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Appendix B

Some details of Stochastic

Calculus

Some results regarding random terms in differential equations relevant to the thesis

are gathered here. Proofs of these can be found in Gardiner[53], with details on

computer algorithms in [82].

In many cases, a set of stochastic differential equations (i.e. differential equations

with random terms) can be written in the Langevin form

dxj(t) = Aj(x, t) dt+
∑

k

Bjk(x, t) dWk(t), (B.1)

where x contains all variables xj. The dWj(t) are Wiener increments and (B.1) is

to be interpreted according to the Ito calculus (see below).

A Wiener increment is defined in terms of the Wiener process W (t), which is the

special case of (B.1) with j = 1, A1 = 0 and B1k = δk1. The probability distribution

of W is governed by the Fokker-Planck equation (FPE)

∂PW (W, t)

∂t
=
∂2PW (W, t)

∂W 2
, (B.2)

a special case of Brownian motion. The individual realizations of W are continu-

ous but not differentiable. The (infinitesimal) Wiener increment can, however, be

defined, and is

dW (t) =W (t+ dt)−W (t), (B.3)
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with dt infinitesimal. This random quantity has the expectation values

〈dW (t)〉stoch = 0 (B.4a)

〈
dW (t)2

〉
stoch

= dt (B.4b)

〈dW (t)dW (t′)〉stoch = 0 if t 6= t′ (B.4c)
〈

max[j]>2∏

j=1

dW (tj)

〉

stoch

= 0 (B.4d)

The Wiener increment is related to processes with white noise correlations such

that if 〈ξ(t)ξ(t′)〉stoch = δ(t − t′) then one can write ξ(t) = dW (t)/dt. In (B.1),

the Wiener increments are independent: 〈dWjdWk 6=j〉stoch = 〈dWj〉stoch 〈dWk〉stoch
etc. In a numerical calculation, the Wiener increment is usually implemented as

independent Gaussian random variables ∆Wj at each time step of length ∆t with

mean zero and variance

〈∆Wj∆Wk〉stoch = ∆tδjk, (B.5)

although other choices of the distribution of ∆Wj are possible provided only that

the discrete step analogues of (B.4) are satisfied, as in (B.5).

An equation (B.1) in the Ito calculus is equivalent to the Stratonovich calculus

equation

dxj(t) = Aj(x, t) dt+
∑

k

Bjk(x, t) dWk(t) + Sj(x, t)

= dxItoj (t) + Sj(x, t), (B.6)

where the Stratonovich correction is

Sj(x, t) = − 1
2

∑

kl

Blk(x, t)
∂Bjk(x, t)

∂xl
. (B.7)

These two forms arise from different ways of defining the integral of the differential

equations, both useful. For practical purposes, the main differences are that:

• In the Ito calculus, the time-dependent variables xj(t) are independent of

the same-time Wiener increments Wk(t), while this is not the case in the

Stratonovich calculus.
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• In the Stratonovich calculus, the xj obey the usual rules of deterministic cal-

culus, in particular the chain rule. In the Ito calculus one instead has

dy(x) =
∑

j

dxj(x, t)
∂y(x)

∂xj
+
dt

2

∑

jkl

Bjk(x, t)Blk(x, t)
∂2y(x)

∂xj∂xl
. (B.8)

Because of the first point above, the Ito calculus corresponds to a discrete step

integration algorithm with the derivative approximated using values at the beginning

of the time interval:

xj(t+∆t) = xj(t) + Aj(x(t), t)∆t+
∑

k

Bjk(x(t), t)∆Wk(t). (B.9)

Implicit integration algorithms estimate the derivative using quantities evaluated at

later times1

tκ = t+ κ∆t (B.10a)

(where κ ∈ (0, 1]) during the timestep. That is,

xj(t+∆t) = xj(t) + Aj(x(tκ), tκ)∆t+
∑

k

Bjk(x(tκ), tκ)∆Wk(t). (B.10b)

In this case, one must use a Stratonovich (or Stratonovich-like) form of the drift:

dxj(t) = dxItoj (t) + 2κSj(x, t) (B.11)

to ensure that (B.10b) is the same as (B.9) up to lowest deterministic order ∆t. This

follows by use of (B.5) on (B.10b). For multiplicative noise it has been found that

using a semi-implicit method (κ = 1
2
) integration method gives superior numerical

stability[82].

1A common algorithm for implicitly estimating the x(tκ) is to iterate (B.10b) several times
using the appropriate smaller timestep ∆t→ κ∆t.


