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Chapter 7

Gauges for single-mode interacting

Bose gas dynamics

7.1 Motivation

Simulations of the dynamics of multi-mode (locally) interacting Bose gases (with

lattice Hamiltonian (2.17)) using the positive P representation suffer two major

technical problems caused by instabilities in the stochastic equations: 1) Exponen-

tial growth of distribution broadness leading to rapid loss of any useful accuracy.

2) Probable moving singularities when two or more modes are coupled (See Sec-

tion 7.2.5). These issues prevent simulation of all but short time behaviour. Gases

with non-local interactions (Hamiltonian (2.12)) are expected to suffer from similar

problems on the basis that the locally-interacting lattice model is a special case of

these more general models.

The instabilities arise from the two-body interaction terms in the Hamiltonian,

and so for a locally-interacting model the unstable processes decouple and are local

to each spatial lattice mode of the model. Hence, if the instabilities are brought

under control for each mode on its own, then simulations of the full many-mode

model should benefit as well.

In this chapter, a single-boson mode with two-body interactions is considered,

and gauges (kernel drift and diffusion) are introduced to make improvements. A
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drift gauge can remove the offending instability, while the diffusion gauge makes a

tradeoff between noise in the phase-space (i.e. α and β) equations and noise in the

global weight z0, and will be optimized to improve simulation times. In Chapter 8,

the performance of the method developed here will be investigated in a coupled

two-mode system as a prelude to multi-mode simulations.

7.2 The single-mode interacting Bose gas

7.2.1 Physical model

Consider a single mode extracted from the open multi-mode locally-interacting lat-

tice model of Section 2.5. Annihilation and creation operators for the mode are â

and â†, and obey [â, â†] = 1. From (2.17), and with possible coherent gain added as

in (2.25), the Hamiltonian is

Ĥ = ~n̂ (ω + χ [n̂− 1] ) + i~(εâ† − ε∗â), (7.1)

The master equation of this system interacting with an environment is given by the

usual Linblad form (2.20), with Linblad operators

L̂1 = â
√
γ(1 + nbath) (7.2a)

L̂2 = â†
√
γnbath (7.2b)

modeling single-particle interactions with a standard boson heat bath with a mean

number of particles nbath(T ) per bath mode, as in Section 2.5.

Physically this model approximates a single mode of interest n of a multi-mode

system with two-body scattering, where evolution of the other modes m 6= n is

assumed negligible. Roughly, the linear self-energy term becomes ω = ωnn, highly

occupied coherent modes m can be collected into ε = −i∑m ωnm〈âm〉, while the

remainder of modes can become the heat bath. The single-mode model can also

sometimes represent an approximation to a single orbital of a more complex system,

if the constants ω,ε, nbath and χ are chosen appropriately.



158 Chapter 7 Gauges for single-mode interacting Bose gas dynamics

7.2.2 Stochastic gauge P equations

A single-mode gauge P kernel (6.33) is used, where the complex configuration vari-

ables are coherent state amplitudes α and β, and a global weight Ω = ez0 . From

the multi-mode equations (5.17), (5.18), and (5.21) of Section 5.3, the gauge P Ito

equations for this model are

dα = −iωα dt− 2iχα2β dt− γ

2
α dt+ ε dt+

∑

k

B 1k(dWk − Gk dt) (7.3a)

dβ = iωβ dt+ 2iχβ2α dt− γ

2
β dt+ ε∗ dt+

∑

k

B 2k(dWk − Gk dt) (7.3b)

dΩ = Ω
∑

k

GkdWk, (7.3c)

where the pre-drift-gauge noise matrices B jk defined as in Section 4.3.1 and drift

gauges Gk have not been specified yet. The dWk are independent Wiener increments,

which can be implemented by Gaussian noises of variance dt. The elements of the

2×NW complex noise matrices B satisfy

D 11 =
∑

k B
2
1k = −2iχα2 (7.4a)

D 22 =
∑

k B
2
2k = 2iχβ2 (7.4b)

D 12 =
∑

k B 1kB 2k = γnbath(T ). (7.4c)

The NW complex drift gauge functions Gk are arbitrary in principle.

The standard gauge formulation (4.90) will be used, with the proviso that noises

related to the bath interaction and the interparticle interactions are chosen to be

independent to simplify the equations as outlined in Section 4.4.7. That is, using

diffusion matrix D = B B T =
∑

l D
(l) with

D (1) = 2iχ


 −α

2 0

0 β2


 ; D (2) = γnbath(T )


 0 1

1 0


 , (7.5)

one obtains the square root noise matrix forms

B
(1)
0 =

√
2iχ


 iα 0

0 β


 ; B

(2)
0 =

√
γnbath(T )

2


 1 i

1 −i


 . (7.6)

In Section 7.2.4 it will be shown that the process responsible for instabilities

is the two-particle collisions (parameterized by χ), and so improvements should be
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searched for by gauging this process, not the bath interactions (parameterized by

γ). Thus, the standard gauges are applied as:

1. Imaginary diffusion gauges g′′jk as in Section 4.5. Recall from Sections 4.4.3

and 4.4.4 that only imaginary standard diffusion gauges can alter the stochastic

behaviour of the simulation, so only these will be considered. One obtains

B =
[
B

(1)
0 O(g′′12) B

(2)
0

]
, (7.7)

with an orthogonal matrix O of the form (4.68) dependent on a single imagi-

nary diffusion gauge g12 = ig′′ with real g′′.

2. Complex drift gauges G1 and G2, with the remaining Gk>2 = 0.

The two-variable diagonal diffusion gauge expression (4.71) applies here, and the Ito

stochastic equations become

dα = −iωα dt− 2iχα2β dt− γ

2
α dt+ ε dt+

√
γnbathdηbath

+iα
√

2iχ [(dW1 − G1 dt) cosh g′′ + i(dW2 − G2 dt) sinh g′′] (7.8a)

dβ = iωβ dt+ 2iχβ2α dt− γ

2
β dt+ ε∗ dt+

√
γnbathdη

∗
bath

+β
√

2iχ [−i(dW1 − G1 dt) sinh g′′ + (dW2 − G2 dt) cosh g′′] (7.8b)

dΩ = Ω {G1dW1 + G2dW2} (7.8c)

in terms of the real Wiener increments dW1, dW2 implemented by Gaussian noises

of variance dt, and the complex stochastic Wiener-like increment dηbath obeying

〈dηbathdη∗bath〉stoch = dt and 〈dη2bath〉stoch = 0.

7.2.3 Anharmonic oscillator

Consider the gain-less system (nbath(T ) = ε = 0), which contains all the essential

features of the two-body interactions. This system is known in the literature as the

damped anharmonic oscillator.

For this toy system, the observables can be solved analytically, and comparing

simulations with these will be of great use here to optimize diffusion gauge choices.

In particular, consider coherent state projector initial conditions |α0〉〈β∗0 |, which
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correspond to the configuration of a single trajectory out of the S system samples

that together can represent any arbitrary quantum state. Let us concentrate on the

mean particle number

〈n̂〉 = 〈â†â〉, (7.9)

and the first-order time correlation function1

G(1)(0, t) = β0〈â〉 = α∗0〈â†〉∗, (7.10)

which contains phase coherence information. Normalizing by 〈α0|β∗0〉 = Tr [ |α0〉 〈β∗0 | ],
their expectation values are found to be

〈n̂〉 = n0 e
−γt, (7.11a)

G(1)(0, t) = n0 e
−γt/2 e−iωt exp

{
n0

1− iγ/2χ
(
e−2iχt−γt − 1

)}
, (7.11b)

where n0 = α0β0.

When the damping is negligible, n0 real, and the number of particles is n0 À 1,

one sees that the initial phase oscillation period (ignoring ω) is

tosc =
1

2χ
sin−1

(
2π

n0

)
≈ π

χn0
, (7.12)

and the phase coherence time, over which |G(1)(0, t)| decays is

tcoh =
1

2χ
cos−1

(
1− 1

2n0

)
≈ 1

2χ
√
n0
. (7.13)

The first quantum revival occurs at

trevival =
π

χ
. (7.14)

1This first order correlation function is usually written in the Heisenberg picture as G(1)(0, t) =
〈â†(0)â(t)〉. Moving to the Schrödinger picture in which the gauge P representation is de-

fined, one has G(1) = Tr
[
eiĤt/~âe−iĤt/~ρ̂(0)â†

]
. Because of the coherent state conditions

used here, ρ̂(0) = Λ̂(α0, β0,Ω = 1). Thus, ρ̂(0)â† = β0ρ̂(0) using (5.7d). This gives

G(1) = β0Tr
[
âe−iĤt/~ρ̂(0) eiĤt/~

]
, and identifying the Schrödinger picture density matrix as

ρ̂(t) = e−iĤt/~ρ̂(0) eiĤt/~, this gives the desired expression G(1)(0, t) = β0〈â〉. To obtain the
right-hand side expression in (7.10), note that G(1) is a complex quantity composed of two ob-
servables (see (7.20)) — one for the real, and one for the imaginary part. Taking the adjoint,
G(1)(0, t)∗ = 〈â†(t)â(0)〉 in the Heisenberg picture, and following the same procedure as above, one
obtains G(1)(0, t)∗ = α0〈â†〉.
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The stochastic equations for this gain-less system are more convenient in terms

of the logarithmic number-phase variables

nL = log(αβ) (7.15a)

mL = log

(
α

β

)
. (7.15b)

For coherent states where β = α∗, nL is the logarithm of the mean number of parti-

cles |α|2, while mL = 2i∠α, and characterizes the phase of the coherent amplitude.

The Ito equations in the new variables are

dnL = −γ dt+ 2i
√
iχe−g

′′

(dη − G(n) dt) (7.16a)

dmL = −2i(ω − χ+ 2χenL) dt+ 2i
√
iχeg

′′

(dη∗ − G(m) dt) (7.16b)

dz0 = G(m)dη + G(n)dη∗ − G(n)G(m) dt = d(log Ω), (7.16c)

where the complex Wiener-like increment dη = (dW1 − idW2)/
√
2 has variances

〈dηdη∗〉stoch = dt (7.17a)

〈
dη2
〉
stoch

= 0, (7.17b)

and the independent transformed complex drift gauge functions are

G(n) =
G1 − iG2√

2
; G(m) =

G1 + iG2√
2

. (7.18a)

Note: these are not necessarily complex conjugates since the original G1 and G2 are

in general complex.

7.2.4 Behaviour of the positive P simulation

Lack of moving singularities

Consider the anharmonic oscillator equations (7.16) in the positive P representation,

where Gk = 0, and g′′ = 0. By comparison with the condition (6.3), one can check

by inspection that moving singularities do not occur : dnL does not depend on

any variables and so is stable, while dmL depends only on the other variable nL.

