that, except for a small shift, the location of §g = 1
follows the g (0) = 1reference line, which separates the bunched and antibunched gases. Although the two
properties often appear together and are correlated, they are physically distinct: bunching/antibunching refers
to the precisely local behavior, while Poissonian or non-Poissonian statistics refers to the behavior of larger
pieces of the gas.

The shift is interesting, however. In the quasicondensate, g (0) = 1 occursat 7 =~ 3+, i.e. atabouta 50%
higher temperature than Sy = 1. In the high yregime, g (0) = 1occursat 7 & 372, i.e about three times
higher than Sy = 1. The observed shift indicates that the bunching/antibunching transition occurs under
Sy > 1 conditions. Due to the relationship (17), this means that ['dz(g®(z) — 1) > 0.Since g®(0) = lat
these points, this unambiguously indicates a hump in the g (z) function at z = 0. It also means that density—
density correlations at a moderate but nonzero distance are stronger than the zero-range local ones near the
transition. Such a preferred correlation length has been noted before [ 14, 53]. The results found here show that
this phenomenon exists across the whole range of temperatures and interaction strengths in the vicinity of
g?(0) ~ 1. Arelated point to accentuate is that sub-Poissonian statistics occurs only strictly together with
antibunching (¢ (0) < 1). In this region quantum fluctuations are always an important contributing factor.

The second reference line, x = 0 is also an important watershed between essentially quantum gas physics
when p > 0, and largely ideal-gas-like behavior when p < 0.1In the dilute gas with v < 1, 4 = 0isadividing
line between (a) quasicondensate behavior at lower temperatures, which can still be somewhat described by a
generalized Bogoliubov theory [54], and (b) a quantum degenerate but nonquasicondensate state at higher
temperature, which is better captured by a Hartree—Fock (HF) or c-field description [55]. The crossover between
(a) and (b) has been studied in detail by [43]. In the fermionized regime, pt = 0 occurs at 7 &~ 40. Certainly, for
anykind of ideal-gas-like behavior ;1 < 0 is necessary, so the lower temperature p > 0 regionin the
fermionized case is strongly nonclassical.
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The most prominent feature in all three panels of figure 3 is the huge bulge of large So > 1. On the contour
plotitis shown by brownish contours and straddles the ;¢ = 0 region in the v < 1dilute gas. This ‘bulge’ spans
both the i < 0 HF degenerate region and the thermal-dominated quasicondensate, including the soliton-rich
and quantum turbulent regions. The statistics here is very strongly super-Poissonian. Sy grows rapidly as the
interactions become weaker with falling . We will see later that higher moments of the density grains are also
very high in this regime and grow rapidly. Generally speaking, the two distinguishing features in the ‘bulge’ are
that the gas is quantum degenerate and fluctuations are dominated by thermal effects (as opposed to quantum
fluctuations).

A second remark about the ‘bulge’ is that S, falls rapidly and evenly as the g'®(0) = 1 threshold into the
quantum-fluctuation-dominated quasicondensate is reached. There is no indication of plateau behavior in S, in
direct contrast to the behavior of g (0), which flattens out prominently below 7 ~ /7 [20].

Another global feature is that both regimes (low-temperature quasicondensate and the fermionized gas),
that are dominated by quantum fluctuations share the quality of being strongly sub-Poissonian. In the
quasicondensate, one has that i &~ gnand p/kg T ~ 2-y/7. Since the lines of constant Sy are parallel to v = 7,
so they correspond to constant values of 11/kg T In fact, inspection of the values on the contour diagram
shows that

~ kT
I

So (38)

is avery good match in the quasicondensate (for small and large S). In the fermionized gas, with v 2 100, S,
becomes dependent only on 7and independent of 7, and is fairly well estimated by So ~ 207.

Finally, as expected, Sy tends to the shot noise value of unity in the classical regime at high 7, regardless of the
interaction strength . This is best seen in the y = 0.01 transect figure 3(c), where the Sy line passes through all
three main behaviors of S. In the high-temperature fermionized gas, the approach to Sy in the classical regime is
from below. We can also see that at the point when p = 0, Sy already lies above the value of 0.5.

4. Absolute density grain size
The mean occupation of the density fluctuation grains, A is a matter of much physical interest.

