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Abstract
Numberfluctuations in a one-dimensional Bose gas consist of contributions fromgrainyfluctuations
of localized domains (the density grains).We have derived a set of extended integral equations from
the Yang–Yang solution for finite temperature that exactly determine all higher-ordermoments of
number fluctuations. Thesemoments are closely related to the statistics of the localized (but not zero-
range) density grains.We directly calculate themean occupation of thesefluctuations, and the
variance, skewness, and kurtosis of their distribution across thewhole parameter space of the gas.
Findings include: largemesoscopic density grains with a fat-tailed distribution in the thermal
quasicondensate of the dilute gas and in the nonperturbative quantum turbulent regime; regions of
negative skewness and below-Gaussian kurtosis in a part of the fermionized gas, and an unexplained
crossover region alongT T ;d g~ the existence of a peak in the density–density correlation function
atfinite interparticle spacing.We relate these density grain statistics tomeasurable behavior such as
the statistics of coarse imaging bins, andfinite-size scaling of number fluctuations.We propose how to
experimentally test the relationship between thermodynamically independent density grains and
density concentrations visible in single-shot images.

1. Introduction

One of themanyways inwhich one-dimensional (1D) quantumBose gases are intriguing is that while they have
highly quantummatter wave behavior, such as, e.g. superfluidity, they exhibit no off-diagonal long-range order
such as a condensate.Hence, theymust be composed ofmore or lessmicroscopic scale, localized domains or
grains that survive into the thermodynamic limit. Very visually striking demonstrations of such domains have
been seen in experiment, especially formulticomponent gases, where the value of the local pseudospin acts as a
marker, and spin domainwalls are also not uncommon [1–3]. The characteristics of the domains in a single-
component gas are a littlemore elusive since such clear-cut localmarkers are not available. Themost familiar
domains in this case are phase grains—known to occur in the quasicondensate regime. Experimentally, their
existence can be inferred from the behavior of a cloud after expansion [4–8]. There is also awarmer regimewith
profuse spontaneous solitons [9–12] separating phase and density domains. Overall, due to the lack of a
condensate, phase grains of various sorts are also to be expected in other regimes.

Density granularity, in the sense offluctuating local-scale structures, is also expected due to the localized
behavior of the density–density correlation function g z2 ( )( ) in all regimes of the 1DBose gas [13–16]. The
statistics and qualities of these density grains are whatwe reveal here, having developed a technique to study them
in the exact quantum solution for the thermodynamic limit.

The uniformone-component Bose gas in the thermodynamic limit has an exact solution atT=0 due to
Lieb and Liniger [17, 18], extended to theT 0> case by Yang andYang [19]. The basic quantities calculated
from this solution, such as density, pressure, energy per particle are intensive system-averaged quantities and
they do notmeaningfully relate to localized elements of the gas. Extracting other observables from the exact
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solution is usually nontrivial. In a broad effort, a selection ofmicroscopic properties have already been found.
The local among them are the density–density correlation g 02 ( )( ) [15, 20, 21], g 03 ( )( ) [22, 23], and some other
quantities [16, 24, 25]. The second kind are two-body: dynamic and static structure factors [26–28], response
functions [29], and two-body correlations [13, 14, 16, 30–34] in some physical limits. In particular, the k=0
static structure factor (denoted S0) gives information about occupationfluctuations in imaging bins, in the limit
of coarse-enough bins, and has been used in this capacity to interpret experimentalmeasurements [35–42]. The
link to physics on the localized but not zero-range scale is evident. Furthermore, it can be obtained from an
appropriate thermodynamic derivative of the total number of particles in the system,N [38].

What we found atfirst was an alternativemethod to calculate S0 from the exact Yang–Yang solution. This
method quite naturally lends itself to awhole hierarchy of extensions that allowone to calculate highermoments
ofN. Furthermore, by considering a natural criterion of independence for density fluctuations—that the
variance of the total atomnumber be the sumof variances of the independent fluctuations—wefind away to
relate the system-size scaling of some extensive quantities to the behavior ofmesoscopic physical elements in the
gas—the density grains.

In consequence, we are able to determine the statistics of the independent density fluctuations in the gas
across thewhole range of physical regimes: the quasicondensate, the dilute degenerate gas including the
quantum turbulent regime, the classical gas, and the strongly interacting fermionized regime, as well as all the
crossovers.We explicitly obtain themean number of correlated particles in afluctuation, howPoissonian/sub-
Poissonian the occupations are, the skewness of their distribution, and its kurtosis. Interestingly, neither
skewness nor kurtosis could be obtainedmerely from considering known results on two-body correlation
functions.We note both tail-heavy distributions in the quasicondensate, as well as platykurtic and/or negatively
skewed distributions in the nonzero temperature fermionized gas. To the best of our knowledge, exact quantum
results formesoscopic objects that can involvemany particles have not been studied earlier in this system.

The paper is organized as follows: section 2 introduces the system, its basic parameters, and the Yang–Yang
solution, as well as a visualization of the iteration procedure used. The Poissonian/sub-Poissonian statistics of
the density grains and the underlyingmethodwe use to obtain it is derived in section 3. Section 4 shows how the
mean number of particles partaking in such independent fluctuations can be ascertained. The skewness and
kurtosis of the density grain distribution are found in sections 5 and 6, respectively.Wemake physical comments
about themain results obtained (presented infigures 3–5) aswe go along. Suggestions on how these quantities
can be experimentally observed are given in section 7.We conclude in section 8.

2. System and exact solution

2.1. System andunits
Wewill be considering a uniform gas described by the basic ultracold atomHamiltonian
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in a 1Dbox of length L, with

N x x xd 2ò= Y Y  ( ) ( ) ( )†

particles. Imagine a section of the gas that stays in diffusive contact withmore cloud (at the ends, or in higher
transverse excited states). Then, the expected equilibrium ensemble will be a grand canonical onewith chemical
potentialμ. This is also the ensemble assumed in the Yang–Yang exact solution for the nonzero temperature gas
in the thermodynamic limit [19].