Thus the deterministic behaviour of mL is just integration of a finite function of nL

(which itself remains finite). The noise in mL is of constant magnitude. z0 does
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not evolve. All variables remain finite, no moving singularities or noise divergences

occur. Therefore, none of the symptoms of boundary term errors from Section 6.1.2

are present in the equations.

Indeed, the investigations of Gilchrist et al [64] found that boundary term errors

do not occur for the special case of the single-mode anharmonic oscillator.

Rapid growth of statistical error

If the observable estimators converge to the quantum mechanical expectation values

in the limit of many trajectories so that accuracy of the simulation is not a problem,

there still remains the issue of how large a sample of trajectories has to be to give

a precise result.

While the evolution of nL is well-behaved, being simply constant isotropic diffu-

sion and possibly some decay, the deterministic evolution ofmL can be very sensitive

to nL due to the exponential drift term.

Particularly Re {mL} has a great influence on observable estimates of phase-

dependent observables, such as G(1)(0, t). Consider the quadrature observables

q̂(θ) =
âeiθ + â†e−iθ

2
, (7.19)

which are closely related to the first-order correlation function

G(0, t) = β0〈q̂(0)− iq̂(π/2)〉 = (α0〈q̂(0) + iq̂(π/2)〉)∗ . (7.20)

Comparing to (5.10) and (5.13), the estimator for 〈q̂〉 is

q(θ) =

〈
Re
{
Ω
2

(
αeiθ + βe−iθ

)}〉
stoch

〈Re {Ω}〉stoch
(7.21)

=

〈
Re
{
exp

(
z0 +

nL
2

)
cosh

(
iθ + mL

2

)}〉
stoch

〈Re {ez0}〉stoch
. (7.22)

We can see that q is very sensitive to Re {mL} due to the cosh factor. This real part

of mL evolves as

dRe {mL} = 4χeRe{nL} sin(Im {nL}) dt+ . . . , (7.23)

which can be a very rapid growth even for moderate values of Re {nL}. Worse,

even a moderate spread in Re {nL} leads rapidly to a very wide spread of Re {mL},
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not to mention the spread in the factor cosh(mL/2) that appears in the observable

estimate. The behaviour of this spread will be considered in detail in Section 7.5.3,

but for now it suffices to point out that there arises a characteristic time scale tsim

beyond which the uncertainty in phase-dependent observable estimates grows faster

than exponentially with time, and any simulations become effectively useless no

matter how many trajectories are calculated.

Numerical investigations (See Figure 7.3 and Table 7.1) found that a positive P

simulation lasts at most for times

tsim ≈
(1.27± 0.08)

χn
2/3
0

. (7.24)

For large mode occupation n0 À 1, this is not enough time for significant phase deco-

herence to occur (compare to tcoh in (7.13)). This unfavorable scaling is known to be

a major unresolved stumbling block for positive P simulations of the interacting Bose

gas model (2.1) in many physical regimes. For example, evaporative cooling simu-

lations encounter such sampling problems upon the onset of Bose condensation[15].

The expression (7.24) indicates that the simulation time for a many-mode system is

likely to be limited by the simulation time of the most highly occupied mode (this

is confirmed by the simulations in Chapter 10), which makes it especially worthwile

to improve simulation times at large mode occupations.

Greater stability when damped

Consider the evolution of the log-occupation nL in (7.16). In a positive P simulation

(with g′′ = 0), the noise term produces a spread in both the real and imaginary parts

of nL of standard deviation σ =
√
2χt. To a good approximation, all trajectories

in a reasonable-sized sample will lie within about 4σ of the mean value (which is

log(n0) − γt). If the values of Re {nL} for all trajectories are ¿ − log 2χ, then

the nonlinear term in the dmL evolution equation becomes negligible, and stability

problems abate. This will occur if the damping γ is large enough in comparison

with the two-particle collisions χ. In Section 7.5.4, this behaviour will be found to

depend on the “damping strength” parameter (7.70), which will quantify what is

meant by “γ big enough”. The increased stability at higher damping is a well-known



164 Chapter 7 Gauges for single-mode interacting Bose gas dynamics

feature of positive P simulations of the anharmonic oscillator, and/or an interacting

Bose gas[46].

7.2.5 Coupling to other modes and moving singularities

Non phase-dependent observables such as n̂ = â†â can still be calculated at long

times for the anharmonic oscillator with the positive P method, because the evo-

lution of their estimators (e.g. 〈enL〉stoch) does not depend on the unstable mL.

This is no consolation, however, because we are ultimately interested in simulating

many-mode systems. (Singe-mode toy problems will fall even to a brute force trun-

cated number-state basis calculation, so all these involved stochastic schemes are

only ultimately justified for many-mode models). When many modes are present,

the convenient separation of nL and mL evolution seen in (7.16) is no longer present

due to mode-mixing terms (from kinetics and external potentials). This occurs even

for a single-mode model with nonzero pumping ε, or a finite-temperature heat bath

nbath > 0, which also model underlying mode-coupling processes. If the nL and mL

equations are coupled, the growth of the spread of Re {mL} will also feed the growth

of the spread of nL, making all moment calculations intractable after some relatively

short time.

Furthermore, moving singularities may appear. Reverting back to considering

the α and β equations (7.8), the Ito positive P evolution of α will be of the form

dα = −2iχα2β dt+ ε dt+ . . . , (7.25)

and in particular

d|α| = 2χ|α|2|β| sin(∠α + ∠β) dt+ . . . . (7.26)

When |β| sin(∠α + ∠β) is positive, this violates the no-moving-singularities condi-

tions (6.3), |α| grows faster then exponentially, and moving singularities may be

possible, leading to boundary term errors. This did not occur for the closed anhar-

monic oscillator only because of its special symmetry properties that allowed the

convenient decoupled logarithmic form of the equations (7.16).
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Thus it can be seen that when mode mixing occurs, there are two potential

problems that can arise after short times:

1. Rapid appearance of massive statistical errors, masking observable estimates

in noise.

2. Possible systematic biases caused by moving singularities in the equations.

Ways to deal with these issues will be investigated in this chapter for a single-mode

system, and for coupled-mode systems in Chapter 8.

7.3 Drift gauges: Removal of instability

As was seen in (7.26), the instabilities in the equations arise from the nonlinear two-

body drift terms, and in particular from the part that leads to super exponential

growth of |α| or |β|. Defining the real and imaginary parts of the number variable

n̆ = αβ = enL = n′ + in′′ (7.27)

for convenience, the offending terms are:

dα = 2χαn′′ dt+ . . . (7.28a)

dβ = −2χβn′′ dt+ . . . (7.28b)

whereas the terms

dα = −2iχαn′ dt+ . . . (7.29a)

dβ = 2iχβn′ dt+ . . . (7.29b)

affect only the phase of α or β, and are harmless. Furthermore we can see that any

nonzero value of n′′ = |α|Im
{
βei∠α

}
can lead to moving singularities (in α evolution

if n′′ > 0, or in β evolution if n′′ < 0). Note that nonzero n′′ are characteristic of

“non-classical” states that cannot be represented by non-singular Glauber P distri-

butions — i.e. as a mixture of coherent states. This is because for all coherent state

trajectories β = α∗, and so n̆ = n′ only.

Let us follow the heuristic procedure of Section 6.3.2 to remove the instabilities.

Considering the points there, in order:
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1. Remove instability: Drift gauges Gk are chosen so that the terms causing

the instability (7.28) are canceled by the drift correction. Assuming no other

changes to the drift takes place, then from (7.8), after some algebra, one

obtains the required gauges:

G1 = −
√

2iχ n′′e−g
′′

(7.30a)

G2 = i
√

2iχ n′′e−g
′′

= −iG1 (7.30b)

These effectively cause the replacement in the stochastic equations

−2iχαn̆ dt → −2iχαn′ dt (7.31a)

2iχβn̆ dt → 2iχβn′ dt. (7.31b)

In terms of the logarithmic variables, the scaled gauges (7.18) are

G(n) = 0 (7.32a)

G(m) = −2
√
iχ n′′e−g

′′

= G1
√
2. (7.32b)

For the anharmonic oscillator, dnL is unchanged from the positive P simula-

tion, and the full equations are

dnL = −γ dt+ 2i
√
iχe−g

′′

dη (7.33a)

dmL = −2i(ω − χ+ 2χRe {enL}) dt+ 2i
√
iχeg

′′

dη∗ (7.33b)

dz0 = −2
√
iχ Im {enL} e−g′′ dη. (7.33c)

2. Check again for moving singularities: (Ignoring, for the time being,

any dependence on g′′ since the diffusion gauge has not been chosen yet)

• Comparing to conditions (6.3), it is seen that the linear drift terms in

parameters ε, ω, γ, and nbath in (7.8) will not lead to moving singularities.

• The new nonlinear drift terms (7.31) have lost their radial component

due to the drift gauges, and so do not lead to any moving singularities

either.
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• From (B.7), the Stratonovich corrections for dα and dβ are iχα dt and

−iχβ dt, respectively. These extra terms satisfy (6.3), and so do not

contribute any moving singularities in any of the Ito-Stratonovich hybrid

family of algorithms.

• That leaves the new dz0 evolution. The weight deterministically tracks

the nL evolution, and from (7.33)

dz0 = i Im {enL} (dnL + γ dt), (7.34)

and so if nL = log(αβ) remains finite for all trajectories (as is seen from

the lack of moving singularities in α and β evolution), then so will z0.

Thus it is seen that no new moving singularities are introduced provided g ′′ is

well-enough behaved. The dependence on g′′ is considered in Section 7.5.7.

3. The noise terms in dα and dβ are exponential in α, and so also satisfy (6.3)

together with the noise terms of dz0. thus noise divergences are absent, given

a well behaved g′′.

4. As desired, there are no discontinuities in equations, by inspection (provided

g′′ is well behaved).

5. Gauge efficiency. Comparing to corresponding sub-points from Section 6.3.2:

(a) Corrections to the drift are necessary in all of phase space apart from the

subspaces n′′ = 0 of measure zero, so generally Gk 6= 0 apart from this

special region.

(b) For general purpose calculations, one wishes to minimize the quantity
∑

k |Gk|2, given that the instabilities are removed. This is achieved by

the gauges (7.30) as they are only just large enough to remove the insta-

bilities, and do not introduce any other modifications to the dα, or dβ

equations.

(c) Attractors? For the single-mode anharmonic oscillator when ε = 0, there

are deterministic attractors in the phase space at vacuum (n = 0), and
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n = (χ−ω)/2χ (Stratonovich) or n = −ω/2χ (Ito). At all these, n′′ = 0,

so the gauge is also zero. This is the desired situation.

In the more complicated case of nonzero ε, there will be some stationary

points elsewhere in phase space. One could try to construct some gauges

that would behave as (7.30) in the far tails of phase space i.e. as |α|, |β| →
∞, but would be zero at these stationary points. In the broad picture,

however, there seems little point to do this for the single-mode case,

because in a many-mode simulation all modes will be coupled together

by the kinetic interaction ωn6=m, and ε will be different or absent.

