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Chapter 9

Single-mode interacting Bose gas

thermodynamics

In Section 5.6 it was shown that the gauge P representation can also be used to

calculate properties of the grand canonical ensemble of an interacting Bose gas

described by the lattice Hamiltonian (2.12). A convenient feature of calculations

made with this method (rather than, say path integral Monte Carlo, or variational

Monte Carlo methods) is that a single simulation can estimate any observables, and

gives results for a wide range of temperatures T ≥ 1/kBmax[τ ].

Before attempting full many-mode simulations (see Chapter 11), it is pertinent

to make sure that the simplest special case of a single-mode is correctly simulated.

This is a good test case because it can easily be solved exactly for a unambiguous

comparison, and because it is simple enough that a broad analysis of the statistical

behavior of the simulation is possible.

The single-mode model is particularly relevant to a locally-interacting many-

mode Hamiltonian (2.17). Here the stochastic equations to simulate are given by

(5.50), and it can be seen that the nonlinearity and noise in the evolution of local

amplitudes αn for each mode n depend only on the local variables αn and βn. In

such a situation the nonlinear and stochastic features of the many-mode behavior

should appear in their entirety in the single-mode toy model.
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9.1 The single-mode model

9.1.1 Quantum description

Isolating a single mode from the description of Section 2.6, the master equation for

the evolution of the (un-normalized) density matrix is

∂ρ̂u
∂τ

=
[
µe(τ)n̂− Ĥ

]
ρ̂u (9.1)

with n̂ = â†â (the number operator) defined in the usual way in terms of boson

creation and annihilation operators. The “imaginary time” parameter is τ = 1/kBT ,

and the “effective chemical potential” µe is defined in (2.30). That expression can

be integrated to give

µ(τ) =
1

τ

[
−λn +

∫ τ

0

µe(t)dt

]
(9.2)

with constant λn, and it is then seen that at low temperatures µ(T )→ µe(T ). The

single-mode analogue of the interacting Bose gas Hamiltonian is

Ĥ = ~χn̂ (n̂− 1) , (9.3)

where any linear contribution ∝ n̂ has been amalgamated into the chemical poten-

tial. The initial state is (as per (2.31))

ρ̂u(0) = exp [−λnn̂] . (9.4)

Physically, this single-mode model is an approximation of e.g. a boson orbital in a

heat bath at temperature T , and chemical potential µ, where this chemical potential

includes any kinetic and external potential effects.

9.1.2 Gauge P stochastic equations

Defining

n̆ = αβ = n′ + in′′ (9.5)
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as in previous chapters, the Ito stochastic equations in a gauge P representation are

obtained from (5.50):

dα = (µe − 2~χn̆)α dτ + iα
√

2~χ ( dW − G dτ) (9.6a)

dβ = 0 (9.6b)

dΩ = Ω [(µe − n̆)n dτ + G dW ] . (9.6c)

The Wiener increments dW can be implemented as independent real Gaussian noises

of mean zero, and variance dτ at each time step of the simulation. The single complex

drift gauge is G.
Because only a single non-weight variable α experiences diffusion, then the un-

gauged diffusion matrix is D = −2~χα2, a single complex function. There are then

no standard diffusion gauges (as described in Section 4.4.2) because the orthogonal

1× 1 matrix (4.68) is just O = 1, apart from a phase factor.

Initial conditions on the variables α and β are (from (5.59))

PG(α, β,Ω) = δ2(Ω− 1)δ2(β − α∗) 1

πn0
exp

(−|α|2
n0

)
, (9.7)

where

n0 =
1

eλn − 1
, (9.8)

is the mean particle number at high temperature. α is easily sampled using Gaussian

random variables.

The mean number of particles is 〈n̂〉 = Tr [ρ̂un̂] /Tr [ρ̂u], and is estimated by

n =
〈Re {n̆Ω}〉stoch
〈Re {Ω}〉stoch

. (9.9)

These stochastic equations exhibit completely different behavior to the dynamics

of this system (7.3). Rather they are more similar to the two-boson absorption of

Section 6.4.

9.1.3 Exact solution

The quantum evolution of this model is easily evaluated exactly in a Fock number

state basis |n〉. This is useful to make a definitive check of the correctness of the
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stochastic simulations. Using ρ̂u = exp
[
µτn̂− Ĥτ

]
, the density matrix elements in

this basis ρnñ = 〈n| ρ̂u |ñ〉 are found to be:

ρnñ = δnñ exp {[µ− ~χ(n− 1)]nτ} . (9.10)

A long times τ →∞, i.e. low temperatures, the density matrix will be dominated

by the populations for which the exponent is largest. This maximum of the exponent

occurs when n∞ = [limτ→∞ µ(τ) + ~χ]/2~χ. Since n takes on only integer values,

then the dominant mode occupation will be at the nearest integer to n∞ (or the two

nearest components if n∞ takes on half-integer values). Using (9.2),

n∞ =
1

2
+

1

2~χ
lim
τ→∞

[
1

τ

∫ τ

0

µe(t)dt

]
, (9.11)

and the T → 0 state ρ̂(τ →∞) is:

• A vacuum if n∞ < 0.5.