First, aminor but often confusingmatter of variables. The Lieb–Liniger [17, 18] andYang–YangBethe
ansatz solutions are given in units of m k2 1 B = = = , with a coupling strength c and chemical potentialA.
Here, wewill use the m 1 = = unitsmore familiar in ultracold atoms to avoid a ‘factor of two’ cursewhen
comparing to other cold atomwork. The distance units (for k, L, etc)will stay the same as in the Lieb–Liniger
description. These steps result in the following relationship: themass and time units are twice as large in Lieb–
Liniger than standard cold atom farewhile energyT and coupling g have units that are two times smaller in Lieb–
Liniger. Therefore, if we denote quantities appearing in the Lieb–Liniger, Yang–Yang, and related papers with
subscript LL, and the standard m k 1B = = = case without subscripts, one has: E E 2LL= / , A 2LLm = ,
T T 2LL= , k kLL= and g cLL= .
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2.2. The plain equations
Touse the Yang–YangBethe ansatz solution [19] in practice, onefirst solves the following integral equation:
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The spectrum-like quantity ke( ) depends onwavevectorsk1. A continuumofwavevectors is considered, since
the theory is for the thermodynamic limit of sufficiently largeL. Equation (3) is usually solved by iteration,
startingwith the free particle form
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Subsequently, the following Fredholm integral equation
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is solved for a function kr ( ), which gives the density of occupied quasimomenta. This step is also done by
iteration, starting from
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Figure 1 shows some typical behavior during this iterative procedure. Convergence can be fast or time
consuming depending on the physical regime. The quasicondensate regime 1g  , t g has particularly
slow convergence, while convergence is very fast in the strongly fermionized regimewhen 1g  .

Using the above solution, the following physical quantities are obtained in a straightforwardmanner [19]:
the density
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the entropy S, and the pressure P:
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In order to obtain another important observable characterizing the system, namely the local density–density
correlation function [20, 21], one can further use theHellman–Feynmann theorem as follows:
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Intense numerical calculations based directly on the Bethe ansatz have also been used to obtain dynamic
structure factors and correlations [26–28].

2.3. Parameter space and scaling
Now in the thermodynamic limit of a uniform gaswith density n=N/L there are only two essential parameters:
an interaction strength

mg

n
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and a relative temperature

mk T

n

T

T

2 4
. 12B

2 2
d

t
p

= = ( )

Here,T n m2d
2 2= is the usual ideal-gas degeneracy temperature, while the 4p factor has often been used in

the context of density fluctuations.
The Yang–Yang Bethe ansatz description is given in terms of three input parameters g T, , m, and the density

is then a function of these as per n T g, ,m( ). Due to this, a pair of physical parameters ,g t( ) corresponds to
continuous families of gases in the thermodynamic limit andwewill use them to describe the parameter space.

1
Note that we also rescale this quantity to m 1 = = units so that 2LLe = compared to the quantity LL used in [19].
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Typically, themain regimes of density fluctuations have been classified using the localmicroscopic quantity
g 02 ( )( ) [20].

• A fermionized regime ( 1g  and 2t g )with strong antibunching g 0 12 ( )( ) . An intriguing high-
temperature fermionized regime occurs for 1 2t g  .

• Aquasicondensate regime ( 1g  and t g )with small density fluctuations g 0 1 12 - ∣ ( ) ∣( ) . This

regime is further distinguished into a thermal fluctuation dominated regionwith g 0 12 >( )( ) for t g and a
quantum-fluctuation dominated regionwith g 0 12 <( )( ) for t g .

• Adecoherent quantum regime ( 1g t  ) inwhich density fluctuations are large (g 0 1 12 - ~( ) ( )( ) )
but the system is still quantumdegenerate. Quantum turbulence occurs here.

• A classical particle-like regime for higher temperatures inwhich g 0 22 »( )( ) .

Two features in the decoherent quantum regime are alsoworth noting for later comparison.

• A regimewith frequently occurring thermally activated solitons in the vicinity of t g» [9, 12].

• The crossover between a Bogoliubov-like and aHartree–Fock-like systemoccurs at temperatures near or just
above the soliton region, whenμ changes sign, as studied in [43].

Figure 1. Integration kernels and iteration details for two characteristic cases. In the top two panels: a weak quasicondensate with
0.1g t= = . In the bottom two panels: amoderately high-temperature fermionized gaswith 10g = , 1t = . The top plot in each

pair shows the shift of the spectrum-like quantity ke( ) from the free particle form, k k k k22 0de e m e e= - - = -( ) ( ) ( ) ( )( )/ , while
the lower shows the quasimomentumoccupation density kr ( ). The cyan lines are the initial estimates k 00de =( )( ) and k0r ( )( ) . The
blue lines are the results of subsequent iterations, and the red lines are the final self-consistent solutions of the integral equations.
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In this paper, wewill chooseT to be the scaling parameter, and use the valueT=1 for numerical
calculations. Since n mk T1 2 B t= ( ) and g n m2g= , thewhole family of solutions has the following
scalings:
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The energy and chemical potential scalings follow from the fact that they have the same units as temperature,
while the thermodynamical relation P S L T nd d dm= +( ) indicates the scaling of pressure.

In calculations aiming for a given parameter pair ,g t( ), sought-after values of n and g are uniquely
determined after choosingT=1.However, we need tofind theμ that gives the appropriate value of the density.
This is a numerical inverse problem that can be solved by standard numerical techniques oncewe are able to
evaluate n g T, ,m( ). Typically, it takes from a few to a few tens of steps to get four tofive significant digits of
accuracy in n, largely irrespective of the physical regime.

3.Density grains and their statistics

3.1. Coarse-grained densityfluctuations
The local pinpoint density–density correlation function g 02 ( )( ) describes very small scale fluctuations.While it is
a very important quantity for the theoretical description of the gas, it is not what is usually observed. That is
becausefinite imaging resolution in a typical setupmakes it inaccessible.

Under typical conditions, the finite resolution of the imaging apparatus,Δ, is comparable to orwider than
thewidth of the g z2 ( )( ) density correlation function

g z
n

x x z x z x
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. 142
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Thismeans that the statistics of the observed localfluctuations are in fact only the statistics of segments of the gas
of lengthΔ. This is the case inmost contemporary experiments2. For observations withfinite resolution, the
results can be described by a sequence of bins of widthΔ, with observed occupations Nj

D( ) in the jth bin.

Ensemble averages such as N Njá ñ = á ñD D( ) ( ) will be independent of j for a uniform system. An in-depth
experimental study of such coarse-grained density fluctuations and their statistics has been carried out by the
Palaiseau group [38–41].