What we are looking for is the average number of particles partaking in the smallest independent
fluctuations. We have in mind fluctuations whose variances can be summed. The size of fluctuations with this
property is only bound from below, but not from above in general, because if one labels two independent
fluctuations as a single larger one, it will also be independent. This is only a formal unphysical issue, though, so
we are physically interested in the smallest average occupation of independent fluctuations.

Let us consider heuristically what is desired for a measure of the occupation of a localized density grain. We
are looking for a group of atoms that appear together in a single realization. It should also appear independently
of other neighboring groups, so that it satisfies the independent variance requirement (22). Atoms that appear
together in a single density grain are correlated, so a reasonable criterion for its average width should be
associated with the width of the correlated feature in the g (z) correlation function. This would be

1

I S [ P
P j:oo[g (2) — 1]dz. (39)

The number of atoms in this region is then

we_—0-1 (40)
| g®(0) — 1]

In abunched scenario with g (0) > 1the quantity nwis a pretty good candidate for the occupation of a typical

density grain. This is the case in the hotter parts of the parameter diagram, when we have not yet entered a

quasicondensate.

However, interpretation problems arise as the temperature is lowered. Around v ~ 7, the condensate-like
case of g@(0) = lisreached, as shown in figure 3. In fact, exactly at the point where we have Poissonian
statistics So = 1, the width w of (39) becomes undefined. This cannot mean, of course, that there are no density
fluctuations (because there is shot noise), nor is the typical length of density fluctuations infinite. In fact, the
number of atoms involved in a typical fluctuation is one.

The fluctuations continue to behave differently as the temperature is further lowered into the antibunched
regime, where the width of the correlation function is of the order of the healing length. However, since the
atoms are effectively repelled rather than attracted to each other, it is not entirely clear how many atoms there are
per density fluctuation. Perhaps again a single atom? In fact in the fermionized regime that is reached as y
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becomeslarge, Sy < 1tells us that the variance of atom number grows much slower with system size than if we
had plain shot noise. This must mean that, on average, fluctuations are smaller than with uncorrelated atoms.
The latter observation gives an indication that, when considering density fluctuation grains, it may be wiser
to consider only the fluctuations away from the baseline average of n to avoid unwanted effects. The amount/
probability of fluctuation away from the baseline mean is quantified by the height of ¢'®(z). Hence, when
considering only fluctuations we should apply a better normalization. It is warranted to use the full information
contained in the magnitude of g'»(0) — 1rather than naively normalizing the correlation feature by
|g¥(0) — 1],as was done in (39). Taking this into account gives us the expression

n [189@) - 1dz (41)

for the number of particles in a single fluctuation. Expression (41) can be much less than nwwhen g‘¥(0) is close
to one—as in the quasicondensate. We note that such integrals of the correlation function have been found to
have significant physical meaning for quantum correlations in the past [46, 56].

Expression (41) is still unsatisfactory at low temperatures. It leads to a value of zero in the shot noise region,
and even negative values when antibunching is present. The point to realize here is that integrating over g'¥(z)
can give us an estimate of the number of particles correlated with the one at z = 0. However, it does not include
that one particle at the point z = 0 that we are measuring correlations from. Hence, to include it one should add
1 to the average (41) obtained from the correlations:

nf[g<2>(z) ~1dz + 1. (42)

Expression (42) tackles the shot noise and antibunching issues at the lowest temperatures. In the shot noise case
with g (z) = 1, (7 = v < 1) expression (42) gives one particle per independent fluctuation, as it must. For
fermionized systems (y > 1), (42) gives values less than one, which is reasonable. In the 7 — 0, v > 1limitof
the zero temperature Tonks—Girardeau fermionized gas, atoms are very strongly antibunched, and much more
evenly distributed, according to the mean density 7, than a shot noise scenario. Only occasional small
fluctuations away from this even distribution occur.