• Otherwise, if n∞ is a half integer, then ρ̂(τ → ∞) is an equal mixture of the

|n∞ ± 1
2
〉 states.

• Otherwise, ρ̂(τ → ∞) is the Fock number state with the nearest whole occu-

pation number to n∞.

9.2 Moving singularities and removal with gauges

9.2.1 Moving singularity

Consider, for now, the case of constant effective chemical potential µe. From (9.6),

and using (B.7), the Stratonovich stochastic equation for the complex occupation

variable n̆ is

dn̆ = n̆
[
µe dτ − ~χ(2n̆− 1) dτ + i

√
2~χ ( dW − G dτ)

]
. (9.12)

In a positive-P-like simulation1, G = 0, and the deterministic part of the dn̆ equation

has the phase-space structure shown in Figure 9.1(a). There are stationary points

1But with a weighting gauge to allow for complex weight evolution dΩ.
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at vacuum and at

n̆ = n∞ =
1

2
+

µe
2~χ

, (9.13)

with the more positive stationary point being an attractor, and the more negative

a repellor. The deterministic evolution is easily solved, and with initial condition

n̆(0) = n0 gives

n̆(τ) =
n∞n0

n0 + (n∞ − n0)e−2~χn∞τ
. (9.14)

A moving singularity appears along the negative real axis, and if one starts with a

negative real n0 = −|n′0|, then n̆→∞ at time

τsing =
1

2~χn∞
log

(
1− n∞

n0

)
. (9.15)

Since initial conditions (9.7) lead to samples with n0 ∈ (0,∞), then some low-n0

trajectories can be expected to rapidly diffuse into the negative real part of phase

space where the super-exponential growth occurs. This will tend to cause either

misleading systematic boundary term errors or uncontrolled spiking, which renders

the simulation useless after a short time. As is seen in Figure 9.5 in this case it is

spiking.

9.2.2 Minimal drift gauge

To correct the problem one has to change the phase-space topology in some way

to prevent the occurrence of such moving singularities. The radial evolution d|n̆| =
−2~χ|n̆|n′ dτ+ . . . is at fault, and the offending term can be removed with the gauge

G = i
√

2~χ (Re {n} − |n̆|) . (9.16)

This gauge has the effect of replacing the −2~χ|n̆|Re {n} dτ term in d|n̆| with
−2~χ|n̆|2 dτ , which always attracts trajectories into the phase space in the vicinity

of the origin. Polar phase evolution is unchanged, and the resulting deterministic

phase space is shown in Figure 9.1(c). If n∞ > 0 the attractor and repellor remain,

while for n∞ ≤ 0, there is just an attractor at vacuum. For near-classical trajectories

having real n̆, phase-space evolution is unchanged, and the gauge is zero.
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Figure 9.1: Deterministic phase space for Stratonovich form of the dn̆ equation. The case of

n∞ = 0.5 is shown. (a): positive-P-like simulation G = 0; (b): radial gauge (9.17); (c): minimal

gauge (9.16). The moving singularity in (a) is shown with large arrow, the attractors at |n̆| = n∞

with a thick dashed line.

How do the modified equations measure up to the gauge choice criteria of Sec-

tion 6.3.2? In order:

1. The moving singularity in dn̆ has been removed (at high |n̆| the deterministic

behavior is restorative towards the origin), and no other moving singularities

are present. Note that if n̆ remains finite, then so does Ω, which just ex-

periences exponential growth with an exponent that is always finite, since it

depends only on n̆.
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2. No new moving singularities have been introduced.

3. No noise divergences (new or old) are present since all noise terms satisfy (6.3).

4. No discontinuities in the drift or diffusion coefficients are present provided the

time-dependence of µe(τ) is not singular.

5. Is the weight spread minimized?

(a) Gauge is zero when n̆ is positive real, and small in its neighborhood,

where gauge corrections are unnecessary.

(b) Explicit variational minimization of G has not been carried out, but rather

criteria 6 have been applied.

(c) Gauge is zero at deterministic attractor n̆ = n∞.

6. No unwanted gauge behaviors are present:

(a) Gauge is nonzero in a large part of phase space, so most trajectories

contribute to removal of bias.

(b) Gauge changes smoothly in phase space.

(c) Gauge is autonomous.

(d) Gauge breaks the analyticity of the equations.