A fundamental statistical quantity in this regard is

N

N
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D

D
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which compares the bin occupations to Poissonian statistics. A value of unity indicates Poissonian variance,
values above one super-Poissonian variance, and belowone: sub-Poissonian. The last can only occur at
sufficiently low temperatures when quantumfluctuations dominate. The quantity in (15) is evidently device-
dependent whenΔ is small, because some density correlationsmay occur between neigboring bins.

Now instead of these imaging-limited bins, consider bin sizes  that are sufficiently large to have statistically
independent occupations, but still L  .We then arrive at the following intensive thermodynamic quantity:

S
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var var
, 160




= =

á ñ
( )

( )

( )

which describes coarse-grained density fluctuations. The last equality in (16) follows from the assumption of
independence between the occupations Nj

( ), because the variance of the total particle numberN grows as the
sumof the variances of the individual independent contributions. S0 depends neither on the ultimate size of the
box L, nor on the bin size , provided the latter is sufficiently large. Thematter of ‘sufficiently large’ can be
quantified by requiring that the density correlation function g z2 ( )( ) decays to its background value of onewhen

z  .We can see this relationship clearly by evaluating S0 from (16), substituting N x x xdò= Y Y  ( ) ( )†
for the

number of particles in the system, and comparing to (14). The result is

S n z g z1 d 1 . 170
system

2ò= + -[ ( ) ] ( )( )

If the integral is over a greater extent than thewidth of the bulge in the correlation function at low z, then it
achieves its asymptotic value.

2
Special setupswith single-atomdetection inHe* have been able to access g z2 ( )( ) in detail, through [44–48].
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From (17) one readily sees several features: S 10  only if there is antibiunching (g z 12 <( )( ) ), an effect that
only occurs at temperatures low enough that quantumdepletion becomes important. In the nondegenerate
classical gas, we achieve the Poissonian shot noise limit S 10  , since then both n and the range of g z2 ( )( ) , which
is of the order of the thermal de Broglie wavelength TL , become small. In the condensate, when g z 12 =( )( ) , we
again have a shot noise value of S 10 = , but for a different reason.

The quantity S0 is also known as the k 0 limit of the static structure factor S(k), which is the Fourier
transformof the density correlation function [49, 50].

3.2. Independent density grains
The quantity S0 is also a descriptor of the typical independently occurring ‘lumps’ of density, regardless of any
considerations of an externally set bin size.

To see this, consider the following: if we have p independently fluctuating fragments of the gas labeled by j,
whichwewill dub density grains, then
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Wehave denoted the number of particles in individual grains by j in italics, and a barwill be used to indicate
averaging over grains. For example,
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is the average grain occupation. In the thermodynamic limit withmany grains p  ¥, an average over
independent grains in a single experimental realizationwill converge to the same value as the ensemble average.
So that
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also holds for general quantities f that involve onlymeasured grain occupations j .
Consider now the secondmoment of the total atomnumber:
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After all, we expect that the variance of a collection of independent random variables will be the sumof their
variances. That is what is oftenmeant by independent.We can also see that

S
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var var
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gives information about the statistics (sub-Poissonian, Poissonian, super-Poissonian) of the individual
independent density grains in the gas. Interestingly, this information is givenwithout reference to the separate
question of how large such density grains are (i.e. the actual value of  ).

The defining quality of what wewillmean by a density grain is that the local variances of independent grains
are additive to the global variance. One example is segments of sufficient length . Thesewill become
independent as boundary effects between thembecome negligible. That is, when c  D , and cD is the bin size
at which (15) begins to deviate from S0. A different examplewould be fuzzy segments defined by an integral over
a point spread functionwithwidth cD D .Wewill return to thematter of the density grain size inmore detail
in section 4.

3.3. Calculating the density grain statistics
3.3.1. Basic thermodynamic relation
Following, e.g. [38], consider the grand canonical ensemblewith fixed g andT. Denoting the grand canonical
partition function by ZTr = [ ], where Z H N Texp m= - -  [ ( ) ], one has that

N
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Also,
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Denoting thefluctuations as
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one immediately has thewell-known thermodynamic relation [38]
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3.3.2. Inefficient gradient approach
Themost straightforwardway to calculate S0 is to proceed by converting the partial derivative in (28) tofinite
differences. This is what has usually been done for themicroscopic local density fluctuations g 02 ( )( ) using the
prescription (10) [21]3. In that approach, a small shift g gD  (say, g g10 4D = - ) is chosen, and P g g 2 D( )
and n(g) are evaluated, keepingT andμ constant. They are used to estimate
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Wehave found, however, that when applying the same gradient procedure to evaluate S0 via (28), a
numerical unstability appears, especially at low temperatures. For this reasonwe have developed another
method.

3.3.3. Efficient integral approach
Amore accurate (and ultimatelymore efficient) approach is found as follows. From (7), we see that
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and differentiating the equation (5)wefind that kr¢( ) obeys its own integral equation
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This quantity, in turn, can be obtained froma second integral equation that comes fromdifferentiating (3):
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The above two integral equations can also be solved by iteration oncewe know ke( ) and kr ( ). It ismost
convenient to use the same numerical lattice for k and q in all the integral equations. The starting forms for the
iteration are

3
The formula using P from [21] ismore convenient in practice than the better knownone using free energy that was derived earlier in [20].
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Examples of the iterations are shown in the top two rows offigure 2.

3.4. Phase diagram for density grain statistics
Armedwith the algorithmof section 3.3.3, we calculated S0 for awide range of physical parameters. Its behavior
is shown infigure 3 as a contour plot, alongwith some representative transects at constant γ and constantτ.

To our knowledge, this is the first time that the behavior of S0 has been comprehensively described. Previous
calculations using the Yang–Yangmodel in support of experiments have reported plots of N 2dá ñversus Ná ñor S0
[39–41, 51] for several ranges of densities at constant temperature ( 2t gµ ). The region that was explored
corresponds to samples of the bottom-left part offigure 3(a), with values that differ from S 10 = by several
factors. Calculations of density fluctuationswere alsomade at higher τ [38, 40, 51]. These used themodified
Yang–Yang description [52] of quasi-1D gaseswith appreciable transversemode occupation. The values
obtained differ appreciably from the strictly 1D values of S0 reported here.

In the discussion below, we refer to the different physical regimes described in section 2.3. For clarity, we
keep inmind that the different regimes are separated by continuous crossovers not phase transitions. All the
transitions come together in the neighborhood of 1g t= = .