The above heuristic arguments indicate that (42) is a fairly good estimate of the average number of particles
participating in a density fluctuation. Notably, (42) is nothing other than the Poissonian-discriminating quantity
So that we met in section 3.1, in its correlation function expression (17). Thus, we tentatively conclude

N = S,. (43)

The predictions of (43) turn out very reasonable when compared to physical intuitions in all regimes of the
gas. In both the classical and condensate-like gas, shot noise is expected to be the dominant fluctuation. Shot
noise means that not only is var N/ N = 1,butalso A/ = 1.Indeed, Sy — 1in both cases, though for different
reasons. In the classical gas, # is very small rendering the value of the integral irrelevant, while in the
quasicondensate, g®(z) = 1, making the integrand zero. In other regimes where S is not unity, (43) and (23)
indicate that

varN ~ N> ~ SZ. (44)

This is not suprising, because it roughly means that the width of the distribution of A/ is comparable to its mean
value. This is more or less exactly what we expect for single independent fluctuations whose distribution is not
affected by the central limit theorem.

With all this in mind, Sy is not only an indicator of the rate of growth of N, as in section 3.1, but can also be
reinterpreted as the typical number of particles partaking in an independent density fluctuation.

We can further comment on the results shown in figure 3

+ Density grains contain many particles in the broad ‘bulge’. This region corresponds to a degenerate gas
dominated by thermal fluctuations, and much of it contains nonperturbative fluctuations such as solitons and
quantum turbulence and is well described by matter waves [55]. The fluctuating lumps of density can contain
very large (mesoscopic) numbers of particles. As the gas becomes more dilute, the number of particles per
grain continues to grow.

+ When varying the temperature, the density grains with the largest number of particles occur around the
1t = 0 crossover between quantum turbulent quasicondensate and degenerate gases.

+ Classical shot noise with one particle per independent fluctuation rules for 7 = 100.

+ Inthe fermionized regime as well as in the lowest temperature quasicondensate, one obtains A/ < 1. What
can it mean that there is far less than one particle per independent density fluctuation?
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Certainly, itis hard to give a good answer to the above question if particle number is thought of as a classical
quantity subject to local realism (and straightforward physical intuition). The fact that A’ < 1only occurs when
antibunching is present may be helpful. Antibunching is inherently a nonclassical property that cannot be
obtained, e.g. using classical fields (matter waves). It is also an indicator that quantum fluctuations dominate the
physics, and the state cannot be described classically.

One can tentatively conjecture that such mean N/ < 1values might correspond to a superposition of the
background density and a & O(1) particle local fluctuation that has a very small quantum amplitude. In this case
the probability of observing a fluctuation at all is small, and the expectation value of the particle number
fluctuation is < 1. Values of Sy < 1in turn indicate var A" < N/, which is consistent with very small variation
of the fluctuation amplitude around one preferred value (such as would occur with fluctuations of +1 particle).

5. Skewness

5.1. Thermodynamics
For higher-order moments, we can proceed the same way as in sections 3.3.1 and 3.3.3. When continuing to take
derivatives of (25) for integer a, one finds immediately that

(N = @(0_2) , @)
Z \ou o
Substituting (24), the third order moment of fluctuations is found to be
s
(6N°) = (ks T)? I (46)
o?
&T
This can be calculated similarly to (30) using
2 00
(a—’;) - f " (k) dk (47)
a/.L T —00
with the definition
*p(k)
p" (k) = . (48)
ou?
The skewness of the distribution of N is defined as
(6N)
= . 49
(varN)*/2 49)

Judging by the fact that both the third and second moments of SN are extensive quantities proportional to L, the
above skewness is not an intensive thermodynamic quantity and scales as 1 /+/L . It approaches zero as the system
size grows. This can be understood as an effect of the central limit theorem. Since in the thermodynamic limit we
are adding many independent density grains, so it is expected that we will get a Gaussian distribution of N with
skewness zero.

However, there are some intensive thermodynamic quantities such as

o0
3 p"(k)dk
My = ) _ g Ly O (50)
(N) S ptodk
and other higher combinations such as
N? * p'(kydk
VAL —f;f , D
varN ﬁ _ p(kydk
thatare related to the skewness. One can use them with the definition (16) to express s in the following ways:
/
1 M’ 1 M (52)

§=— == ——.
N 5 INs

Notice that M /S3/? describes the rate at which skewness decays with growing system size ~/N.
An interesting intensive quantity to consider is the skewness of the distribution of A/. We derive it by
proceeding as in section 3.2. The third moment of the total atom number can be written:
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(W) = 32 (NNGNGy)