(d) Rather than tailoring the simulation for a single observable Ô, the quan-

tity
∑

k |Gk|2 was minimized here to keep the gauge applicable for a gen-

eral case.

6. None of the features to be avoided occur.

(a) The gauge is nonzero over a wide range of phase-space, including regions

often visited.

(b) The gauge does not change in a particularly rapid fashion in phase-space

(c) The gauge is autonomous.

(d) The drift gauges break the analyticity of the equations, as suggested by

the conjecture of Section 6.1.4.

7.4 Exponentials of Gaussian random variables

From the single-mode equations for the locally-interacting Bose gas (7.8) (or indeed

from the many-mode equations (5.17) or (5.50)), it is seen that noise terms due to

the interparticle interactions are generally of the multiplicative form

dα ∝ α
√
χdWk + . . . ; dβ ∝ β

√
χdWk + . . . . (7.35)

This leads to Brownian-like motion in the logarithmic variables nL or mL, as e.g. in

(7.16). On the other hand, the observable estimates (e.g. 〈n̂〉 or G(1)(0, t)) typically
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involve quantities such as α or αβ — in the original non-logarithmic variables.

Clearly there will be a lot of averaging over random variables that are of similar

form to the exponential of a Gaussian. Let us investigate the behaviour of such

random variables.

Let ξ be a Gaussian random variable of mean zero and variance unity, thus its

distribution is

Pr(ξ) =
1√
2π

exp

(
−ξ

2

2

)
. (7.36)

The moments of ξ can be found by integration of (7.36) to be

〈
ξk
〉
stoch

=





k!

2k/2(k/2)!
if k > 0 is even

0 if k > 0 is odd

(7.37)

Now let us define the exponential random variable

vσ = v0e
σξ = evL (7.38)

with positive real σ and v0. Using (7.37), the exponential variable’s mean is

〈vσ〉stoch = vσ =
∞∑

k=0

σk
〈
ξk
〉
stoch

k!
= v0 exp

(
σ2

2

)
. (7.39)

and so, also

var [vσ] = σ2v = v20e
σ2
(
eσ

2 − 1
)
=


vσ

√(
vσ
v0

)2

− 1



2

. (7.40)

If one is interested in estimating quantities such as vσ using S samples, then by

the Central Limit Theorem, the relative uncertainty in such a finite-sample estimate

will be

∆vσ =
σv

vσ
√
S
. (7.41)

To obtain only a single significant digit of accuracy, the number of trajectories

needed is then

Smin =
100σv
vσ

= 100
√
eσ2 − 1. (7.42)
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Figure 7.1: Number of samples Smin required to obtain a single significant digit of precision

in the mean of a random variable vσ that is an exponential of a Gaussian random variable with

standard deviation σ. Scales: (a) Linear, (b) logarithmic.

This minimum number of required samples (independent of v0) is plotted in Fig-

ure 7.1. It can be seen there that for σ & 3 the number of samples required becomes

intractable, and this sets a practical limit on the variance of the logarithmic variable

vL = σξ:

σ2 . O (10) , (7.43)

which will be referred to numerous times in this and following chapters.

At small standard deviations σ . 1, on the other hand, σv ≈ σ, and the vari-

ance of the logarithmic and exponential variables (var [vL] and σ2v , respectively) is

approximately the same — a result that will also be useful.

Lastly, this sampling problem can also lead to systematic biases (but not bound-

ary term errors) in averages of v with finite sample number S once σ & 3, when

(7.43) is violated. This is considered in detail in Appendix A.

Means of some combinations of Gaussian noises

Some expressions that will be used in Sections 7.5, and 7.8.2 are given below. Since

they contain only odd powers of ξ,

〈sin(σξ)〉stoch = 0 (7.44)

〈ξ cos(σξ)〉stoch = 0. (7.45)
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And, by the same series expansion approach as for (7.39)

〈
ξeσξ

〉
stoch

= σ exp

(
σ2

2

)
(7.46)

〈cos(σξ)〉stoch = exp

(
−σ

2

2

)
(7.47)

〈ξ sin(σξ)〉stoch = σ exp

(
−σ

2

2

)
. (7.48)

7.5 Optimization of diffusion gauges

7.5.1 Aims

Upon choice of the drift gauges (7.30) to remove the offending moving singularities,

diffusion gauges can be chosen to vastly (as it turns out) improve the sampling

behaviour of the simulation. The aim here will be to arrive at a diffusion gauge g ′′

for the one-mode system that satisfies the following:

1. Improves useful simulation times in the low-damped high boson occupation

regime (this is the regime where simulations without diffusion gauges give

very unsatisfactory results – see Figure 7.3 and Section 7.2.4).

2. Is easily generalized to many-mode situations. This means, in particular, that

the gauge choice should allow for the possibility of mode occupations changing

dynamically due to inter-mode coupling (although this is not actually seen in

the one-mode toy system).

3. Is expressed as an exact expression, or does not require excessively involved

calculations to evaluate. This is important, since in a simulation the gauge

should be evaluated at each time step if it is to adapt to dynamically changing

mode occupations.

4. Applies on timescales of the order of the coherence time (and shorter timescales

as well). This is a relevant timescale only when mode occupations are larger

than order unity, and is then smaller than the quantum revival time trevival =

π/χ. At lower mean occupations (order unity or smaller), we require that the
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simulation remains stable for a time O (1/χ), which should be sufficient not

to prematurely destabilize any coupled highly-occupied modes in multi-mode

systems.

5. Depends only on variables in the current trajectory — i.e. on parameters of the

current coherent-state projector |α〉〈β∗| component of the full state ρ̂. This is

necessary if we want to be able to parallelize the calculation, which enormously

improves calculation times. Also, if the evolution of all possible coherent-state

projectors can be stabilized to restrict distribution size and statistical error,

then so will the evolution of all possible states since these are always expressed

as a distribution, and estimated as an appropriate sample, of such projectors.

6. We are especially interested in the case of low or absent damping γ ¿ 2χ, since

this is the regime where quantum effects are strongest, and also where the sim-

ulation is most unstable (see e.g. Sections 7.2.4 and 7.5.4). The highly-damped

regime is a lesser priority, since there a mean-field, or other approximate sim-

ulation would be sufficient for most purposes.

This may seem like a lot of conditions for one quantity, but it helps to remember

that g′′ is in principle an arbitrary function.

7.5.2 Variables to be optimized

Before proceeding directly to searching for advantageous values of the diffusion

gauge, there remain several more issues to address:

Which moment to optimize?

While, strictly speaking, this depends on which moment we might be interested in,

in general we should concentrate on occupation number 〈n̂〉 or phase correlations

G(1). If these basic low-order observables are badly calculated then higher-order

observables will not do any better, because they are more sensitive to the distribution

broadness.
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Consider that estimators for these two observables are (by comparing their defi-

nitions (7.9) and (7.10) to observable estimators in the gauge P representation (5.10)

and (5.13)) are

〈n̂〉 ∝ Re {〈Ωn̆〉stoch} (7.49)

G(1)(0, t) ∝ β0 〈Ωα〉stoch or ∝ α∗0 〈Ω∗β∗〉stoch (7.50)

(the normalization by denominators Re {〈Ω〉stoch} has been omitted). One finds

from (7.16) or (7.8) that both dn̆ and dΩ are proportional to e−g
′′
, so varying the

diffusion gauge g′′ acts to scale noise in the number observable 〈n̂〉 ∼ 〈Ωn̆〉stoch
smoothly from very large at negative g′′ to very small at positive g′′. This does

not suggest any “optimal” values of g′′. On the other hand, the evolution of phase-

dependent expectation values such as G(1)(0, t) displays high noise at both large

negative and positive values of g′′ but via different processes. (Large noise in Ω = ez0

at negative g′′, and large noise directly in α or β at positive values). This suggests

that g′′ parameterizes some tradeoff between phase-space and weight noise, and

that there is some intermediate value of g′′ at which the resulting uncertainty in

phase observables is minimized. Thus optimization should be based on such phase

variables.

Logarithmic variables

Ideally one would like to optimize for the variance of variables like (αΩ), since

these appear directly in the calculation of the observable G(1). Unfortunately, exact

expressions for such variances are difficult to obtain in a closed form2, and would

probably be very complicated if obtained. A complicated form makes it difficult

to arrive at an expression for the optimum g′′ that would satisfy condition 3. in

Section 7.5.1 (i.e. simple to evaluate during each simulation step).

It turns out, however, that exact expressions for the variances of the logarithms

of phase-dependent observables such as var [log(αΩ)] = var [z0 + nL/2 +mL/2] can

2The reason for this becomes clear after proceeding to calculate some logarithmic variances
in (7.65). These require the evaluation of quantities such as 〈n′′(t′)n′′(t′′)〉stoch given in (7.64).
To evaluate var [Ωα] = var

[
eGL

]
, on the other hand, requires calculating averages of the form

〈n′′(t1)n′′(t2)n′′(t3), · · ·〉stoch to all orders, which becomes increasingly involved as the number of
factors grow.
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be found with (relative) convenience and ease, and we will look for values of g ′′ to

minimize this logarithmic variance instead of var [αΩ].

As further justification of this choice, one can make an analogy between the

behaviour of logα and α, etc. versus the behaviour of the Gaussian random variable

vL of Section 7.4 and vσ = evL . In both cases the logarithmic variable is generated

by Brownian motion, although in the logα case, there is additional drift. One sees

from (7.40) that for σ . O (1), the variances of both the logarithmic and “normal”

variables are the same. This corresponds to short time evolution of the anharmonic

oscillator in the above analogy. Furthermore, because of the rapid rise of variance

with time, the range of σ for which σ 6≈ σv but the simulation gives any useful

accuracy is fairly narrow and occurs in the more noisy part of the simulation.

In summary, it can be expected that a optimization of g′′ in logarithmic vari-

ances will still give good results. This is borne out by the massive improvement in

simulation times seen in Figure 7.3. Certainly, however, some further improvement

could be obtained by considering non-logarithmic variances (particularly since in the

full simulation, logαΩ etc. are not exactly Gaussian distributed due to the effect of

the drift terms), although it is not clear whether the difference would be significant

or not.

Which phase-dependent variable to optimize

The first-order correlation functionG(1)(0, t) can be estimated in two ways, as seen in

(7.50). Hence, it is best to optimize for the average variance of the logarithm of the

two random variables Ωαβ0 and (Ωα0β)
∗ corresponding to the G(1) estimate. Also,

since general coherent state initial conditions to be optimized will have arbitrary

phases, we should optimize a variance of variables related to |G(1)(0, t)| rather than
the complex G(1).
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7.5.3 Optimization of g′′

|G(1)(0, t)| is estimated by either eGL or eG̃L , where

GL(t) = Re {log β0 + logα(t) + z0(t)} (7.51a)

G̃L(t) = Re {logα0 + log β(t) + z0(t)} , (7.51b)

while the uncertainty in the estimate will be proportional to var
[
eGL
]
or var

[
eG̃L

]
.