As a first point, let us note the S 10 = line infigure 3(a) that separates the regions of super-Poissonian and
sub-Poissonian statistics. It lies at 2t g» in the quasicondensate ( 1g  ), and shifts slope to 2t g» in the
high-temperature, high-gamma region. The latter lies in themiddle of the crossover between a normal classical

Figure 2. Iterations for the calculation of the derivatives ke¢( ) and kr¢( ) via (34) and (32) (top two rows); for the calculation of the
corresponding second derivatives via (58) and (59) (middle two rows); and the third derivatives via (77) and (78) (bottom two rows).
Notation and colors as infigure 1. The left column shows the quasicondensate case 0.1g t= = , while the right shows the
fermionized 10g = , 1t = .
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gas and a high-temperature fermionized one.Note also that, except for a small shift, the location of S 10 =
follows the g 0 12 =( )( ) reference line, which separates the bunched and antibunched gases. Although the two
properties often appear together and are correlated, they are physically distinct: bunching/antibunching refers
to the precisely local behavior, while Poissonian or non-Poissonian statistics refers to the behavior of larger
pieces of the gas.

The shift is interesting, however. In the quasicondensate, g 0 12 =( )( ) occurs at 3t g» , i.e. at about a 50%
higher temperature than S 10 = . In the high γ regime, g 0 12 =( )( ) occurs at 3 2t g» , i.e about three times
higher than S 10 = . The observed shift indicates that the bunching/antibunching transition occurs under
S 10 > conditions. Due to the relationship (17), thismeans that z g zd 1 02ò - >( ( ) )( ) . Since g 0 12 =( )( ) at

these points, this unambiguously indicates a hump in the g z2 ( )( ) function at z 0¹ . It alsomeans that density–
density correlations at amoderate but nonzero distance are stronger than the zero-range local ones near the
transition. Such a preferred correlation length has been noted before [14, 53]. The results found here show that
this phenomenon exists across thewhole range of temperatures and interaction strengths in the vicinity of
g 0 12 »( )( ) . A related point to accentuate is that sub-Poissonian statistics occurs only strictly togetherwith
antibunching (g 0 12 <( )( ) ). In this region quantum fluctuations are always an important contributing factor.

The second reference line, 0m = is also an important watershed between essentially quantumgas physics
when 0m > , and largely ideal-gas-like behavior when 0m < . In the dilute gas with 1g  , 0m = is a dividing
line between (a) quasicondensate behavior at lower temperatures, which can still be somewhat described by a
generalized Bogoliubov theory [54], and (b) a quantumdegenerate but nonquasicondensate state at higher
temperature, which is better captured by aHartree–Fock (HF) or c-field description [55]. The crossover between
(a) and (b) has been studied in detail by [43]. In the fermionized regime, 0m = occurs at 40t » . Certainly, for
any kind of ideal-gas-like behavior 0m < is necessary, so the lower temperature 0m > region in the
fermionized case is strongly nonclassical.

Figure 3.Top: contours of S0 in the parameter space of the 1DBose gas (values of S0 indicated on the plot). This quantity indicates
number variance as compared to Poissonian statistics, as well as the typical number of particles partaking in independent density
fluctuations because S0 » . Two reference lines are also shown in thick dashed style: the location at which perfect second order
coherence occurs (g 0 12 =( )( ) ) in purple, and the 0m = crossover in gray. Bottom: behavior of S0 along 0.1t = (left) and 0.01g =
(right).
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Themost prominent feature in all three panels offigure 3 is the huge bulge of large S 10  . On the contour
plot it is shown by brownish contours and straddles the 0m = region in the 1g dilute gas. This ‘bulge’ spans
both the 0m < HFdegenerate region and the thermal-dominated quasicondensate, including the soliton-rich
and quantum turbulent regions. The statistics here is very strongly super-Poissonian. S0 grows rapidly as the
interactions becomeweaker with falling γ.Wewill see later that highermoments of the density grains are also
very high in this regime and grow rapidly. Generally speaking, the two distinguishing features in the ‘bulge’ are
that the gas is quantumdegenerate andfluctuations are dominated by thermal effects (as opposed to quantum
fluctuations).

A second remark about the ‘bulge’ is that S0 falls rapidly and evenly as the g 0 12 =( )( ) threshold into the
quantum-fluctuation-dominated quasicondensate is reached. There is no indication of plateau behavior in S0, in
direct contrast to the behavior of g 02 ( )( ) , which flattens out prominently below t g~ [20].

Another global feature is that both regimes (low-temperature quasicondensate and the fermionized gas),
that are dominated by quantum fluctuations share the quality of being strongly sub-Poissonian. In the
quasicondensate, one has that gnm » and k T 2Bm g t» . Since the lines of constant S0 are parallel to g t= ,
so they correspond to constant values of k TBm . In fact, inspection of the values on the contour diagram
shows that

S
k T

380
B

m
» ( )

is a very goodmatch in the quasicondensate (for small and large S0). In the fermionized gas, with 100g , S0
becomes dependent only on τ and independent of γ, and is fairly well estimated by S 200 t» .

Finally, as expected, S0 tends to the shot noise value of unity in the classical regime at high τ, regardless of the
interaction strength γ. This is best seen in the 0.01g = transectfigure 3(c), where the S0 line passes through all
threemain behaviors of S0. In the high-temperature fermionized gas, the approach to S0 in the classical regime is
frombelow.We can also see that at the point when 0m = , S0 already lies above the value of 0.5.

4. Absolute density grain size

Themean occupation of the density fluctuation grains,  is amatter ofmuch physical interest.
What we are looking for is the average number of particles partaking in the smallest independent

fluctuations.We have inmindfluctuationswhose variances can be summed. The size of fluctuationswith this
property is only bound frombelow, but not from above in general, because if one labels two independent
fluctuations as a single larger one, it will also be independent. This is only a formal unphysical issue, though, so
we are physically interested in the smallest average occupation of independent fluctuations.

Let us consider heuristically what is desired for ameasure of the occupation of a localized density grain.We
are looking for a group of atoms that appear together in a single realization. It should also appear independently
of other neighboring groups, so that it satisfies the independent variance requirement (22). Atoms that appear
together in a single density grain are correlated, so a reasonable criterion for its averagewidth should be
associatedwith thewidth of the correlated feature in the g z2 ( )( ) correlation function. This would be

w
g

g z z
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The number of atoms in this region is then
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In a bunched scenario with g 0 12 >( )( ) the quantity nw is a pretty good candidate for the occupation of a typical
density grain. This is the case in the hotter parts of the parameter diagram,whenwe have not yet entered a
quasicondensate.