1

115]
=p[ N? +3(p - DN N7 +(p - D(p - NI (53)
With the definition of the fluctuations in a single density grain
SN =N - N, (54)
one obtains
(6N°) = p 6N, (55)

and afterwards, the skewness of the distribution of A/
SN M;
SN = — =S = ———
(6N2)3/2 v SN

The last equality comes from substituting (52) and (18). Finally, using the expression (43) (obtained in section 4)
we get to the prediction for the density grain skewness:

(56)

M
SV = —23 = sjpvred. (57)
So

5.2. Numerical procedure
To evaluate (47) and (46), we will need a new set of integral equations for the second derivatives of £ (k) and p (k)
with respect to p. These are

e — 8 [~ dq g 1 @ )
ek = T f_oo g2+ (k- q)2{1 + ec@/T T\1 4+ es@/T (58)
1062 T e /T
[2p'<k>e'<k) T phyerihy + B0 ]“' -
dq p"(q)
T [ + es0/T) = & 59
P + ¢ 8 B (59)
so that the final expression for (6N 3) is
(6N =171 [ Tk dk. (60)
The starting iterations for numerical solution are:
> dq ('@
Oy = — S 61
® 7T J- g2+ (k — q)* (1 + ef@/T)? eV
—1 p(k) (' (k))*
11(0) _ / ! 1
p" (k) = T+ e 07T (2,0 (kye'(k) + plkye' (k) + - . (62)

Using (60) and (37) the skewnesses (52) and (57) can be readily evaluated.
This is shown in figure 4.

5.3. Phase diagram for skewness
Figure 4 shows the calculated behavior of the skewness of the density grain distribution sy using (57). There is
also a simple correspondence between the values shown in figure 4 and the skewness of the total atom number N:

SO
s = spred , 63
TN 4 _N (63)

which does not invoke the heuristic arguments of section 4. To get some bearings of known skewness values: an
exponential distribution has a skewness of 2, while a Poisson distribution for A/ would have sy = 1 / W .

The only closely related calculations and measurements so far, that we are aware of, were reported in [38].
The studies made there were for a quasi-1D gas with significant transverse mode occupations that strongly
attenuate the skewness. For this reason they are not directly comparable to the results shown here, though the
raw unreported data of later truly 1D experiments [39—41, 51] may already be.

Firstlet uslook at the region between 7 ~ 1and 7 ~ 7 dominated by nonperturbative thermal fluctuations,
host to the Sy >> 1 ‘bulge’ in figure 3. The large density grains found here also have a highly (positively) skewed
distribution. This indicates that not only are density grains large on average, but rare events with a much higher
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log 1(7) log 19(7)

Figure 4. Top: contours of the skewness of the density grain distribution sy given by (57). Values are indicated on the plot. The
location at which shot noise occurs (Sy = 1) is also shown by a dashed red line, and the ;. = 0 crossover with dashed gray. Bottom:
behavior of sy along 7 = 0.1 (left) and v = 1000 (right).

number of correlated particles than usual also occur. Note that since sy >> 2, the large N tail is much fatter
than an exponential decay. It is not immediately clear what the highest likelihood /typical occupation of a density
grain is in this regime, but it should be significantly less than A/ when the skewness is large and positive.

While high skewness in the large A region is perhaps not very surprising, the fact that the entire T — 0 limit
(both quasicondensate and fermionized) has very high positive skewness is less obvious a priori. There, it goes
together with very small mean occupations <1 of the independent density fluctuations. We note also the
presence of anonmonotonic behavior in sy around v ~ O(1), which may correspond to the nonmonotonic
behavior of ys noted in this vicinity recently [57].

A remarkable feature is the region of negative skewness in the fermionized regime! It is interesting on several
counts.

+ The negative skewness appears together with sub-Poissonian statistics. This means that the majority of
fluctuations have occupations that belong to a fairly small range at the upper end of allowed values. A possible
explanation of the negatively skewed distribution is that the Pauli-like exclusion principle in this regime
imposes alimit on N from above. The expectation value of A/ is markedly less than one, which indicates that
usually only single particles take part in the fluctuations.

+ Next, some temperature-related effect must be limiting the negative skewness region to nonzero temperatures
intherange 30/ < 7 < 10. The cause is presently unknown.