Taking the considerations of the previous Section 7.5.2 into account, let us look for

such g′′ = g′′opt that the mean variance of GL and G̃L is minimized for the anharmonic

oscillator system. This minimum occurs when

∂
(
var [GL(topt)] + var

[
G̃L(topt)

])

∂g′′
= 0. (7.52)

Note that the optimal value g′′opt will in general depend upon the target time topt = t

at which the variances are considered.

The formal solution of the gauged anharmonic oscillator equations (7.33), as-

suming uniform initial weight Ω(0) = 1, is straightforward to find:

nL(t) = log(n0)− γt+
√
χe−g

′′ [
iζ+(t)− ζ−(t)

]
(7.53a)

mL(t) = log(α0/β0)− 2i(ω − χ)t− 4iχ

∫ t

0

n′(t′)dt′

+
√
χeg

′′ [
iζ−(t)− ζ+(t)

]
(7.53b)

z0(t) = −√χe−g′′
∫ t

0

n′′(t′)
[
η+(t′) + iη−(t′)

]
dt′, (7.53c)

where using the definition (7.27).

η±(t) =
dW1(t)

dt
± dW2(t)

dt
(7.54)

are independent real Gaussian noises obeying

〈
η±(t)

〉
stoch

= 0 (7.55a)

〈
η±(t)η±(t′)

〉
stoch

= 2δ(t− t′) (7.55b)

〈
η±(t)η∓(t′)

〉
stoch

= 0, (7.55c)

and so dη =
√
i(η− − η+) dt/2. Also,

ζ±(t) =

∫ t

0

η±(t′)dt′. (7.56)
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These ζ± are time-correlated Gaussian random variables. Using (7.55), they obey

the relationships

〈
ζ±(t)

〉
stoch

= 0 (7.57a)

〈
ζ±(t)ζ±(t′)

〉
stoch

= 2min [t, t′] (7.57b)

〈
ζ±(t)ζ∓(t′)

〉
stoch

= 0. (7.57c)

The variables to optimize are


 GL

G̃L


 = log |n0| −

γ

2
t−
√
χ

2


e−g′′ζ−(t)


 +

−


 eg′′ζ+(t)


−√χe−g′′

∫ t

0

n′′(t′)η+(t′)dt′.

(7.58)

In the Ito calculus the noises at t′ are independent of any variables at t′, so one finds


 〈GL〉stoch
〈G̃L〉stoch


 = log |n0| −

γ

2
t, (7.59)

and using (7.57b)


 〈G

2
L〉stoch

〈G̃2
L〉stoch


 =


 〈GL〉2stoch
〈G̃L〉2stoch


+ χt cosh 2g′′


 +

−


χ

∫ t

0

〈
n′′(t′)η+(t′)ζ+(t)

〉
stoch

dt′

+χe−2g
′′

∫ t

0

dt′
∫ t

0

dt′′ 〈n′′(t′)n′′(t′′)〉stoch
〈
η+(t′)η+(t′′)

〉
stoch

, (7.60)

where use has also been made of the independence of η±(t′) and ζ∓(t).

To further evaluate (7.60), one needs to calculate the averages containing n′′.

Define c =
√
χe−g

′′
, and n0 = n′0 + in′′0. Firstly,

〈n′′(t)〉stoch = e−γt
〈
e−cζ

−
〉
stoch

[
n′0
〈
sin c ζ+

〉
stoch

+ n′′0
〈
cos c ζ+

〉
stoch

]
.

= n′′0e
−γt (7.61)

where we have first used the independence of the ζ± to separate the stochastic

averages, and then applied expressions (7.39), (7.44), and(7.47) to evaluate them.
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Now, since noises at times t > t′ are uncorrelated with those at t′ or earlier,

〈
n′′(t′)η+(t′)ζ+(t)

〉
stoch

=
〈
n′′(t′)η+(t′)ζ+(t′)

〉
stoch

=

∫ t′

0

〈
n′′(t′)η+(t′)η+(t′′)

〉
stoch

dt′′

=

∫ t′

0

〈n′′(t′)〉stoch
〈
η+(t′)η+(t′′)

〉
stoch

dt′′

= 2 〈n′′(t′)〉stoch , (7.62)

using (7.55b).

Secondly, if t′′ > t′, noting that

ζ±(t′′) = ζ±(t′) + ζ̃±(t′′ − t′),

where the ζ̃±(t) are independent of the ζ±(t), but have the same properties (7.57),

one finds that

〈n′′(t′)n′′(t′′)〉stoch (7.63)

= e−γ(t
′+t′′)

〈
e−2c ζ

−(t′)
〉
stoch

〈
e−c ζ̃

−(t′′−t′)
〉
stoch

〈
cos c ζ̃+(t′′ − t′)

〉
stoch

×
{
[n′0]

2
〈
sin2 c ζ+(t′)

〉
stoch

[n′′0]
2
〈
cos2 c ζ+(t′)

〉
stoch

+ n′0n
′′
0

〈
sin 2c ζ+(t′)

〉
stoch

}
.

Terms containing
〈
sin c ζ̃

〉
stoch

= 0 have already been discarded. Evaluating the

averages using (7.39) and (7.47), one obtains

〈n′′(t′)n′′(t′′)〉stoch =
e−γ(t

′+t′′)

2

{
|n0|2e4t

′c2 − (n′0)
2 + (n′′0)

2
}
. (7.64)

Due to symmetry

∫ t

0

dt′
∫ t

0

dt′′n′′(t′)n′′(t′′) = 2

∫ t

0

dt′′
∫ t′′

0

dt′ n′′(t′)n′′(t′′),

and substituting (7.64), (7.62), and (7.61) into (7.60) and (7.59), then integrating,

one obtains

 var [GL(t)]

var[G̃L(t)]


 = χt cosh(2g′′)


 +

−


 2χn′′0

(
1− e−γt

γ

)
(7.65)

+χe−2g
′′ |n0|2

(
e4χe

−2g′′ te−2γt − 1

4χe−2g′′ − 2γ

)
− χe−2g′′ [(n′0)2 − (n′′0)

2]

(
1− e−2γt

2γ

)
.
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The optimum g′′ = g′′opt can now in theory be calculated by imposing (7.52).

Since this would involve the solution of a transcendental equation, it would

be cumbersome to use in a numerical simulation, going against requirement 3 of

Section 7.5.1, because one would have to execute a time-consuming algorithm at each

time step. By considering, below, some important special cases, an approximation

to the optimum g′′opt applicable under the broad conditions aimed for in Section 7.5.1

will be found, which can then be easily used in actual simulations.

7.5.4 Important special cases

1. Perhaps the most important special case is when damping is absent (γ = 0).

This is also the worst case in terms of simulation stability. At relatively short

times one has

4χtopte
−2g′′opt ¿ 1, (7.66)

and the optimum is given (from (7.52) and (7.65)) by the roots of the cubic

in Vg = e−2g
′′
opt :

8χtopt|n0|2V 3
g + [4(n′′0)

2 + 1]V 2
g − 1 = 0. (7.67)

In the usual case of simulations with sizeable occupation numbers in modes,

and times up to coherence time (which then is much shorter than the quantum

revival time π/χ) this short time condition is satisfied. A very useful expression

g′′opt ≈
1

3
log
(
|n0|
√

8χtopt
)
. (7.68)

applies when the V 2
g term is negligible. This occurs at long enough times when

n0 is large enough and mostly real: i.e. when 1 + 4(n′′0)
2 ¿ (8χtopt|n0|2)2/3.

So χtopt must be at least À 1/8|n0|2 (a higher limit applies if n′′0 6= 0).

The opposite case when n0 is either too small, too imaginary, or the time is

too short has the V 3
g term negligible and leads to

g′′opt ≈
1

4
log
[
1 + 4(n′′0)

2
]
. (7.69)
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2. It can be seen that the long time behaviour of the variances depends on the

“damping strength” parameter

q = 2γ − 4χe−2g
′′

. (7.70)

When q is positive, the long time (i.e. qtÀ 1) behaviour of (7.65) is asymptotic

to a linear increase

 var [GL]

var[G̃L]


→ χt cosh 2g′′ − b (7.71)

where b = χe−2g
′′{[(n′0)2 − (n′′0)

2]/2γ − |n0|2/q} ∓ 2χn′′0/γ is a constant. This

means that the sampling uncertainty grows relatively slowly, and long simu-

lation times are possible. When q is negative, on the other hand, the long

time behaviour is χe−2g
′′ |n0|2e|q|t/|q|, and we expect a rapid appearance of

intractable sampling error after some time |q|tÀ 1.

The parameter q depends on the relative strengths of the nonlinearity and the

damping, and determines the long time behavior of the statistical error. Note

though that if damping is present, then for large enough diffusion gauge g ′′,

q can always be made positive, and the linear (in t) variance regime can be

reached with a choice g′′ ≥ log
√

2χ/γ.

3. An immediate extension to nonzero damping of expressions (7.67), (7.68) and

(7.69) can be derived for times |qtopt| ¿ 1 to give the cubic

8χtopt|n0|2V 3
g + a2V

2
g − 1 = 0 (7.72a)

where

a2(n0, γtopt) = 1 + 4(n′′0)
2

(
1− e−2γtopt

2γtopt

)

−2|n0|2
(
1− 2γtopt + 2(γtopt)

2 − e−2γtopt

γtopt

)
. (7.72b)

The expression (7.68) still applies at large enough and real enough n0: i.e.

when a2 ¿ (8χtopt|n0|2)2/3. In the opposite case of a2 À (8χtopt|n0|2)2/3, one
has

g′′opt ≈
1

4
log(a2). (7.73)
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7.5.5 Suggested approximate form of diffusion gauge

Guided by conditions 2, 4, 5, and 6, in Section 7.5.1, we can see that the choice of

g′′approx for the anharmonic oscillator might depend on the four real parameters n′0,

n′′0, χtopt and γ. Because of conditions 4 and 5, we are most interested in the regime

of small γ, and either χtopt . O
(
1/2
√
|n0|
)

when |n0| & O (1), or χtopt . O (1)

when n0 . O (1). These cases are covered by expression (7.72).

This can be most easily seen in the two limits |n0| À 1 and |n0| ¿ 1 where for

small γ, we have qtopt ≈ −2(χtopt/|n0|)2/3 and ≈ −4χtopt/
√

1 + 4(n′′0)
2 respectively.

Hence the condition |q|topt ¿ 1 applies for target times χtopt ¿ |n0|/2
√
2 and

¿≈ (1 + 2|n′′0|)/4 respectively, which is roughly sufficient for low occupations, and

more than sufficient for high occupations.

