
113

Chapter 6

Boundary term errors and their

removal

As has been mentioned previously, when one attempts to simulate non-separable

physical models using stochastic equations derived via phase-space distributions,

instabilities in the equations are common. These can give rise to systematic biases

in the observable estimates (3.14) using a finite number of samples. Sometimes

these biases abate at large sample number (Such a situation is considered in detail

in Appendix A), while in other cases the biases remain even in the limit S → ∞.

The latter have been called boundary term errors because the root of the biasing

lies in discarding nonzero boundary terms in integrations involving the distribution

P (C) (and some factors) over C. Rigorous results regarding how and when these

biases arise in practical simulations are few, and many researchers while aware of

phase-space distribution methods, are either 1) unaware of the potential for biases,

or 2) know that biases exist and because of this avoid using phase-space distribution

methods altogether. With the aim of reducing this confusion, in Sections 6.1 and 6.2,

the mechanisms by which these biases come about are investigated and classified for

general phase-space distributions. To clarify the conditions under which boundary

term errors may be a problem, some symptoms that can be checked for by inspection

of the stochastic equations and observable estimators are pointed out.

It will be seen in Chapters 7 and 9 that simulations of interacting Bose gases
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can contain boundary term errors (at least when using coherent state kernels), and

a method to overcome this problem is developed in Section 6.3. Subsequently, this

un-biasing procedure is demonstrated on the two rather different examples from

the literature where boundary term errors have been seen when using a positive P

representation: Two-boson absorption (Section 6.4), and a single-mode laser model

(Section 6.5). Removal of possible or confirmed biases in the interacting Bose gas is

carried out in Sections 7.3 and 9.2, respectively.

6.1 Boundary term errors of the first kind

6.1.1 Origin and general form

During the derivation of the Fokker-Planck equation (from the original master equa-

tion), there is a point between (3.41) and (3.42) where integration by parts is per-

formed, and boundary terms discarded. The correspondence between full quantum

evolution and FPE (and hence the final stochastic equations) occurs only if these

discarded boundary terms are zero. Otherwise, there is a discrepancy between quan-

tum mechanics and what is calculated by the stochastic equations in the limit of

S → ∞. This has been termed a boundary term error. Let us see what exact form

these discarded boundary terms take.

The partial integration is made on a master equation that already contains all

kernel gauge expressions (4.19), (4.12) and/or (4.2) as well as the basic nonzero terms

arising from directly applying the operator correspondences (3.39) to the master

equation. In any case, all these terms can be incorporated into the formalism of

(3.41). With the real variable set C = {Cj}, when going from (3.41) to (3.42) the

discarded boundary terms are found to be (after some algebra)

B̂(C) =
∑

lj

∫ [
B̂intj (C)

]max[Cj ]

min[Cj ]

∏

p6=j

dCp (6.1a)

where

B̂intj (C) = P (C)T
(1)
lj (C)Λ̂(C) +

1

2
P (C)

∑

k

T
(2)
ljk

∂Λ̂(C)

∂Ck
− 1

2
Λ̂(C)

∑

k

∂

∂Ck

(
P (C)T

(2)
lkj (C)

)
.

(6.1b)
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The usual definite evaluation notation [f(v)]ba = limv→b f(v)− limv→a f(v) has been

used. Note that the kernel is still an operator, and hence so is the boundary term

expression B̂. Every matrix element of the boundary term operator should be zero

for the correspondence between quantum mechanics and the FPE to be exact. Such

matrix elements could in principle be evaluated by inserting the elements of Λ̂ and

∂Λ̂/∂Ck, which can usually be worked out exactly, into (6.1). This will be attempted

for the gauge P representation in Section 6.1.5, and a toy example of the calculation

of B̂ is given in Section 6.2.2.

While (6.1) is nontrivial, there are generally a variety of ways in which it could

turn out to be zero.

1. Especially for an open phase space, one expects that P (C) will tend towards

zero at the boundary, and if this rate is faster than the growth of the mul-

tiplying factors (T (•)(C) times the matrix elements of Λ̂), then the terms in

(6.1) will be zero.

2. Even if individually the terms in (6.1) do not tend to zero, but the distribution

P (C) times multiplying factors is an even function of Cj, then the values

evaluated at max[Cj] and min[Cj] may cancel each other. A typical example

of this is when a particular Cj = θ is the phase of a complex variable — any

function of θ evaluated at the limits of its domain [−π, π] is the same at both

limits, and any boundary terms in θ sum to zero.