9.2.3 Radial drift gauge

The gauge (9.16) looks good, but it was found that a more severe phase-space

modification usually gives smaller statistical uncertainties. This better gauge form

is

G = i
√

2~χ (n̆− |n̆|) , (9.17)

which will be called here the “radial” gauge, due to elimination of any deterministic

polar-angle evolution as shown in Figure 9.1(b). The deterministic attractor is the

entire |n̆| = n∞ circle (or the vacuum if n∞ ≤ 0), with some phase diffusion in the

phase of n̆.
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Figure 9.2: Uncertainty in n, the estimate of 〈n̂〉 for the µe = 0 system. (a): n0 = 0.1; (b):

n0 = 1; (c): n0 = 10; (d): n0 = 100; Solid line: radial gauge (9.17); Dashed line: gauge

(9.16). Simulations were carried out with S = 2× 104 trajectories.

The efficiency of the two gauges is compared in Figure 9.2 for µe = 0 and a

variety of initial n0. It is not immediately clear why the radial gauge is better, but

the improvement is significant whenever n0 ≥ O (1). Similar behavior was seen for

other µe values. In particular also for µe = ~χ, which corresponds to a different low

temperature state (i.e. a pure Fock number state — see Figure 9.3).

Comparison to the heuristic gauge choice criteria of Section 6.3.2 follows through

identically as for the previous gauge (9.16), apart from the gauge not being zero on

the entire |n̆| = n∞ attractor but only at n̆ = n∞.

9.3 Numerical simulations

The results of some example simulations using the radial gauge (9.17) are shown

in Figures 9.3 and 9.4. These are compared to exact results obtained from (9.10)

and also to mean field semiclassical calculations. As outlined in Section 5.4, mean
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Figure 9.3: Temperature dependent observables given constant µe and n0 = 10 at high

temperature. solid lines: simulation with S = 2 × 105 trajectories. Triple lines indicate error

bars (often not resolved at this scale). dashed lines: exact values (mostly obscured by simulation

results) dotted lines: mean field calculation (subplot (b)). The second order correlation function

g(2)(0, τ) is given by (8.8).
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Figure 9.4: Mean mode occupations at low temperature T = ~χ/10kB as a function of

constant µe. dashed: exact result — note the quantization, dotted: mean field result, squares:

simulation results with radial gauge (9.17). Uncertainty was of symbol size or smaller.
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Figure 9.5: Performance of the mean field and un-gauged simulations for comparison with Fig-

ure 9.3(a). Mean mode occupation with µe = 0.5~χ and n0 = 10. dashed: exact result,

dotted: mean field result, solid: un-gauged simulation.

field calculations such as solution of Gross-Pitaevskii equations are equivalent to

simulation of only the deterministic part of the Ito gauge P equations.

Additionally, a positive-P-like simulation with no gauge (G = 0) is shown in

Figure 9.5 for comparison with the gauged technique.

A subtlety to keep in mind in these thermodynamics simulations is that (in con-

trast to dynamics) the normalization 〈Re {Ω}〉, which appears in the denominator

of observable estimates (3.14), is not unity in the S → ∞ limit. This then requires

a sufficient number of trajectories per subensemble so that the denominator is al-

ways positive and not too close to zero for any of these, as discussed in detail in

Appendix C.

Features seen in these figures include:

• Convergence of the gauged simulation is excellent, and precisely reproduces

the exact quantum behavior.

• At low temperatures τ & 1/~χ the semiclassical approximation gives com-

pletely wrong results for g(2) and is out byO (1) in 〈n̂〉, which is also completely

wrong if mode occupation is ≤ O (1).

• The gauge P method, on the other hand, reproduces the exact quantum be-

havior precisely despite using a semiclassical coherent-state basis.
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• The un-gauged simulation breaks down while still at high temperatures due

to boundary term induced spiking.

• Low temperature observable estimates are consistent with the Fock state low

temperature ground state described in Section 9.1.3. (〈n̂〉 approaches integer
values2 and the two-particle correlation g(2) approaches 1− 1/〈n̂〉.)

• Mid-temperature behavior is also simulated precisely.

• At low temperature (long times) uncertainty in the observable estimates is

greatest for µe even integer multiples of ~χ (and hence even integer multi-

ple chemical potential µ at low temperatures), and lowest for µe odd integer

multiples of ~χ. These cases correspond to the low temperature state be-

ing a mixture of two Fock number states, or just a single pure Fock state,

respectively.

9.4 Chemical potential as a free gauge parameter

Suppose one is interested in obtaining properties at a given temperature T and

chemical potential µ. This determines the final simulation target time τT and target

chemical potential µ(τT ), but the chemical potential at intermediate times τ < τT

is not specified. The only conditions are 1) that the quantity µ(τ)τ be (piecewise)

differentiable so that µe(τ) can be calculated, and 2) that λn = − limτ→0(µτ) be

positive so that the initial distribution (9.7) is a normalizable probability. Apart

from these, µ(τ) is formally an arbitrary function (and λn an arbitrary positive

number).