To obtain an explicit estimate for g′′opt, one can either evaluate the roots of

the polynomials (7.67) or (7.72) by standard expressions, which can be still quite

complicated although reasonably rapid, or use the approximation

g′′approx =
1

6
log
{
8|n0|2χtopt + a

3/2
2

}
, (7.74)

which reduces to (7.68) and (7.73) in their limits of applicability, and works very

well in practice (see figures 7.3, 7.6, and 7.5).

The discrepancy ∆ between (7.74) and the exact optimization obtained by solv-

ing (7.52) with (7.65) is shown for real n0 for a wide range of parameters in Fig-

ure 7.2. Note that the ubiquitous e−2g
′′
factor is, for small discrepancy, e−2g

′′
opt ≈

(1 − 2∆)e−2g
′′
approx . It can be seen that for occupations & O (10) and/or for times

shorter than, or of the order of, singly-occupied coherence time the approximation

is very good.

The diffusion gauge choice (7.74) will be used from here on.

7.5.6 Relationship between target time and mode occupa-

tion

The expression (7.74) was worked out under the conditions that the mean occupation

of the mode is conserved. In coupled-mode simulations this is no longer the case, and
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Figure 7.2: Discrepancy ∆ = g′′opt−g′′approx between g′′opt (the exact optimization of g′′ by solving

(7.52) using (7.65)), and the approximate expression (7.74). Displayed is the case of no damping

(γ = 0) and classical initial occupation (n0 = n′0), shown as a function of topt and n0. Discrepancy

values ∆ are shown as solid contours with spacing 0.05. Additional dashed contours shown

at very low discrepancy. Dotted line approximates region of greatest discrepancy χtopt ≈ 1/8n′0
2.

For comparison, several physical timescales are also shown in grey: time of first quantum revival

trevival, phase coherence time tcoh and phase oscillation period tosc.

could be adapted for by replacing n0 by n̆(t), which explicitly assumes independence

of trajectories, and a Markovian process. Although the mean over all trajectories

〈Ω(t)n̆(t)〉 would be a better estimator of the mean boson occupation, this would be

in conflict with aim 5 in Section 7.5.1, and might lead to biases due to complicated

feedback mechanisms between trajectories.

Another assumption used to arrive at (7.74) was that g ′′ would be constant in

time, which is now no longer the case. This raises the question of how to include

the target time in g′′opt. Two ways that quickly come to mind is either to calculate

g′′opt(t)

1. Always optimizing for a time topt forward from the present t (choosing then,

explicitly, g′′opt(topt)), or:

2. Optimizing for only the remaining time to the absolute target time topt ≥ t
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(choosing, then, g′′opt(max[topt − t, 0])).

In combination, this gives rise to the four possible gauge forms (in the (7.74)

approximation, using (7.72b))

g′′approx(t) =
1

6
log
{
8|n0|2χtopt + a2(n0, γtopt)

3/2
}
, (7.75a)

g′′approx(t) =
1

6
log
{
8|n0|2χtrem + a2(n0, γtrem)

3/2
}
, (7.75b)

g′′approx(t) =
1

6
log
{
8|n̆(t)|2χtopt + a2(n̆(t), γtopt)

3/2
}
, (7.75c)

g′′approx =
1

6
log
{
8|n̆(t)|2χtrem + a2(n̆(t), γtrem)

3/2
}
(t), (7.75d)

where the “remaining time to target” is

trem = max[topt − t, 0]. (7.76)

These strategies have been numerically investigated for the undamped (γ = 0)

case with real n0 starting conditions. It turns out that form (7.75d) has some

advantage over the others, particularly at high occupations. Details are discussed

in Section 7.7.1 and shown in Table 7.1.

7.5.7 Boundary term issues

When considering the use of an adaptive g′′(t, n̆(t)), one should be careful that the

g′′ dependent terms do not introduce new noise divergences that were not present

when the standard g′′ = 0 square root noise matrix B0 was used3. The condition

to avoid noise divergence symptoms (and so, presumably, boundary term errors) is

as always (6.3): The stochastic equations should contain no radial component that

grows faster than exponentially as large radial values of the phase-space variables

are reached.

Since the suggested forms (7.75) depend directly only on the complex occupation

variable n̆ = enL , and not on either of the other independent variables (mL, and z0),

then it suffices to only check that the n̆ evolution equation contains no radial super-

exponential growth. This is because the g′′ dependent terms in the mL and z0

3Incidentally, any boundary term errors introduced by such noise divergences would have to be
of the second kind, since the choice of diffusion gauge is made at the level of the FPE-stochastic
equation correspondence, long after any boundary terms B̂ has been discarded.
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evolutions simply accumulate integrals of functions of nL, and if n̆ remains finite,

then so will the other variables.

The n̆ evolution is now

dn̆ = 2in̆
√
iχe−g

′′

dη + γ(nbath − n̆) dt

+(ε dt+
√
γnbath dηbath)β + (ε dt+

√
γnbath dηbath)

∗α. (7.77)

Provided the time dependence of parameters γ, nbath, ε, or χ is not pathological, the

condition (6.3) means g′′ must obey

lim
|n̆(t)|→∞

e−g
′′ ∝ |n(t)|a where a ≤ 0. (7.78)

for no super-exponential growth to occur. That is, eg
′′
must grow as a non-negative

power law (or faster) as |n̆| becomes large. This is seen to be satisfied by the sug-

gested forms (7.75). Finally, non g′′-dependent terms were considered in Section 7.3,

and found not to lead to any moving singularities.

It is concluded, then, that the diffusion gauge form (7.74) does not lead to any

new noise divergences or moving singularities, and hence none of the usual boundary

term error symptoms have been reintroduced.

7.5.8 Particle gain

External particle gain (rather than loss due to a zero-temperature heat bath) com-

plicates the behaviour. Looking at (7.77), the bath interactions tend to equilibrate

the mode occupation to the bath value nbath. If nbath ¿ 〈n̂〉, then one can expect

that the optimum gauge calculated with nonzero γ will be largely unchanged. For

highly occupied bath modes, or strong coherent particle gain ε, a new analysis of g ′′

optimization may give better results that (7.75), however this appears to be a very

involved procedure. An obvious first try is to just see what happens with the gauge

form (7.75).
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7.6 Estimates of simulation times

The limit (7.43) on the variance of exponentials of Gaussian random variables can

be used to estimate times of useful simulation tsim from expressions for var [GL]

— since GL behaves much like a Gaussian random variable in analogy to σξ, and

observables are estimated by eGL in analogy to vσ ∝ eσξ. Imposing

(var [GL(tsim)] + var[G̃L(tsim)])/2 ≈ 10, (7.79)

one can solve for tsim to obtain at estimate at least of the scaling of tsim with system

parameters.

Consider first the gauged simulation. For coherent state initial conditions β0 =

α∗0 at small damping γt¿ 1, and short enough times |q|t¿ 1,

var [GL] =
χt

2

(
Vg +

1

Vg

)
+ 2(χVgtn

′
0)

2. (7.80)

For large particle number n′0 À 1, g′′opt takes the form (7.68), so Vg ≈ 1/2(n′20χt)
1/3,

the χtVg/2 term is negligible, and var [GL] ≈ 3(n′0χ
2t2)2/3/2, and (7.79) leads to a

useful simulation time

tsim ≈
(20/3)3/4

χ
√
n′0
≈ O (10 tcoh) . (7.81)

Since in this regime |q|t ≈ 4χtVg ≈ 2(χt/n′0)
2/3, then |q|tsim ≈ O (5) /n′0 ¿ 1, and so

the expression (7.81) is consistent with the original short time assumption |q|t¿ 1

when n′0 À O (5).

At small occupations n′0 ¿ 1 on the other hand, g′′opt → 0, and at long times,

var [GL] ≈ 1
4
n′0

2e4χt. Thus useful simulation time scales very slowly with n′0, and is

tsim ≈
O (1)− 1

2
log n′0

χ
. (7.82)

The “long time” condition holds while 1
4
n′0

2e4χt is much greater than the lower order

term χt. That is, n′0 À O (10−8). At even smaller n′0, the χt term dominates (7.80),

and

tsim ≈ O (10) /χ. (7.83)
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For comparison, consider the positive P behaviour, which can be estimated

from the logarithmic variances (7.92) for the case with no drift gauge, which are

worked out in Section 7.8.2. For coherent state initial conditions n0 = n′0 and small

damping γt¿ 1,

var [GL] ≈ χt+ 2n′0(χt)
2 + 2χ2n′0

2

{
e4χt − 1

8χ2
− t

2χ
− t2

}
. (7.84)

At short times 4χt¿ 1 the leading term in the {•} expression is 8
3
(χt)3n′0

2. In such

a case, for large mode occupation n′0 À O (1) /χt this term dominates, and using

(7.79), one obtains

tsim ≈
O (1)

χn′0
2/3
. (7.85)

Checking back, 1/χt ≈ O (1)n′0
2/3, so (7.85) is consistent with the short time as-

sumption for n′0 À 1. At long times, one again has (7.82) and (7.83). The expression

(7.85) is also useful in estimating simulation times for many-mode models, as will

be seen in Section 10.2.1.

Curiously, the “stable” drift-gauged simulation with no diffusion gauge does

even worse than the positive P. In this case, Vg = 1, and using (7.80), at large n′0

tsim ≈
O (2)

χn′0
≈ tosc, (7.86)

which is consistent when n′0 À O
(
1
4

)
.

The numerical results in Table 7.1 and Figure 7.3, are seen to agree with these

estimates to within constant factors of O (1).

7.7 Numerical investigation of improvement

To unambiguously determine the improvements in simulation time that are achieved

by the use of the proposed gauges, simulations of an undamped anharmonic oscillator

were carried out for a wide range of mode occupations and a variety of gauges,

testing various target times topt where appropriate. (The undamped system was

chosen because this is the worst case.)

Figure 7.3 compares tsim, the maximum time achieved with various methods at

which useful precision in the phase correlations G(1)(0, t) can be obtained. Note
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the logarithmic scale. Results at high boson occupation are tabulated in Table 7.1,

which includes data for a larger set of gauge choices. Figure 7.6 gives examples

of calculated values |G(1)(0, t)| along with error estimates. Table 7.2 gives some

empirical fitting parameters to expression (7.89) for the useful simulation time tsim.

These may be useful to assess simulation times when the particle occupation is of

O (10) or smaller, and the expressions (7.81) or (7.85) are not accurate.

Details of the sampling error behaviour are shown in Figure 7.5 for a range of

gauge choices, while Figure 7.4 shows the dependence of useful simulation times on

the target time parameter topt for a variety of gauge forms for two example mode

occupations: n0 = 1 and n0 = 104.