+ This brings us to what is probably the most unexpected feature of the phase diagram in figure 4(a): the
presence of a crossover along 7 ~ 1/~ atall. A crossover feature in this region has not, to our knowledge,
been noted in the literature. Its location is around

C . £ﬁ4n3
2

T —, ie. kT ~ (64)

gl m’g
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where C = 30 from visual inspection of the numerical data. So far we do not know the physics behind this
scaling.

Let us also look at the classical limit of 7 >> 1. Here in the contour plot, skewness is seen to take small values
O(1). In the cross-section for v = 1000 it tends to unity. In fact, sy tends to unityas 7 >> 1 for all values of .
This is a natural consequence of the Poissonian nature of the fluctuations in the classical gas, and their shot noise

character. Since N — 1, and the distribution is Poissonian, sy = 1 / JN =1L

6. Kurtosis and higher moments of the distribution

6.1. Thermodynamics
Beyond third order, the expressions start to become more complicated. The next relevant standardized moment
is the kurtosis of the distribution of N:

4
(varN)?
It describes the relative strength of the tails, i.e. how prone the distribution is to outliers. The excess kurtosis
(k — 3) tells us whether the tails are stronger or weaker than for a Gaussian distribution, which has x = 3.
Proceeding the same way as in section 5.1, the fourth moment of the deviation of Nis immediately
found to be
2
~ (N N
68" = | ZN) el |22 (66)
o’ ou
&T &T
Evaluation of the first term requires a new higher-order derivative
3 o]
(3—2) = [7 o, (67)
0 1% oT —00
with
P’p(k)
" (k) — , 68
P = =5 (68)
whose equations appear in section 6.2. A related intensive thermodynamic quantity is
(o) (2(R) , [ prodk
My= SR S = (T e (69)
(N) C o ), J7 plodk
Substituting (66) and (27) into (65) one finds
~ —~ -2
3(N N
o2 o]
o o7l O 1,

The second term goes to zero in the thermodynamic limitas ~1/L ~ 1/N because each of the partial

derivativesis oc L. This is again in line with the behavior predicted by the central limit theorem for a sum of
)

5N .
{ 1s not
N

many independent contributions, since Gaussians have k = 3. Note that, unlike at lower orders,
now an intensive thermodynamic quantity.

Let us study the cause of this in terms of of independent density grains as before. The fourth moment of the
total atom number can be written:

(NY=p[NZ +3(p— DN>+4(p — DN A7
+6(p—D(p—DN>NZ +(p—D(p—2(p—3N"] (71)

Next, one obtains

54

(6N = p [6N® — 36N + 3p*(SNP)2. (72)
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Figure 5. Top: contours of the kurtosis of the density grain distribution kx given by (75). Values are indicated on the plot. The
location at which shot noise occurs (S = 1) is also shown by a dashed red line, and the ;1 = 0 crossover with dashed gray. Bottom:
behavior of kyr along 7 = 30 (left) and = 1000 (right).

From this,

k=34 Llry —3] (73)
p

which shows that it is the excess kurtosis of N that scales as 1 /p with the excess kurtosis of A/

In terms of the intensive thermodynamic quantity M, that we can evaluate numerically, we arrive at

SN M
= _L =3+ == (74)
(6N?)? Sq N

a7

The factor M, /S; describes the rate at which excess kurtosis dissipates with growing system size N.
To find the kurtosis of the density grain size we use the prediction (43) for the density grain size and predict

M
Ry =3+ = AR (75)
0

So, while the kurtosis of the total atom number is not an intensive thermodynamic quantity, the kurtosis of the
density grainsis. As it should be! We show its behavior in figure 5.