However, interpretation problems arise as the temperature is lowered. Around g t» , the condensate-like
case of g 0 12 =( )( ) is reached, as shown infigure 3. In fact, exactly at the point wherewe have Poissonian
statistics S 10 = , thewidthw of (39) becomes undefined. This cannotmean, of course, that there are no density
fluctuations (because there is shot noise), nor is the typical length of density fluctuations infinite. In fact, the
number of atoms involved in a typical fluctuation is one.

Thefluctuations continue to behave differently as the temperature is further lowered into the antibunched
regime, where thewidth of the correlation function is of the order of the healing length.However, since the
atoms are effectively repelled rather than attracted to each other, it is not entirely clear howmany atoms there are
per density fluctuation. Perhaps again a single atom? In fact in the fermionized regime that is reached as γ
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becomes large, S 10 < tells us that the variance of atomnumber growsmuch slowerwith system size than if we
had plain shot noise. Thismustmean that, on average, fluctuations are smaller thanwith uncorrelated atoms.

The latter observation gives an indication that, when considering density fluctuation grains, itmay bewiser
to consider only thefluctuations away from the baseline average of n to avoid unwanted effects. The amount/
probability offluctuation away from the baselinemean is quantified by the height of g z2 ( )( ) . Hence, when
considering only fluctuations we should apply a better normalization. It is warranted to use the full information
contained in themagnitude of g 0 12 -( )( ) rather than naively normalizing the correlation feature by
g 0 12 -∣ ( ) ∣( ) , as was done in (39). Taking this into account gives us the expression

n g z z1 d 412ò -[ ( ) ] ( )( )

for the number of particles in a single fluctuation. Expression (41) can bemuch less than nwwhen g 02 ( )( ) is close
to one—as in the quasicondensate.We note that such integrals of the correlation function have been found to
have significant physicalmeaning for quantum correlations in the past [46, 56].

Expression (41) is still unsatisfactory at low temperatures. It leads to a value of zero in the shot noise region,
and even negative values when antibunching is present. The point to realize here is that integrating over g z2 ( )( )

can give us an estimate of the number of particles correlatedwith the one at z=0.However, it does not include
that one particle at the point z=0 that we aremeasuring correlations from.Hence, to include it one should add
1 to the average (41) obtained from the correlations:

n g z z1 d 1. 422ò - +[ ( ) ] ( )( )

Expression (42) tackles the shot noise and antibunching issues at the lowest temperatures. In the shot noise case
with g z 12 =( )( ) , ( 1t g» ) expression (42) gives one particle per independent fluctuation, as itmust. For
fermionized systems ( 1g  ), (42) gives values less than one, which is reasonable. In the 0t  , 1g  limit of
the zero temperature Tonks–Girardeau fermionized gas, atoms are very strongly antibunched, andmuchmore
evenly distributed, according to themean density n, than a shot noise scenario. Only occasional small
fluctuations away from this even distribution occur.

The above heuristic arguments indicate that (42) is a fairly good estimate of the average number of particles
participating in a density fluctuation.Notably, (42) is nothing other than the Poissonian-discriminating quantity
S0 that wemet in section 3.1, in its correlation function expression (17). Thus, we tentatively conclude

S . 430 » ( )

The predictions of (43) turn out very reasonable when compared to physical intuitions in all regimes of the
gas. In both the classical and condensate-like gas, shot noise is expected to be the dominant fluctuation. Shot
noisemeans that not only is var 1  = , but also 1 » . Indeed, S 10  in both cases, though for different
reasons. In the classical gas, n is very small rendering the value of the integral irrelevant, while in the
quasicondensate, g z 12 =( )( ) , making the integrand zero. In other regimeswhere S0 is not unity, (43) and (23)
indicate that

Svar . 44
2

0
2 » » ( )

This is not suprising, because it roughlymeans that thewidth of the distribution of  is comparable to itsmean
value. This ismore or less exactly what we expect for single independent fluctuationswhose distribution is not
affected by the central limit theorem.

With all this inmind, S0 is not only an indicator of the rate of growth ofN, as in section 3.1, but can also be
reinterpreted as the typical number of particles partaking in an independent density fluctuation.

We can further comment on the results shown infigure 3

• Density grains containmany particles in the broad ‘bulge’. This region corresponds to a degenerate gas
dominated by thermalfluctuations, andmuch of it contains nonperturbative fluctuations such as solitons and
quantum turbulence and is well described bymatter waves [55]. Thefluctuating lumps of density can contain
very large (mesoscopic)numbers of particles. As the gas becomesmore dilute, the number of particles per
grain continues to grow.

• When varying the temperature, the density grains with the largest number of particles occur around the
0m = crossover between quantum turbulent quasicondensate and degenerate gases.

• Classical shot noise with one particle per independent fluctuation rules for 100t .

• In the fermionized regime as well as in the lowest temperature quasicondensate, one obtains 1  .What
can itmean that there is far less than one particle per independent density fluctuation?
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Certainly, it is hard to give a good answer to the above question if particle number is thought of as a classical
quantity subject to local realism (and straightforward physical intuition). The fact that 1 < only occurs when
antibunching is presentmay be helpful. Antibunching is inherently a nonclassical property that cannot be
obtained, e.g. using classical fields (matter waves). It is also an indicator that quantum fluctuations dominate the
physics, and the state cannot be described classically.

One can tentatively conjecture that suchmean 1  valuesmight correspond to a superposition of the
background density and a 1 ( ) particle localfluctuation that has a very small quantumamplitude. In this case
the probability of observing afluctuation at all is small, and the expectation value of the particle number
fluctuation is 1 . Values of S 10  in turn indicate var   , which is consistent with very small variation
of the fluctuation amplitude around one preferred value (such aswould occurwith fluctuations of±1 particle).