7.7.1 Procedure

Simulations were carried out with coherent state initial conditions for a wide range

of mean occupation number

n0 = {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 1000, 104, 105, 106, 108, 1010}. (7.87)

The following gauges, and their varieties as seen in Table 7.1, were tried for each n0

value:

i) No gauge: Gk = g′′ = 0. This is the standard positive P distribution technique.

ii) Drift gauge only: Gk given by (7.30), and g′′ = 0.

iii) Both drift gauge (7.30) and diffusion gauges of the four related forms (7.75).

iv) Diffusion gauge (7.100) only, as described by Plimak et al [2] (See Sec-

tion 7.9.2).

v) Drift gauge (7.99) only, as described by Carusotto et al [1] (See Section 7.9.1)

vi) Adaptive diffusion gauges (7.94) only (of the four forms (7.97)), and Gk = 0.

For the diffusion gauges of iii), iv), and vi), which depend on an a priori target

time parameter topt, a wide variety of target times were tried to investigate the

dependence between tsim and topt, and ascertain what are the longest simulation

times achievable. The dependence of tsim on topt is plotted in Figure 7.4, while the

best times are tabulated in Tables 7.1, 7.2, and Figure 7.3.
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The term useful precision has been taken to indicate a situation where the es-

timate O of the expectation value of some observable Ô is known to be precise

to at least one significant digit when S = 106 trajectories are used. That is,

∆O(S = 106) ≤ |O|/10. Since for many-mode systems, the calculation of even

one trajectory is reasonably time consuming, it is clear that S = 106 trajectories

is very unlikely to be exceeded for most non-trivial problems. Hence, meaningful

results for non-trivial problems are at best likely to be obtained only in the param-

eter region where the above-defined “useful” precision condition is satisfied. If one

calculates some lesser (than 106) number of trajectories, yet S À 1, then the Central

Limit theorem can be used to extrapolate ∆O to the situation when S = 106, since

∆O ∝ 1/
√
S. This gives finally, that the precision is taken to be “useful” when

∆O(S)
√
S
106
≤ 1

10
|O|. (7.88)

In the current simulations, the observable in question is |G(1)(0, t)|, and the

“simulation time” tsim that will be referred to here is the maximum time at which

useful precision in |G(1)(0, t)/G(1)(0, 0)| is retained. Each actual simulation was done

with S = 104 trajectories.

Uncertainties in the calculated useful simulated times arise because the ∆|G(1)|
are themselves estimated from the finite ensemble of S trajectories. The uncertainty

in ∆|G(1)| was estimated by inspection of several (usually 10) independent runs with

identical parameters. The range of values of tsim seen was taken to be twice the

uncertainty in tsim.

The scalings of simulation time with particle number for n′0 À 1 and n′0 ¿ 1

have been worked out in Section 7.6. Taking these results into account, Table 7.2

empirically fits the simulation time tsim to

test =
1

χ

{
[
c1n
′
0
−c0
]−c2 +

[
log

(
ec3

n′0
c4

+ 1

)]−c2}−1/c2
(7.89)

for intermediate times, as this may be useful for evaluation of simulation strategies in

a many-mode case. c0 characterizes the power-law scaling of tsim at high occupation,

c1 the pre-factor for high n′0, c3 a constant residual tsim at near vacuum, c4 charac-

terizes the curvature at small n′0, while c2 is related to the stiffness of the transition.
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Figure 7.3: Maximum useful simulation time tsim, of the one-mode undamped anharmonic

oscillator with various gauge choices. Initial coherent state mean mode occupations n0 = n′0.

Width of plotted lines shows estimated uncertainty in the values shown. The drift gauge is

(7.30), while the diffusion gauge is (7.100) of Plimak et al [2] when on its own, or (7.75d) when

with the drift gauge (7.30). For comparison, several timescales from Section 7.2.3 are also shown as

broken lines: time of first quantum revival trevival, phase coherence time tcoh and phase oscillation

period tosc.

The expression (7.89) reduces to c1n
′
0
−c0/χ and (c3 − c4 log n

′
0)/χ, when n′0 À 1

and n′0 ¿ 1, respectively, in agreement with the limiting expressions (7.81) and

(7.82). Uncertainty ∆cj in parameters cj was worked out by requiring
∑

n0
{[test(cj±

∆cj, n0)−tsim(n0)]/∆tsim}2 =
∑

n0
{1+([test(cj, n0)−tsim(n0)]/∆tsim)2}. In the range

checked (n0 ∈ [10−5, 1010]), the fit is good — i.e. there are no outlier data that would

lie significantly beyond the range of test specified by parameters cj ±∆cj.



Section 7.7 Numerical investigation of improvement 189

Table 7.1: Maximum simulation time, at useful precision, of the one-mode system in the

limit (n0 = n′0) À 1, achievable with various gauge choices. Calculations are for the undamped

(γ = 0) system, which is the worst case in terms of sampling error. More details are given in

Section 7.7.1. For comparison, several timescales from Section 7.2.3 are also given: time of first

quantum revival trevival, phase coherence time tcoh and phase oscillation period tosc.

Drift gauge Gk Diffusion gauge g′′ Useful simulation time Maximum n0

tsim when n0 = n′0 À 1 for which χtsim ≥ 1

tosc = π/χn′0

(7.99) 0 (1.06± 0.16) tosc 0.014 + 0.016
− 0.008

(7.30) 0 (1.7± 0.4) tosc 0.08 + 0.07
− 0.05

0 0 (1.27± 0.08) /χn′02/3 0.11± 0.06

tcoh = 1/2χ
√
n′0

0 (7.100) or (7.97a) or (7.97c) (8.2± 0.4) tcoh 12± 3

0 (7.97b) or (7.97d) (10.4± 0.7) tcoh 19± 4

(7.30) (7.75b) (25.6± 1.0) tcoh 120± 30

(7.30) (7.75a) (30± 3) tcoh 150± 40

(7.30) (7.75c) (32± 3) tcoh 190± 15

(7.30) (7.75d) (35± 4) tcoh 240± 70

trevival = π/χ

Table 7.2: Empirical fitting parameters for maximum useful simulation time tsim with several

gauge choices. The fit is to expression (7.89).

Positive P Both gauges Drift gauge Diffusion gauge

Drift Gauge 0 (7.30) (7.30) 0

Diffusion Gauge 0 (7.75d) 0 (7.97d)

c0 2/3 1/2 1 1/2

c1 1.27 ± 0.08 17.6 ± 1.7 5.5 ± 1.2 5.2 ± 0.4

c2 3.2 ± ∞1.2 3.6 ± ∞2.3 1.4 ± ∞0.4 2.7 ± ∞1.0
c3 −0.5 ± 0.3 2.8 ± 0.9 −0.5 ± 0.3 −2.4 ± 0.6

c4 0.45 ± 0.07 0.23 ± 0.13 0.49 ± 0.08 0.23 ± 0.13
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Figure 7.4: Comparison of a priori target time topt with actual useful simulation time

tsim for a variety of diffusion gauges: Results for drift gauges (7.30) with the four g′′ forms (7.75)

are shown as: (7.75d) – solid dark; (7.75c) – dash-dotted light; (7.75b) – dashed; (7.75a)

– dash-dotted dark. Relationship obtained using the diffusion gauge (7.100) of Plimak et al [2]

(but no drift gauge) is also shown (solid light). The dashed line in the background shows, for

reference topt = tsim. Subplot (a): mean particle number n0 = 104, (b): n0 = 1.
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Figure 7.5: Uncertainty in |G(1)(0, t)|, as a function of time. The quantity plotted is ∆prec =

√
S/106(10 ∆|G(1)(0, t)| / |G(1)(0, 0)|), so that ∆prec ≤ 1 corresponds to useful precision as defined

in Section 7.7.1. Results are plotted for combined drift (7.30) and diffusion (7.75) gauges, where

the four forms are shown as : (7.75d) – solid dark; (7.75c) – dash-dotted light; (7.75b) –

dashed; (7.75a) – dash-dotted dark. Data for the diffusion gauge (7.100) of Plimak et al [2]

with topt = 3tcoh as used therein is shown as a light solid line, while the ungauged positive P

calculation is shown as a dotted line. Simulations were carried out with S = 104 trajectories,

starting with initial coherent state conditions: (a) n0 = 104 (b) n0 = 1. The combined drift-and-

diffusion-gauge plots were calculated with target times of: (a) topt = 20tcoh (b) topt = 4tcoh.
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Figure 7.6: Modulus of the phase correlation function G(1)(0, t). Comparison of calcula-

tions with different gauges: Subplots (a) and (d): Ungauged positive P. Subplots (b) and (e):

Diffusion gauge (7.100) of Plimak et al [2] with topt = 3tcoh. Subplots (c) and (f): Combined

drift and diffusion gauges (7.30) and (7.75d) with the choice topt = 20 tcoh The initial conditions

were a coherent state with 〈n̂〉 = n0, where in subplots (a)-(c): n0 = 104 particles, and (d)-(f):

n0 = 1. Triple Solid lines indicate G(1) estimate with error bars. Exact values are also shown

(single dashed line). The quantum revival time is shown shaded for the n0 = 1 plots. S = 104

trajectories in all cases

7.7.2 Features seen

• Combining drift and diffusion gauges gives the longest useful simulation times.

Such simulations give good precision well beyond the point at which all coher-

ence has decayed away for highly-occupied modes - potentially up to about 35

coherence times.

• Diffusion-gauge-only simulations also give quite good statistical behaviour (al-

though useful simulation times are about 4 times shorter at high occupation

than with both gauges).
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• Despite the efficient behaviour of combined gauge simulations, using only a

drift-gauge gives even worse statistical error than no gauge at all (although,

this does eliminate potential boundary term systematics in a multi-mode sys-

tem, which are a problem with no gauge). Such simulations are restricted in

time to about one phase oscillation.

• Plain positive P simulations at high occupation last for about n′0
1/3 phase

oscillation periods, which is much less that the time required for significant

coherence to be lost if n0 is large.

• The diffusion gauge forms (7.75b) and (7.75d) that optimize for the “remaining

time to target” (topt − t) show statistical errors that are well controlled by

the choice of the target time topt. Basically statistical error can be reliably

expected to remain small up to the explicit target time topt, provided that

this is within the useful simulation range given in Table 7.1 — see Figure 7.5.

Thus, a heuristic approach to get the maximum time out of a simulation would

be to

1. Pick topt to be some time that one wants to be able to simulate to.

2. Run a simulation, and see how long useful observable estimates occur:

tsim(topt).

3. Choose:

(a) If tsim(topt) < topt then reduce topt to some value between tsim(topt)

and the present topt. Using this new value should give a new better

simulation time also in that range. Iterate back to step 2. Or,

(b) if tsim(topt) ≈ topt then either keep the simulation if one is happy with

it, or one can try to increase topt to perhaps obtain more simulation

time, going back to step 2.