3. Also, there may be a cancellation between separate terms in the expression

(6.1).

Conversely, the boundary terms can easily turn out to be nonzero in an open phase-

space if P (C) drops off too slowly as |Ck| grows (typically — if the tails of P (C)

obey a power law), or, in a partly or fully closed phase-space, when P (C) 6= 0 at

the boundary.
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6.1.2 Symptoms indicating boundary term errors

Unfortunately, it is not generally possible to directly evaluate the boundary terms

(6.1) and check correctness, because this involves knowing at least the far tail be-

havior (in an open phase space) of P (C) as a function of time. In a fully or partly

closed phase-space one needs to know the exact behavior near the boundary. These

require detailed knowledge about aspects of the full solution to the master equation

— generally not achievable in non-trivial systems, although power law tails of P (C)

can be considered a bad sign.

What is really needed are some symptoms of likely boundary term errors that

could be looked for in the stochastic equations before simulation. Since boundary

term errors arise when the distribution falls off too slowly as the (possibly open)

boundaries of phase space are approached, at least four (there may be more) broad

classes of features come to mind that indicate the probable presence of boundary

term errors of the first kind.

1. The first such symptom, fairly well known, is the presence of so-called moving

singularities. In a set of deterministic equations, these manifest themselves

as solutions (usually a set of measure zero) that diverge in a finite time. Previ-

ous studies [64, 66] have shown that when moving singularities are present in

the deterministic parts of stochastic equations, boundary term errors usually

result. In particular, it was seen that

• In a number of studied systems, moving singularities in equations derived

using the positive P representation occur whenever systematic errors are

seen in observables calculated with estimators polynomial in the system

variables.

• In these systems, when the moving singularities are removed with the aid

of stochastic gauges (as explained in Section 6.3), the systematic errors

are removed as well[66].

The presence of pathological behaviour when moving singularities are present

can be grasped intuitively: Due to the stochasticity of the equations, and
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the continuous nature of the noise, one expects that after small times, the

distribution of trajectories (at least the far tails of it) will extend over all of

phase space. In particular into those phase-space regions where the solutions

that diverge in a finite time occur. While the divergent trajectories are usually

a set of measure zero, an infinitesimal proportion of divergent trajectories

may have a finite effect on the observable means, on the general basis that

0×∞ does not necessarily equal zero. However, because the number of such

trajectories is infinitesimal in comparison with the rest, this effect can never

be estimated by a finite sample of them, hence the systematic errors.

Moving singularities may arise either in a dynamic fashion (e.g. in an equation

dv = v2 dt, v(t) = v(0)/[1 − tv(0)], and a divergence occurs at t = 1/v(0)),

or due to divergent drift terms for finite phase-space variables (e.g. dv =

dt/(1 − v) at v = 1, or dv = dt/(1 − t) at t = 1). In the latter situation the

divergent trajectories may even be a set of nonzero measure.

2. Secondly, one should also be wary of noise divergences — i.e. instabili-

ties in the noise matrices B. For some small set of trajectories the Wiener

increments dW (t) will conspire to act approximately as a constant (∆W ) ≈
O
(√

∆t
)
over a time interval ∆t À dt. This results in approximately an ef-

fective drift term proportional to B, and if such “drift terms” give rise to what

effectively are moving singularities, then systematic errors will also result by

an analogous mechanism as for instabilities of the drift terms.

3. Thirdly, Another indicator of possible boundary term errors is a discontinu-

ous drift and/or noise matrix B. This may cause an effect that can not

be simulated stochastically, as the discontinuity is only ever sampled by a set

of trajectories of measure zero. In particular, there may be a region near such

a boundary that contains only an infinitesimal portion of total trajectories,

but those trajectories have large impact on the observable estimates.

4. Fourthly, if the initial distribution is too broad, boundary term errors

may be present from the outset. An example would be a Lorentzian ini-
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tial distribution of variable v(0) if the Fokker-Planck equation contains terms

quadratic in v. Another example is the single-mode laser model of Section 6.5

with non-delta-function initial conditions.

If any of the above symptoms is present, boundary term errors may be suspected.

Conversely, if the symptoms are absent, it appears likely that no boundary term

errors occur, but unfortunately rigorous results for general distributions are hard to

come by. No boundary term errors were seen for any simulation that did not suffer

from one or more of these symptoms.