5. Skewness

5.1. Thermodynamics
For higher-ordermoments, we can proceed the sameway as in sections 3.3.1 and 3.3.3.When continuing to take
derivatives of (25) for integer a, one finds immediately that
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Substituting (24), the third ordermoment offluctuations is found to be
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This can be calculated similarly to (30) using
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The skewness of the distribution ofN is defined as

s
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Judging by the fact that both the third and secondmoments of Nd are extensive quantities proportional to L, the
above skewness is not an intensive thermodynamic quantity and scales as L1 . It approaches zero as the system
size grows. This can be understood as an effect of the central limit theorem. Since in the thermodynamic limit we
are addingmany independent density grains, so it is expected thatwewill get a Gaussian distribution ofNwith
skewness zero.

However, there are some intensive thermodynamic quantities such as
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and other higher combinations such as
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that are related to the skewness. One can use themwith the definition (16) to express s in the followingways:

s
N

M

S N
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3 2
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Notice that M S3 0
3 2 describes the rate at which skewness decays with growing system size N .

An interesting intensive quantity to consider is the skewness of the distribution of  .We derive it by
proceeding as in section 3.2. The thirdmoment of the total atomnumber can bewritten:
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With the definition of thefluctuations in a single density grain
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one obtains
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and afterwards, the skewness of the distribution of 
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The last equality comes from substituting (52) and (18). Finally, using the expression (43) (obtained in section 4)
we get to the prediction for the density grain skewness:
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5.2. Numerical procedure
To evaluate (47) and (46), wewill need a new set of integral equations for the second derivatives of ke( ) and kr ( )
with respect toμ. These are
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so that the final expression for N
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The starting iterations for numerical solution are:
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Using (60) and (37) the skewnesses (52) and (57) can be readily evaluated.
This is shown infigure 4.

5.3. Phase diagram for skewness
Figure 4 shows the calculated behavior of the skewness of the density grain distribution s using (57). There is
also a simple correspondence between the values shown in figure 4 and the skewness of the total atomnumberN:

s s
S

N
, 63pred 0

= ( )

which does not invoke the heuristic arguments of section 4. To get some bearings of known skewness values: an

exponential distribution has a skewness of 2, while a Poisson distribution for  would have s 1  = .
The only closely related calculations andmeasurements so far, that we are aware of, were reported in [38].

The studiesmade therewere for a quasi-1D gas with significant transversemode occupations that strongly
attenuate the skewness. For this reason they are not directly comparable to the results shown here, though the
rawunreported data of later truly 1D experiments [39–41, 51]may already be.

First let us look at the region between 1t ~ and t g~ dominated by nonperturbative thermalfluctuations,
host to the S 10  ‘bulge’ infigure 3. The large density grains found here also have a highly (positively) skewed
distribution. This indicates that not only are density grains large on average, but rare events with amuch higher
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number of correlated particles than usual also occur. Note that since s 2  , the large  tail ismuch fatter
than an exponential decay. It is not immediately clear what the highest likelihood/typical occupation of a density
grain is in this regime, but it should be significantly less than  when the skewness is large and positive.

While high skewness in the large  region is perhaps not very surprising, the fact that the entireT 0 limit
(both quasicondensate and fermionized) has very high positive skewness is less obvious a priori. There, it goes
togetherwith very smallmean occupations 1 of the independent density fluctuations.We note also the
presence of a nonmonotonic behavior in s around 1g ~ ( ), whichmay correspond to the nonmonotonic
behavior ofμ noted in this vicinity recently [57].

A remarkable feature is the region of negative skewness in the fermionized regime! It is interesting on several
counts.

• The negative skewness appears together with sub-Poissonian statistics. Thismeans that themajority of
fluctuations have occupations that belong to a fairly small range at the upper end of allowed values. A possible
explanation of the negatively skewed distribution is that the Pauli-like exclusion principle in this regime
imposes a limit on  from above. The expectation value of  ismarkedly less than one, which indicates that
usually only single particles take part in thefluctuations.

• Next, some temperature-related effectmust be limiting the negative skewness region to nonzero temperatures
in the range 30 10 g t . The cause is presently unknown.

• This brings us towhat is probably themost unexpected feature of the phase diagram infigure 4(a): the
presence of a crossover along 1t g~ at all. A crossover feature in this region has not, to our knowledge,
been noted in the literature. Its location is around

C
k T

C n

m g
, i.e.

2
64B

4 3

2


t

g
» » ( )

Figure 4.Top: contours of the skewness of the density grain distribution s given by (57). Values are indicated on the plot. The
location at which shot noise occurs (S 10 = ) is also shown by a dashed red line, and the 0m = crossover with dashed gray. Bottom:
behavior of s along 0.1t = (left) and 1000g = (right).
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where C 30» from visual inspection of the numerical data. So farwe do not know the physics behind this
scaling.

Let us also look at the classical limit of 1t  . Here in the contour plot, skewness is seen to take small values
1( ). In the cross-section for 1000g = it tends to unity. In fact, s tends to unity as 1t  for all values of γ.

This is a natural consequence of the Poissonian nature of the fluctuations in the classical gas, and their shot noise

character. Since 1  , and the distribution is Poissonian, s 1 1 =  .

6. Kurtosis and highermoments of the distribution

6.1. Thermodynamics
Beyond third order, the expressions start to becomemore complicated. The next relevant standardizedmoment
is the kurtosis of the distribution ofN:
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It describes the relative strength of the tails, i.e. howprone the distribution is to outliers. The excess kurtosis
3k -( ) tells us whether the tails are stronger orweaker than for aGaussian distribution, which has 3k = .

Proceeding the sameway as in section 5.1, the fourthmoment of the deviation ofN is immediately
found to be
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Evaluation of the first term requires a new higher-order derivative
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whose equations appear in section 6.2. A related intensive thermodynamic quantity is
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Substituting (66) and (27) into (65) onefinds
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The second term goes to zero in the thermodynamic limit as L N1 1~ ~ because each of the partial
derivatives is Lµ . This is again in linewith the behavior predicted by the central limit theorem for a sumof

many independent contributions, sinceGaussians have 3k = . Note that, unlike at lower orders,
N

N

4dá ñ
is not

now an intensive thermodynamic quantity.
Let us study the cause of this in terms of of independent density grains as before. The fourthmoment of the

total atomnumber can bewritten:
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Next, one obtains
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From this,

p
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which shows that it is the excess kurtosis ofN that scales as p1 with the excess kurtosis of  .
In terms of the intensive thermodynamic quantityM4 that we can evaluate numerically, we arrive at
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4

2 2

4
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
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d
d

= = +
( )

( )

The factor M S4 0
2 describes the rate at which excess kurtosis dissipates with growing system sizeN.