The rest of the diffusion gauge forms (7.75) do not follow such a simple de-

pendence and appear to require tedious parameter searching to find the best

gauge parameter choice for given initial conditions.
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• Simulations showing quantum revivals have not been achieved. Generally it

appears that useful simulation times are proportional to coherence times at

high occupations. In this context, however, it is worth mentioning that quan-

tum revivals have been seen in this system by Dowling[69] using the gauge P

representation, by imposing externally-induced time reversal in the mode at

a time treversal, where tcoh < treversal ¿ trevival. The phase coherence was seen

by Dowling[69] to decay and then revive at t = 2treversal. This indicates that

the potential for quantum revivals in these stochastic simulations is there, just

not realized in the free evolution analyzed in this chapter.

• At low occupation, i.e. of the order of one boson or less, combined-gauge meth-

ods still give the best results, but the magnitude of their advantage becomes

smaller.

• Of the four gauge forms (7.75), the form (7.75d) gives the longest useful sim-

ulations.

• The diffusion gauge forms (7.75d) and (7.75c) optimizing depending on the

occupation of the current trajectory do better than those optimizing on the

basis of only the initial condition. This is not surprising, since this approach is

simply better tailored to the predicted subsequent evolution of each trajectory.

• At low occupations, a broad range of topt choices give much the same statistical

behaviour. This is most likely because the forms (7.75) are not always the best

optimizations of (7.65) in this regime for two reasons: 1) Because the “small

time” condition |q|t ¿ 1 is not always satisfied at the long time end of the

simulation, and 2) because as seen in Figure 7.2, the form (7.74) is not an

accurate root of the cubic (7.72).

• The simulation times with diffusion gauges (whether accompanied by drift

gauge (7.30) or not) not only have better scaling with n0 when n0 is large, but

this power-law decay of simulation time starts much later, as seen in Figure 7.3

and the right hand column of Table 7.1.
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7.8 Diffusion gauges on their own

7.8.1 Motivation

The previous Sections 7.5 to 7.7 considered optimization of the diffusion gauge given

that instabilities in the equations have been removed using the drift gauge (7.30).

An approach that could be an alternative is to only use a diffusion gauge g ′′ to make

a tradeoff between noise in the number and phase variables as before, but without

introducing any drift gauge.

Such an approach could have the advantage that no weight spread is introduced

since dz0 = 0. The weight spread is not a major issue in a single-mode system, and

clearly from Table 7.1 the drift-gauged simulations last longer, but with many modes

there may be a problem: All the gauges introduce modifications to the same single

weight variable. A vivid example occurs if we have M identical but independent

modes. Then, dz0 =
∑2M

k=1 GkdWk, and the standard deviation of dz0 is
√
M times

greater than for a single mode but with no new physics. Since the log-weight z0

enters into the observable estimates in exponential fashion, the situation is again

analogous to the average of an exponential of a Gaussian random variable, and there

is the non-scalable useful simulation limit var [z0] . O (10) by condition(7.43). Since

var [z0(t)] ≈∝Mt at short times, this translates to

tsim ∝
1

M
(7.90)

in a worst case.

The major disadvantage of the G = 0 approach, is that boundary term errors

cannot be ruled out, as in the plain positive P method. One can, however, try to

monitor for their appearance using the indicators developed by Gilchrist et al [64]:

Spiking in moment calculations, rapid onset of statistical error after some time,

or power-law distribution tails. A caveat is that these indicators tend to emerge

only for fairly large ensemble sizes S (Typically what happens is that the indicators

appear with a certain delay time if S small).

This G = 0 method variant, although less desirable due to the need for care-

ful monitoring of the simulation, was found to be much more successful than the
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drift-gauged method (in its present form) at increasing simulation times for the

preliminary example many-mode models simulated in Chapter 10.

7.8.2 Optimization of g′′ and comments

Proceeding as before in Section 7.5.3, the formal solution of the anharmonic oscillator

equations with Ω(0) = 1 are as (7.53), but with the changes

mL = (7.53b) + 4χ

∫ t

0

n′′(t′) dt (7.91a)

z0(t) = 0. (7.91b)

Following the same procedure as before, one obtains

 var [GL]

var[G̃L]


 = χt cosh(2g′′)− 4χ2


n′0


 −

+


n′′0e−2g

′′



{
1− e−γt(1 + γt)

γ2

}

+4χ2|n0|2
{
e−qt − 1

q(q − γ) −
1− e−γt
γ(γ − q) −

1

2

(
1− e−γt

γ

)2
}
, (7.92)

where the “damping strength” q is given by (7.70). The variational condition (7.52)

can now be used to optimize g′′.

Considering the same special cases as in Section 7.5.4,

1. With damping absent, and at relatively short times |q|t ¿ 1, the optimized

gauge is

g′′opt ≈ gapprox =
1

4
log

[
1

3
(4χtopt|n0|)2 + 1

]
. (7.93)

(no cubic polynomial this time.)

2. The long time behaviour when |q|t À 1: When q > 0, the increase in the

variances of GL and G̃L is still linear just like in (7.71), but with the constant

b = 4χ2|n0|2(q/2γ − 1)/qγ − 4χ2[n′0 ∓ n′′0e−2g
′′
]/γ2. When q < 0 the long time

behaviour is again exponential: GL ≈ 4χ2|n0|2e|q|t(q/2γ − 1)/γq.

3. For nonzero damping in the |qtopt| ¿ 1 regime, the optimized diffusion gauge

is

g′′opt ≈ gapprox =
1

4
log

[
(4χtopt|n0|)2

3
c2(γtopt) + 1

]
, (7.94a)
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Figure 7.7: Discrepancy ∆ = g′′opt−g′′approx between g′′opt (the exact optimization of g′′ obtained

by solving (7.52) using (7.92)) and the approximate expression (7.94). Displayed is the case

of no damping (γ = 0) and classical initial occupation (n0 = n′0), shown as a function of topt

and n0. Discrepancy values ∆ are shown as solid contours with spacing 0.05. Additional

dashed contours shown at very low discrepancy. For comparison, several physical timescales

are also shown in grey: time of first quantum revival trevival, phase coherence time tcoh and phase

oscillation period tosc.

where the coefficient is

c2(v) =
3

2

(
e−2v(3 + 2v) + 1− 4e−v

v3

)
, (7.94b)

which reduces to c2(0) = 1 in the undamped case.

The discrepancy between (7.94) and the exact optimization obtained by solv-

ing (7.52) with (7.92) is shown for real n0 for a wide range of parameters in Fig-

ure 7.7. It can be seen that for occupations & O (10) and/or for times shorter than

singly-occupied coherence time 1/2χ, the approximation is good. Compare with the

analogous case with drift gauge shown in Figure 7.2.

For zero damping, and coherent state initial conditions n0 = n′0, and relatively

short times 4χte−2g
′′ ¿ 1 one finds

var [GL(t)] = var[G̃L(t)] = χt cosh 2g′′ − 2(χt)2n′0 +
8

3
χt(n′0)

2e−2g
′′

. (7.95)
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At large occupation n′0, the gauge (7.94) gives eg
′′ ≈ (4χtoptn

′
0)

2/3, and one finds

that all three terms in (7.95) are of similar size. Using the condition (7.43) the

simulation time is

tsim ≈ O (10) tcoh. (7.96)

The 4χte−2g
′′
approx ¿ 1 condition for t < topt implies large occupation n′0 À O (1). At

low occupation on the other hand, eg
′′
approx → 1, the variances are ≈ e4χtn′0

2/4, and

one has again (7.82)

7.8.3 Numerical investigation of performance

The results of numerical simulations using such diffusion gauge only schemes are

shown in Figures 7.8 and 7.9, in analogy with Figures 7.4 and 7.5 for the drift gauged

schemes. Some data is also given in Tables 7.1 and 7.2. As before, simulations were

made with S = 104 for the mode occupations (7.87), and a wide range of target

times topt.

The four gauges simulated were all of the general form (7.94), but with the four

adaptive varieties forms

g′′(t) = g′′approx(n0, topt) (7.97a)

g′′(t) = g′′approx(n0, trem) (7.97b)

g′′(t) = g′′approx(n̆(t), topt) (7.97c)

g′′(t) = g′′approx(n̆(t), trem) (7.97d)

in analogy with (7.75), where trem is given by (7.76). Otherwise, the procedure was

the same as described in Section 7.7. Additional features beyond what is mentioned

there include:

• The diffusion-gauge-only simulations give improvement over the positive P,

but give simulation times O (4) times shorter than when combined with drift

gauge (7.30). For example, compare Figure 7.8 to Figure 7.4). tsim is still

À tcoh at large n0, however.
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Figure 7.8: Comparison of a priori target time topt with actual useful simulation time

tsim for a variety of diffusion gauges in the G = 0 schemes: Results for the four forms (7.97) are

shown as: (7.97d) – solid dark; (7.97c) – dash-dotted light; (7.97b) – dashed; (7.97a) –

dash-dotted dark. Relationship obtained using the diffusion gauge (7.100) of Plimak et al [2]

(but no drift gauge) is also shown (solid light). The dashed line in the background shows, for

reference topt = tsim. For the gauge (7.97d), the whole region where useful precision occurs is

shown by the dotted line. Subplot (a): mean particle number n0 = 104, (b): n0 = 1.
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Figure 7.9: Uncertainty in |G(1)(0, t)|, as a function of time for various G = 0 schemes. The

quantity plotted is ∆prec =
√
S/106(10 ∆|G(1)(0, t)| / |G(1)(0, 0)|), so that ∆prec ≤ 1 corresponds

to useful precision as defined in Section 7.7.1. Results are plotted for the four diffusion gauge forms

(7.97), shown as : (7.97d) – solid dark; (7.97c) – dash-dotted light; (7.97b) – dashed; (7.97a)

– dash-dotted dark. Data for the diffusion gauge (7.100) of Plimak et al [2] with topt = 3tcoh

(as used therein) is shown as a light solid line, while the ungauged positive P calculation is

shown as a dotted line. Simulations were carried out with S = 104 trajectories, starting with

initial coherent state conditions: (a) n0 = 104 (b) n0 = 1. The diffusion-gauge plots in (a) were

calculated with target times of topt = 10tcoh for forms (7.97d) and (7.97b), and topt = 7tcoh for

forms (7.97c) and (7.97a). In subplot (b), the four forms (7.97) were simulated with topt = 5tcoh.



Section 7.9 Comparison to recent related work 199

• The full adaptive gauge form (7.97d) gives the most predictable results, in

analogy to the drift-gauged case. That is, tsim ≈ topt for times up till those

given in Table 7.1.

• At low n′0 the simulation time appears more sensitive to the choice of topt than

for the drift-gauged simulations.