6.2. Numerical procedure
The integral equations to evaluate (66) and (67) require another set of integral equations for the third derivatives
of (k) and p (k) with respect to p. The firstis:
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g [ dqg 1
Mk :_f
( ) JN g2 + (k _ q)Z 1+ es(q)/T

7 / e(q@)/T ! 3,e(q)/T
x e"(q) — e"(@)e'(q) 2+ e 2e'(q)’e (76)
T 1+ ef@/T — T2(1 4 es@/T)?
with starting iteration
00 dq €'(9)
111(0) k :i q
13 ( ) T ﬁw [(gz + (k _ q)Z][l + ea(q)/T]2
2(5/(Q))2 17 E(Q)/T
The second equation is:
B o0 dq plll(q)
"1 + etk)/ T — § LA L
PR + e=0/T] wf:ocgu(k_q)z
e /T
-7 {p(k)e" (k) + 3p'(k)e" (k) + 3p"(k)e'(k)}
3¢/ (k) ec® /T
e LGELCRNICEY
PR/ (ky? e /7
_ = (78)
with
" _].
IOy = Y
p" (k) T 1 o071
X {P(k)€”’(k) + 3p'(k)e" (k) + 3p" (k)e' (k)
3’ (k) [p(k)e' (k '(k)e' (k k)e'(k)?
L3RR ® + o DR | pRE R 7
T T?
6.3. Phase diagram for kurtosis
Figure 5 shows the calculated behavior of the kurtosis of the density grain distribution, ks, using (75). The
kurtosis of the total atom number Nis related to the values shown in figure 5 by
So red
=3+ — (k7 - 3). 80
K N (Kl ) (80)

Some reference values for kurtosis are 3 for the Gaussian distribution, 6 for the exponential distribution, and
kv = 3 + 1/N foraPoisson distribution. At the low end of allowable values, a square distribution has x = 1.8,
whereas the lowest possible value of K = 1is obtained with a two-peaked distribution of variable v, that
is P(v) = S[6(v — v) + 6(v + w)].

Broadly speaking, the behavior of ks turns out to be related in a one-to-one fashion to that of the skewness
syy—except for the mid-temperature fermionized gas.

The very high kurtosis area is the same as the high skewness region in figure 4. Large x and sy, occur
together for the nonperturbative thermal region in the dilute gas, as well as the lowest temperature regimes in
both the quasicondensate and the fermionized gas. The approximate relation

KN~ sjz\/ (81)

holds in this region. The unexpected crossover at (64) is also readily visible in the kurtosis phase diagram.

In the classical gas with 7 2 100, ks tends to a value of 4 irrespective of the value of . As with skewness,
% = 4is the expected result for a Poissonian distribution of shot noise, since N’ — 1here.

Now, in the fermionized gas, the triangular region that had negative skewness does not correspond to the
lowest kurtosis values. It corresponds instead to a plateau that is best seen in the v = 1000 transect of figure 5(c).
The numerical value indicates a moderate leptokurtic behavior ky = O(6). This value, together with the
negative skewness s/, may indicate a roughly exponential distribution. Somethinglike P(N') ~ oc eV cut offat
amaximum MN,,x, and with the tail extending towards small values.

The most striking feature in figure 5(a) is the remarkable region of anomalously small kurtosis around the
ft = 0 transition. In this region the distribution is platykurtic (kys < 3). The lowest values of k do not go below
the square distribution value of k) = 1.8, but do approach closelyas v — oo. This behavior seems somehow
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intuitively reconcilable with fermionization, but we do not at this time know the reason for the platykurtic
behavior.

7. Observation

There are a number of ways that the quantities discussed here could be observed experimentally. We present
three angles on this below. Moreover we believe that it would be highly interesting to see whether all three ways
of measuring the independent fluctuations give the same self-consistent answers. This would deepen the
understanding of the nature of independence of collective fluctuations in real systems.

7.1. Analysis of imaging bins

One approach that is already in use is to examine the distributions and moments of the occupations of small
imaging bins of length A, as discussed in section 3.1 or [42]. This approach amounts to looking at statistics of
small bins in the gas that correspond closely to the density grains.

Some experimental groups have already made measurements of fluctuations varN® [38—41] and the third
order moment {(SN ™)) [38]. Primarily, these experiments looked at bins of width A that were the smallest
resolvable imaging pixels, and in fact about two times smaller than the point spread function of the imaging
apparatus. To relate their results to the thermodynamic quantity S, a special empirical calibration was necessary
to compensate for the correlations between values in adjacent bins [38].

Calibrating for correlations should be avoidable by using sufficiently large bins. To do so we need to be able
to use the local density approximation (| (x)[?) &~ (N') /L inside each bin. Similarly to previous experiments
[38,39, 52], bins with different densities sample the gas in different regimes of 7 and +y. To access skewness or
kurtosis of the independent density grains with (57) and (75), one should first obtain the quantities M3 and My,
using the same experimental images and bins as for S,.