Tofind the kurtosis of the density grain size we use the prediction (43) for the density grain size and predict

M

S
3 . 754

0
3

pred
 k k= + = ( )

So, while the kurtosis of the total atomnumber is not an intensive thermodynamic quantity, the kurtosis of the
density grains is. As it should be!We show its behavior infigure 5.

6.2. Numerical procedure
The integral equations to evaluate (66) and (67) require another set of integral equations for the third derivatives
of ke( ) and kr ( )with respect toμ. Thefirst is:

Figure 5.Top: contours of the kurtosis of the density grain distribution k given by (75). Values are indicated on the plot. The
location at which shot noise occurs (S 10 = ) is also shown by a dashed red line, and the 0m = crossover with dashed gray. Bottom:
behavior of k along 30t = (left) and 1000g = (right).
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The second equation is:
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6.3. Phase diagram for kurtosis
Figure 5 shows the calculated behavior of the kurtosis of the density grain distribution, k , using (75). The
kurtosis of the total atomnumberN is related to the values shown infigure 5 by

S

N
3 3 . 800 pred

k k= + -( ) ( )

Some reference values for kurtosis are 3 for theGaussian distribution, 6 for the exponential distribution, and
k 3 1  = + for a Poisson distribution. At the low end of allowable values, a square distribution has 1.8k = ,
whereas the lowest possible value of 1k = is obtainedwith a two-peaked distribution of variable v, that
is P v v v v v1

2 0 0d d= - + +( ) [ ( ) ( )].
Broadly speaking, the behavior of k turns out to be related in a one-to-one fashion to that of the skewness

s—except for themid-temperature fermionized gas.
The very high kurtosis area is the same as the high skewness region in figure 4. Large k and s occur

together for the nonperturbative thermal region in the dilute gas, as well as the lowest temperature regimes in
both the quasicondensate and the fermionized gas. The approximate relation

s 812
 k » ( )

holds in this region. The unexpected crossover at (64) is also readily visible in the kurtosis phase diagram.
In the classical gas with 100t , k tends to a value of 4 irrespective of the value of γ. Aswith skewness,
4k = is the expected result for a Poissonian distribution of shot noise, since 1  here.
Now, in the fermionized gas, the triangular region that had negative skewness does not correspond to the

lowest kurtosis values. It corresponds instead to a plateau that is best seen in the 1000g = transect offigure 5(c).
The numerical value indicates amoderate leptokurtic behavior 6k » ( ). This value, togetherwith the
negative skewness s , may indicate a roughly exponential distribution. Something like P e ~ µ( ) cut off at
amaximum max , andwith the tail extending towards small values.

Themost striking feature infigure 5(a) is the remarkable region of anomalously small kurtosis around the
0m = transition. In this region the distribution is platykurtic ( 3k < ). The lowest values ofκ do not go below

the square distribution value of 1.8k = , but do approach closely as g  ¥. This behavior seems somehow
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intuitively reconcilable with fermionization, butwe do not at this time know the reason for the platykurtic
behavior.

7.Observation

There are a number of ways that the quantities discussed here could be observed experimentally.We present
three angles on this below.Moreover we believe that it would be highly interesting to seewhether all threeways
ofmeasuring the independent fluctuations give the same self-consistent answers. This would deepen the
understanding of the nature of independence of collective fluctuations in real systems.

7.1. Analysis of imaging bins
One approach that is already in use is to examine the distributions andmoments of the occupations of small
imaging bins of lengthΔ, as discussed in section 3.1 or [42]. This approach amounts to looking at statistics of
small bins in the gas that correspond closely to the density grains.

Some experimental groups have alreadymademeasurements of fluctuations Nvar D( ) [38–41] and the third
ordermoment N 3dá ñD( )( ) [38]. Primarily, these experiments looked at bins of widthΔ that were the smallest
resolvable imaging pixels, and in fact about two times smaller than the point spread function of the imaging
apparatus. To relate their results to the thermodynamic quantity S0, a special empirical calibrationwas necessary
to compensate for the correlations between values in adjacent bins [38].

Calibrating for correlations should be avoidable by using sufficiently large bins. To do sowe need to be able
to use the local density approximation x N L2yá ñ » á ñ∣ ( )∣ inside each bin. Similarly to previous experiments
[38, 39, 52], bins with different densities sample the gas in different regimes of τ and γ. To access skewness or
kurtosis of the independent density grains with (57) and (75), one shouldfirst obtain the quantitiesM3 andM4,
using the same experimental images and bins as for S0.

Experimental values in regions ofmoderately small γwere obtained andmatched the Yang–Yang
predictions for S0 verywell [39–41, 51] for the cases when the gaswas truly 1D. This covers a subset of the
parameters shown infigure 3. The same rawdata used for the reported results on S0 should, in principle, be
usable to extract pixel skewness s and kurtosisκ if the signal-to-noise ratio is sufficiently high.

7.2. Analysis offinite-size scaling
Before describing this second approach, let usmake some basic observations. The skewness of the particle
number in thewhole cloud and the deviation of its kurtosis from3 are smallfinite-size effects:

s
M

S N
823

0
3 2 1 2

=
á ñ

( )

M

S N
3 . 834

0
2

k = +
á ñ
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By studying their scaling, the properties of the local independent fluctuations can be extracted.
At each order offluctuationmoments there is an intensive quantity that applies in the same form for both the

entire system and the local independent fluctuations:
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Accordingly, since each of themiddle expressions above has a denominator Ná ñ , there will be a related extensive
quantity that scales proportionally to Ná ñ and to the size of the system L.

Now, consider a large segment of the cloud of length l. If it has practically a uniformdensity, then intensive
quantities can be extracted from the rate at which the extensive ones changewith l. Having an ensemble of
density images nj(x) of successively produced clouds labeled by j, theway to proceedwould be as follows. After
setting the coordinates to x=0 in the center of each individual imaged cloud, we define a family of central
segments of width l lying in the range x l l2, 2Î -[ ]. Then one obtains width-dependent atomnumbers for
each jth image
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Ensemble averaging gives N lá ñ( ) and themoments N N Nl l ld = - á ñ( ) ( ) ( ) (all dependent on the segment length).
The expressions for the quantities we are interested in take the forms:
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Nownotice that n is known. Byfitting the linear dependence of Nvar l( ), N l 3dá ñ( )( ) , and N l 4dá ñ( )( ) on the analyzed
box length l, quite robust estimates of S0,M3, andM4 can be obtained.