• At high occupations n′0 À 1, the pairs of adaptive gauges (7.97d)&(7.97b) and

(7.97a)&(7.97c) behave identically, and are thus not shown in all plots. The

simulation appears to be insensitive to whether one uses a gauge choice depen-

dent on n̆(t) or n0. This is probably a feature peculiar to the particle number

conserving single-mode anharmonic oscillator model, because here n̆(t) ≈ n0

while useful precision is seen.

• For n′0 À 1, the time-adaptive gauge forms (7.97b) and (7.97d) lead to a

peculiar effect if the optimization time topt is chosen larger than the usual

maximum tsim given in Table 7.1. The statistical error in the G(1) estimate

first rises rapidly, then falls again, and finally grows definitively. This is seen

in Figure 7.9(a), and the parameter region for which this occurs is shown in

Figure 7.8(a). In effect one has two time intervals when the simulation gives

useful results: at short times, and later in a time interval around t ≈ O (10tcoh).

7.9 Comparison to recent related work

Improvements to the basic positive P simulation method for specific cases of in-

teracting Bose gas systems have been tried with some success in several recent

publications[1, 2, 3, 56]. Here we tie these together with the stochastic gauge formal-

ism, and make some comparison to the results and analysis in the present chapter.

7.9.1 The work [1] of Carusotto, Castin, and Dalibard

The article N-boson time-dependent problem: A reformulation with stochastic wave-

functions considered an isolated (i.e. particle-conserving) system of N interacting
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bosons. The “coherent state simple scheme” described in Section III B 2 therein

can be identified as using drift gauges of the form

Gn = i
√

2iχ
(
αnβn − |αn|2

)
(7.98a)

G̃n =
√

2iχ
(
αnβn − |βn|2

)
(7.98b)

when re-written in the notation of this thesis for a many-mode system as in equations

(5.17), with mode labels n. For the single-mode system considered in this chapter,

this corresponds to

G1 = i
√

2iχ
(
n̆− |α|2

)
(7.99a)

G2 =
√

2iχ
(
n̆− |β|2

)
. (7.99b)

This gauge causes a full decoupling of the complementary α and β equations. Like

(7.30) it is also successful in removing moving singularities, since the nonlinear terms

in the radial equations for d|α| and d|β| are removed.

There are two major differences between the coherent state wavefunction method

and the gauge P method: Firstly, the former is hardwired to models that conserve

particle number. This hardwiring to N particles has both a major benefit and a

disadvantage, as compared to the gauge P method considered in this thesis:

• Benefit: coherent state amplitudes are not free to explore the entire phase

space, are bounded from above, and cannot form moving singularities.

• Disadvantage: Losses or gains from external reservoirs are unable to be

simulated, and so it is not applicable in its present form to simulations of e.g.

evaporative cooling or a continuously loaded system such as an atom laser.

Another major difference is that diffusion gauges were not considered by Carusotto

et al , and hence simulation times with this method for a single mode were very

short (≈ tosc).

The gauges (7.99) could also be applied to the present gauge P method, and their

efficiency can be compared with the efficiency of gauges developed here: (7.30) when

g′′ = 0. The gauge (7.99) mediates the replacements n̆→ |α|2 or |β|2 in the dα and
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Figure 7.10: Spread in trajectory weights ((a) and (c)) and phase correlation function

uncertainties ((b) and (d)), compared for the drift (only) gauges (7.99) – dashed, and (7.30)

(with no diffusion gauge: g′′ = 0)– solid, in a one-mode, undamped, gainless system. Coherent

state initial conditions with initial mean occupations (a) and (b): n0 = 104, while in (c) and (d):

n0 = 1. All calculations are with 104 trajectories.

dβ equations (respectively), as opposed to (7.30), which only replaces n̆ → Re {n̆}
and does not decouple dβ from dα. So, since the magnitude of the spread in Ω

behaves approximately proportional to
√∑

k |Gk|2, the gauge (7.99) is expected to

produce a broader distribution of weights. Numerical simulations were carried out,

and the results are shown in Figure 7.10 for both high and low mode occupations, ,

and Table 7.1 for high occupation. Useful simulation time with (7.99) is somewhat

smaller than seen with (7.30).

In the same published work[1], a stochastic wavefunction method was developed

based on Fock number states as well. This method was shown to give good results
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and not be prone to boundary term errors but unfortunately does not appear ex-

tensible to open systems in any straightforward fashion because it is very strongly

hardwired to N total particles.

The stochastic wavefunction method was also adapted in [1] to some cases of non-

local interactions, arriving at equations that use effectively a similar noise expansion

to that in (5.46), but were only applicable to potentials having exactly real Fourier

transforms Ũñ = Ũ ′ñ.

7.9.2 The work [2] of Plimak, Olsen, and Collett

The article Optimization of the positive-P representation for the anharmonic oscil-

lator considered a single-mode undamped, gainless system at high Bose occupation

with coherent state initial conditions. The “noise optimization” scheme applied

therein to greatly improve simulation times can be identified as an imaginary diffu-

sion gauge of the form (rewritten in the present notation)

g12 =
i

2
cosh−1 [2n0χtopt] = ig′′A (7.100)

defined at high occupation or long times (i.e. while 2n0χtopt ≥ 1). This is dependent

on a target time topt (which was taken to be topt = 3tcoh in the calculations of

Ref. [2]), and the initial Bose occupation n0 = n′0 = |α0|2. The value of the gauge

was held constant throughout the calculation, without allowance for a changing

mode occupation.

The useful simulation times obtainable with this method are also shown in Fig-

ures 7.3 and 7.5, and Table 7.1. Their precise dependence on the target time pa-

rameter topt has been calculated here, and is shown in Figure 7.4.

Comparing (7.100) with the optimized diffusion gauge (7.97a) that is constant

with time, one finds that in the n0 À 1 limit the two gauges differ by a constant:

g′′A(n0, topt) ≈ g′′approx(n0, topt) +
log 3

4
. (7.101)

While the simulation times achievable using g′′A are comparable with those obtained

with the adaptive gauge g′′approx(n̆(t), topt) of (7.97a), the target time topt is no longer



Section 7.9 Comparison to recent related work 203

a good indicator, and has a complicated relationship with tsim, as seen in Figure 7.8.

The simulation time is also much shorter than with the drift gauged simulation.

Extensions to multi-mode systems or low mode occupations were not considered,

however since the system under consideration was only a single mode, the lack of

drift gauges did not lead to any boundary term errors in this particular case.

7.9.3 The work [3] of Deuar and Drummond

Some initial research by Drummond and Deuar into gauges for the single-mode

undamped anharmonic oscillator system was reported in[3]. Here the state was

written as an expansion over a normalized, Hermitian, coherent state projector

kernel

Λ̂(α, β, θ) =
eiθ||α〉〈β∗||+ e−iθ||β∗〉〈α||

2en′ cos(θ + n′′)
, (7.102)

where the phase variable θ was real. This is equivalent to imposing Hermiticity on

the positive P kernel before normalizing it.

Drift gauges of the form

G1 = − λ
√
χ
[
n′′ − n′ + |α|2

]
[tan(θ + n′′) + i] (7.103a)

G2 = λ
√
χ
[
n′′ + n′ − |β|2

]
[tan(θ + n′′) + i] (7.103b)

were used, where λ is a (real) strength parameter chosen a priori.

Simulation precision was greatly improved, but evident boundary term errors

were present. This may have been caused by several factors, which are pointed

out here because they are good examples of what should be avoided when choosing

kernels and gauges:

1. The radial super-exponential behavior of dα and dβ is not removed in full,

hence one can expect that moving singularities will still be present — as is

ultimately seen as boundary term errors.

2. The magnitude of the kernel (7.102) diverges when θ → −n′′. Hence, this

parameter region might be unable to be sampled in an unbiased way. In

particular, matrix elements of Λ̂ appearing in the expression (6.1) for B̂ diverge

when θ = ±π/2, and may lead to nonzero boundary terms once integrated.
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3. The gauges were dependent on the trajectory weight eiθ, and thus non-autonomous.

This causes feedback behavior between the phase-space variables α and β, and

the weight, which is difficult to analyze to definitively determine whether mov-

ing singularities are present or not. (Compare to point 6(c) in Section 6.3.2).

4. The gauges diverge at θ → ±π/2, against recommendation 6(b) of Section 6.3.2.

7.10 Gauge recommendation

Collecting together the analysis, and results of numerical calculations reported in

this chapter, the following gauge choices appear to be advantageous for a single

mode (labeled n) of a two-body locally interacting Bose gas that is free to interact

with its environment:

Defining

n̆n = αnβn, (7.104)

then

Gn = −iG̃n = −
√

2iχ Im {n̆n} e−g
′′
n (7.105)

The local diffusion gauge dependent on the single “target time” parameter topt, or

more precisely on the “remaining time to target”

trem =





topt − t if t < topt

0 if t ≥ topt
. (7.106)

is then given by

g′′n =
1

6
log
{
8|n̆n(t)|2χtrem + a

3/2
2 (n̆n(t), γntrem)

}
, (7.107)

i.e. (7.74). The coefficient a2 is

a2(n̆, v) = 1 + 4Im {n̆}2
(
1− e−2v

2v

)
− 2|n̆|2

(
1− 2v + 2v2 − e−2v

v

)
. (7.108)
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7.11 Summary

The principal aim of this chapter has been to develop a “black box” form of drift

and diffusion gauges. A form that can be expected to remove boundary term errors

and extend simulation times beyond what is possible with the positive P for a single

mode of a locally-interacting Bose gas with two-particle collisions that is open to

the environment. The recommended form is given by (7.104)-(7.108). These gauges:

1. Extend simulation time for the anharmonic oscillator beyond what was pos-

sible with the positive P representation (i.e. when g ′′jk = 0 and Gn = G̃n).

For high mode occupations, the simulation time is extended by a factor of

O
(
15n

1/6
0

)
(see Table 7.1) when starting from a coherent initial state, repre-

sentative of a single trajectory. This simulation time is O (40) coherence times

at high mode occupation, and all decoherence behavior is simulated. The im-

provement in numerical performance is best summarized by Figures 7.3, 7.6,

and in Table 7.1.

2. Remove the instability responsible for moving singularities.

3. Apply for dynamically changing mode occupation.

4. Apply for simulations of open systems.

For the aim of using these gauges in many-mode simulations of open interacting

Bose gases, it is crucial that the gauge choice be freely adaptable to any changes

caused to the mode occupation (or other properties). Such changes will be caused

by interactions with the rest of the modes, and an external environment.

A second possibly alternative method where only diffusion gauges are used has

been considered, and appropriate optimized diffusion gauges derived. This method

does not guarantee removal of systematic biases, but appears to have advantages in

efficiency for many-mode calculations provided the simulation can be successfully

monitored using the indicators of Gilchrist et al [64] to catch any boundary term

errors if these form.

Lastly, the method developed has been tied in with and compared to some pre-

vious related work in the field[1, 2, 3].