Experimental values in regions of moderately small ywere obtained and matched the Yang—Yang
predictions for So very well [39-41, 51] for the cases when the gas was truly 1D. This covers a subset of the
parameters shown in figure 3. The same raw data used for the reported results on Sy should, in principle, be
usable to extract pixel skewness s and kurtosis  if the signal-to-noise ratio is sufficiently high.

7.2. Analysis of finite-size scaling
Before describing this second approach, let us make some basic observations. The skewness of the particle
number in the whole cloud and the deviation of its kurtosis from 3 are small finite-size effects:

M;

s = —53/2 <N\>1/2 (82)
k=3 + ZM“A : (83)
Ss (N)

By studying their scaling, the properties of the local independent fluctuations can be extracted.
Ateach order of fluctuation moments there is an intensive quantity that applies in the same form for both the
entire system and the local independent fluctuations:

<32
5o = LN _ ONF (84)
(N) N
L
M; = @ = 6ﬂ3, (85)
(N) N

Mo — (6N") = 3(N°)> _ 6N* — 36N?)?
) () N

(86)

Accordingly, since each of the middle expressions above has a denominator (N ), there will be a related extensive
quantity that scales proportionally to <ﬁ }and to the size of the system L.

Now, consider a large segment of the cloud of length [. If it has practically a uniform density, then intensive
quantities can be extracted from the rate at which the extensive ones change with /. Having an ensemble of
density images 1;(x) of successively produced clouds labeled by j, the way to proceed would be as follows. After
setting the coordinates to x = 0 in the center of each individual imaged cloud, we define a family of central
segments of width /lying in the range x € [—1/2, 1/2]. Then one obtains width-dependent atom numbers for
each jth image
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172
0 _ ,
NO = I , . (87)

Ensemble averaging gives (N") and the moments SN = N® — (N®) (all dependent on the segment length).
The expressions for the quantities we are interested in take the forms:

1 O varN®
5, = LOvarNT 88
0= (88)
(N3
M, = LOLONDY) (89)
n ol
190 Ind N2
M = —L(END)) = 30arN O] (90)
n

Now notice that nis known. By fitting the linear dependence of varN®, ((N")3), and ((6NV)*) on the analyzed
box length I, quite robust estimates of S, M3, and M, can be obtained.

Generally, one expects nonlinear dependence to emerge at the low end of I (due to local density correlations)
and at the high end of I (due to non-uniformity of the ensemble-averaged density). Such marginal values of /
would have to be ignored in the analysis. The key advantage of using the gradients (88)—(90) over direct
evaluation of (84)—(86) is that one can readily inspect whether indeed the linear extensive regime is present.

Once one has the fitted estimates for So, M3, and My, properties of the density grain distribution can be
obtained using (57) and (75).

7.3. Analysis of single-shot images

A third and arguably most interesting angle for an experimental proposal is to determine to what degree the
intuitive picture of localized independent fluctuations leading to (43) is in fact accurate. If it is true, then
independent fluctuations of widths comparable to the g (z) correlation function should be visible at the level
of individual cloud images. It might not be true if the arguments for (43) break down. This might happen, e.g., if
the spatial extent of independent number fluctuations is larger than the separation between their centers of
mass. Which of these cases occurs may depend on the physical parameters yand .

Section 7.1 considered single-shot variations in arbitrarily chosen bins with artificially sharp boundaries.
However, in the intuitive picture one expects that the independent localized fluctuations should be visible in
images as density concentrations (‘lumps’, with varying but naturally set widths). These lumps should be
discernible and countable without the need to impose artificially sharp bins. Confirming or refuting the accuracy
of such a single-shot lump interpretation would help in understanding how to interpret independence at the level
of physical intuition.

The issue of how well such counting of lumps corresponds to the independent domains in a gas has been a
long-standing point of discussion in the field. The same concerns the width of the density—density correlation
function g® (z), and how well it corresponds to the widths of such lumps. One way to go about checking the
accuracy of these conjectures is to compare local density to the background mean density. Take the following
definition of a background density for each jth experimental shot:

1 1/2
nj = — dx nj(x), 91
I J-12
assuming that a central piece of the cloud of length /is reasonably long. The averaging in (91) is spatial and
independent of the full ensemble average. Then, the lump boundaries x,) can be setby 1;(x(,)) = 7; at the
crossing points between the local density and the mean one. The occupation of the pth lump would be taken as
the number of atoms between consecutive lump boundaries, i.e.