Generally, one expects nonlinear dependence to emerge at the low end of l (due to local density correlations)
and at the high end of l (due to non-uniformity of the ensemble-averaged density). Suchmarginal values of l
would have to be ignored in the analysis. The key advantage of using the gradients (88)–(90) over direct
evaluation of (84)–(86) is that one can readily inspect whether indeed the linear extensive regime is present.

Once one has thefitted estimates for S0,M3, andM4, properties of the density grain distribution can be
obtained using (57) and (75).

7.3. Analysis of single-shot images
A third and arguablymost interesting angle for an experimental proposal is to determine towhat degree the
intuitive picture of localized independent fluctuations leading to (43) is in fact accurate. If it is true, then
independent fluctuations of widths comparable to the g z2 ( )( ) correlation function should be visible at the level
of individual cloud images. Itmight not be true if the arguments for (43) break down. Thismight happen, e.g., if
the spatial extent of independent number fluctuations is larger than the separation between their centers of
mass.Which of these cases occursmay depend on the physical parameters γ and τ.

Section 7.1 considered single-shot variations in arbitrarily chosen binswith artificially sharp boundaries.
However, in the intuitive picture one expects that the independent localized fluctuations should be visible in
images as density concentrations (‘lumps’, with varying but naturally set widths). These lumps should be
discernible and countable without the need to impose artificially sharp bins. Confirming or refuting the accuracy
of such a single-shot lump interpretationwould help in understanding how to interpret independence at the level
of physical intuition.

The issue of howwell such counting of lumps corresponds to the independent domains in a gas has been a
long-standing point of discussion in the field. The same concerns thewidth of the density–density correlation
function g z2 ( )( ) , and howwell it corresponds to thewidths of such lumps.Oneway to go about checking the
accuracy of these conjectures is to compare local density to the backgroundmean density. Take the following
definition of a background density for each jth experimental shot:

n
l

x n x
1

d , 91j
l

l

j
2

2

ò=
-

( ) ( )

assuming that a central piece of the cloud of length l is reasonably long. The averaging in (91) is spatial and
independent of the full ensemble average. Then, the lumpboundaries x p( ) can be set by n x nj p j=( )( ) at the
crossing points between the local density and themean one. The occupation of the pth lumpwould be taken as
the number of atoms between consecutive lump boundaries, i.e.

N x n xd . 92jp
x

x

j
p

p 1

ò=
+

( ) ( )
( )

( )

Adjacent ‘lumps’would consist of alternately above-average-density and below-average-density sections, but
adjacentNjpwould not necessarily take on alternating high and low values because the lumpwidths can differ.
Note that with this whole procedure, the imposition of pre-set bin positions is avoided. If the intuitive localized
density fluctuation picture and the reasoning for (43) is correct then themean, variance, skewness and kurtosis
of the lumpoccupationsNjp should agreewith  , var , s , and k obtained using themethods in the
previous sections 7.1 and 7.2.

Some practical points to consider for such a test include:

1. The need to have sufficient resolution to resolve adjacent density concentrations. The Palaiseau experiments
[38–41, 51] did not satisfy this criterion because the density correlation lengthwas always below the pixel
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size. In general, however, other contemporary experiments such as the 2D gas of [50] can resolve the density
correlations in situ.

2. It is probably necessary to work in a regime with 1  such as the quasicondensate, so that all or most
relevant fluctuations lead to an actual imaging signal.

3. A sufficiently wide cloud is required to catch a sizable number of lumps in the uniform central section.

8. Conclusions

Fresh exact quantum results for the 1D interacting gas are rather rare to come by. Generally, the knownfindings
concern global quantities or two-body correlations. The distinguishing feature of this work is that it provides
exact results for a different kind of quantity that describes themesoscale, and goes beyond two-body
correlations.

We startedwith results formoments of the total atomnumber. Calculationsweremade using the additional
integral equations (32), (34), and (37) at second order, and those in sections 5.2 and 6.2 for third and fourth.
However, by then taking advantage of the definition of independence (that independent contributions to the
global variance add), we arrived at quantities that describe the properties of individualmesoscopic density
grains.

Ourmain physical results are summarized by threefigures that present a phase diagram for the behavior of
the independent density grains. Figure 3 shows themean particle number  in an independent density
fluctuation, and the super/sub-Poissonian nature of the distribution P ( ). Figures 4 and 5 show themain
remaining qualities of P ( ): its skewness and kurtosis. Neither of these can be obtained from studying two-
body correlations. Thefigures also give direct access to themoments of the total atomnumberN through the
relations N NSvar 0= , (63) and (80), without reference to the argumentsmade for (43).

Overall, one can distinguish several regions.

1. A region with large ‘mesoscopic’ density grains in which many particles take part in a single density
fluctuation. This includes the quantum turbulent regime, the thermal-dominated quasicondensate, and the
degenerate incoherent regimewith 0m < well described byHartree–Fock theory. The distribution of 
has long positive tails here, such that some fluctuations have extra large occupations.

2. The lowest temperatures host sub-Poissonian quantum fluctuations with 1  and obey a distribution
with high skewness and kurtosis. One can observe similar behavior in the dilute bosonic gas and the strongly
fermionized regime.

3. Themid-temperature regime of the fermionized gas is characterized by a negatively skewed andmoderately
leptokurtic distribution.

4. A platykurtic regime in the fermionized gas near the regionwhere 0m = .

5. The classical region at large τ, displaying single-particle shot noise.

The above list includes some phenomenawhose in-depth causes are unexplained for now. This concerns the
exactmechanisms behind the low  in themid-temperature fermionized gas as well as the negative skewness
and platykurtic behaviors seen there.Moreover, also the physical cause of the unexpected crossover around

1t g~ in the fermionized gas is not obvious.
Themethod presented in this paper is readily extensible to higher-ordermoments, although beyond kurtosis

the expressions getmore andmore complicated, while the physical interpretation less and less intuitive. A really
interesting questionwould bewhether a similar approach could be found to study the phase domains in the gas.

At the end in section 7, we outlined several ways tomeasure the properties of the density grains
experimentally. A better understanding of the relationship between single-shotmanifestations of independent
fluctuations and ensemble-averaged oneswould be valuable conceptually and in practice.We proposed away to
study this quantitatively in section 7.3.
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