This is all in the limit of many trajectories, however. The form of µ(τ) at

intermediate τ has no effect on observable estimate means in the limit S → ∞, but

can have a strong effect on the broadness of the trajectory distribution. And, hence

— on the precision of a finite sample estimate. In this sense then, µe(τ) (given by

(2.30)), acts as effectively an additional gauge function.

2Apart from when µe is an even integer multiple of ~χ, since then 〈n̂〉 approaches half-integer
values.
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An indication of the characteristics of an efficient form of µe(τ) can be gained by

comparing calculated observable uncertainties for several basic cases. Let us look

at the situation when τT = 1/~χ, and µ(τT ) = ~χ. (This gives mean occupation

n(τT ) = 0.5628).

• Case 1: Variation in n0(λn), i.e. in the high-temperature starting mode occu-

pation, while µe(τ) is a constant chosen appropriately using (9.2). Calculated

uncertainties in 〈n̂〉 and g(2)(0, τ) are compared in Figure 9.6. It is seen that

initial occupation O (1)−O (10) gives the best performance, while too large or

too small initial occupation lead to excessive uncertainty in the observables.

• Case 2a: Time-varying µe, while n0 = 1 is held constant. µe is chosen to be

a nonzero constant up to a time τc, and zero for times τ > τc ≤ τT . Note that

as τc → 0, the size of µe grows to make up for the shorter time over which

it acts. Uncertainties are compared in Figure 9.7(a). It is seen that if µe is

varied too strongly, an inefficient simulation results, although some relatively

small variation may be beneficial for the g(2) calculation.

• Case 2b: Again time-varying µe, while n0 = 1 is held constant, but this time

µe is held zero at high temperatures (low times τ < τc), and makes up for this

by becoming a nonzero constant for τc < τ < τT . As τc → τT , the size of the

required µe grows. Uncertainties are compared in Figure 9.7(b). Again, it is

seen that strong variation in µe leads to an inefficient simulation.

From the simulation data it appears that, other things being equal,

1. n0 ≈ O (n(τT )) or slightly greater appears to give the best performance

2. A constant (or nearly so) µe(τ), which keeps the phase-space behavior time

independent appears to give better performance than simulations for which µe

strongly varies with τ .
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Figure 9.6: Dependence of observable estimate uncertainties on the starting occupa-

tion n0. Shown are calculated uncertainties in Circles: n = 〈n̂〉 Squares: g(2)(0, τ), for ~χτ = 1

and µ = ~χ. Calculations were made with the radial gauge (9.17) varying the starting occupation

n0 and choosing a constant µe according to (9.2). Each calculation was with 2× 104 trajectories.
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Figure 9.7: Dependence of observable estimate uncertainties on the form of µe. Shown

are calculated uncertainties in Circles: n = 〈n̂〉 Squares: g(2)(0, τ), for ~χτ = 1 and µ = ~χ.

Calculations were made with the radial gauge (9.17), starting with n0 = 1 initially, but varying

the form of µe. In (a), this was taken to be a nonzero constant for τ ≤ τc and zero for τ > τc. In

(b), µe was zero for τ < τc, and nonzero constant for τ ≥ τc. Each calculation was with 2 × 104

trajectories.
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9.5 Summary

The drift gauges (9.16) and (9.17) have been developed to overcome shortcomings

of the un-gauged positive-P-like technique. Using these gauges it has been shown

that a stochastic simulation can precisely simulate the full quantum grand canoni-

cal thermodynamics of a two-body interacting Bose gas mode or orbital. Features

include

1. Simulation with good precision down to the lowest temperatures ~χτ À 1

where discretization of mode occupation takes place (See e.g. Figures 9.3

and 9.4).

2. Simulation of a range of temperatures down to a minimum 1/kBτT in one run.

3. Calculation of any desired set of observables from one run.

The uncontrollable spiking (which was present in an un-gauged simulation) is re-

moved.

Numerical simulations indicate that the radial gauge (9.17) gives superior effi-

ciency for a wide range of parameters. Also, it has been found that if one is aiming

for a particular target temperature and chemical potential, it appears advantageous

to choose the intermediate-time chemical potentials in the simulation such that: 1)

µe is slowly varying with τ (or constant), and 2) The starting occupation n0(λn) is

of the same order as the mean occupation at the target time.

The gauges developed should carry over in a straightforward manner to multi-

mode simulations when the interparticle scattering is local to the lattice sites as

described by the Hamiltonian (2.17). This is implemented in Chapter 11.