N, = f e (). (92)

X(p)

Adjacent ‘lumps’ would consist of alternately above-average-density and below-average-density sections, but
adjacent Nj, would not necessarily take on alternating high and low values because the lump widths can differ.
Note that with this whole procedure, the imposition of pre-set bin positions is avoided. If the intuitive localized
density fluctuation picture and the reasoning for (43) is correct then the mean, variance, skewness and kurtosis
of the lump occupations Nj, should agree with N, varN, sy, and k) obtained using the methods in the
previous sections 7.1 and 7.2.

Some practical points to consider for such a test include:

1. The need to have sufficient resolution to resolve adjacent density concentrations. The Palaiseau experiments
[38—41, 51] did not satisfy this criterion because the density correlation length was always below the pixel
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size. In general, however, other contemporary experiments such as the 2D gas of [50] can resolve the density
correlations in situ.

2.1t is probably necessary to work in a regime with AV >> 1 such as the quasicondensate, so that all or most
relevant fluctuations lead to an actual imaging signal.

3. A sufficiently wide cloud is required to catch a sizable number of lumps in the uniform central section.

8. Conclusions

Fresh exact quantum results for the 1D interacting gas are rather rare to come by. Generally, the known findings
concern global quantities or two-body correlations. The distinguishing feature of this work is that it provides
exact results for a different kind of quantity that describes the mesoscale, and goes beyond two-body
correlations.

We started with results for moments of the total atom number. Calculations were made using the additional
integral equations (32), (34), and (37) at second order, and those in sections 5.2 and 6.2 for third and fourth.
However, by then taking advantage of the definition of independence (that independent contributions to the
global variance add), we arrived at quantities that describe the properties of individual mesoscopic density
grains.

Our main physical results are summarized by three figures that present a phase diagram for the behavior of
the independent density grains. Figure 3 shows the mean particle number A in an independent density
fluctuation, and the super/sub-Poissonian nature of the distribution P (N). Figures 4 and 5 show the main
remaining qualities of P (N): its skewness and kurtosis. Neither of these can be obtained from studying two-
body correlations. The figures also give direct access to the moments of the total atom number N through the
relations varN = NS, (63) and (80), without reference to the arguments made for (43).

Overall, one can distinguish several regions.

1. A region with large ‘mesoscopic’ density grains in which many particles take part in a single density
fluctuation. This includes the quantum turbulent regime, the thermal-dominated quasicondensate, and the
degenerate incoherent regime with 1 < 0 well described by Hartree—Fock theory. The distribution of A/
haslong positive tails here, such that some fluctuations have extra large occupations.

2. The lowest temperatures host sub-Poissonian quantum fluctuations with A/ < 1 and obey a distribution
with high skewness and kurtosis. One can observe similar behavior in the dilute bosonic gas and the strongly
fermionized regime.

3. The mid-temperature regime of the fermionized gas is characterized by a negatively skewed and moderately
leptokurtic distribution.

4. A platykurtic regime in the fermionized gas near the region where 14 = 0.

5. The classical region at large 7, displaying single-particle shot noise.

The above list includes some phenomena whose in-depth causes are unexplained for now. This concerns the
exact mechanisms behind the low A/ in the mid-temperature fermionized gas as well as the negative skewness
and platykurtic behaviors seen there. Moreover, also the physical cause of the unexpected crossover around
T ~ 1/ in the fermionized gas is not obvious.

The method presented in this paper is readily extensible to higher-order moments, although beyond kurtosis
the expressions get more and more complicated, while the physical interpretation less and less intuitive. A really
interesting question would be whether a similar approach could be found to study the phase domains in the gas.

Atthe end in section 7, we outlined several ways to measure the properties of the density grains
experimentally. A better understanding of the relationship between single-shot manifestations of independent
fluctuations and ensemble-averaged ones would be valuable conceptually and in practice. We proposed a way to
study this quantitatively in section 7.3.
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