There have also been developed several numerical indicators (described in detail

in [64] ) that one can use to check for the presence of boundary term errors from a

finite set of trajectories.

6.1.3 Moving singularities in a complex phase-space

For a set of stochastic equations (e.g. such as (3.45) or (4.90)) it is relatively easy to

rule out boundary term symptoms 3 and 4 from the previous section (by inspection).

Moving singularities and noise divergences (symptoms 1 and 2) are a little more

slippery, but practical conditions for their absence can be stated. Simulations in

this thesis are with complex variable sets on an open phase space, so here a practical

condition for absence of moving singularities will be derived only for this particular

(though commonly occurring) kind of phase-space.

In an open complex phase space, barring symptoms 3 and 4, moving singularities

cannot occur if the both the drift and noise matrices of the stochastic equations

contain no radial components that lead to super-exponential growth. This is because

then all variables remain finite at finite times, and so at finite times never reach the

“boundary” at modulus infinity. Since z = ze2iπ for any complex z, tangential

evolution does not lead to divergences, because boundary terms evaluated at the

boundaries of the polar variable (∠z = 0 or 2π) are equal, and thus cancel in (6.1a).

More precisely, for a set of stochastic equations

dzj = Aj(C) dt+
∑

k

Bjk(C)dWk(t), (6.2)
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in complex variables zj (C = {zj}, including, possibly z0), this gives the Condition:

• Moving singularities or noise divergences will not occur provided that the limits

lim
|zj |→∞

Aj
|zj|

and lim
|zj |→∞

Bjk

|zj|
(6.3)

converge for all zj ∈ C and all k, and that symptoms 3 and 4 of Section 6.1.2

are ruled out (by inspection).

6.1.4 Generic presence in many-mode simulations

Off-diagonal kernels appear necessary to allow all quantum states to be described

by a positive real distribution that can be sampled stochastically (see Section 3.2.3).

In such a case, the independent “ket” and “bra” parameters of the kernel will (if

complex) almost always enter the kernel in an analytic way. Then, to ensure a

positive propagator, requires in turn that the complex derivatives be chosen as in

Section 3.4.3, preserving the analytic nature of the formulation into the stochastic

equations.

The presence of moving singularities in (deterministic) dynamical equations for

an analytically continued phase-space is a well-studied problem for both ordinary

and partial differential nonlinear evolution equations. According to the Painleve

conjecture (see, e.g. [79, 80, 81]), this is equivalent to non-integrability - and is

therefore generic to many (in fact, all but a set of measure zero) complex dynamical

equations with large numbers of degrees of freedom. Just the sort one obtains when

simulating many-body systems.

Kernel gauges are, however, not restricted by the above mechanisms to be ana-

lytic. This is because they arise as arbitrary (hence, possibly non-analytic) multipli-

ers to operators on the kernel, rather than as a result of applying analytic operator

identities (3.39) to it. Because of this freedom of gauge choice, it has been conjec-

tured by P. D. Drummond[56] that breaking the analyticity of the complex equations

using stochastic gauges is a necessary (though not sufficient just by itself) condition

to remove boundary term errors. This agrees with previous work[66, 1], and also

with the gauges used to remove boundary term errors in this thesis.
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Diffusion gauges, while possibly non-analytic, do not appear useful for removal of

boundary term errors of the first kind because they appear only at the FPE-Langevin

stage, after any nonzero boundary term operators have been already discarded.

6.1.5 Boundary terms in the gauge P representation

Let us consider the gauge P representation. The kernel (5.4), expanded in the

complete Fock number state basis for each subsystem is Λ̂ = Ω⊗k Λ̂k, with

Λ̂k =
∑

nñ

αnkβ
ñ
k√

n!ñ!
|n〉k 〈ñ|k e−αkβk , (6.4)

as in (5.53). A master equation leads via (5.7), without invoking gauges, to terms

T
(1)
lj and T

(2)
ljk polynomial (of low order) in αk and βk. Use of a weighting gauge will

lead to some terms T (•) ∝ Ω. Drift gauges could generally lead to any form of the

corresponding coefficients T (•), but let us assume that the drift gauges Gk, etc. are

polynomial in αk, βk, α
∗
k, β

∗
k , and autonomous (i.e. not dependent on Ω). Under

this assumption, the terms T (•) due to drift gauges will be polynomial in all the

variables, and at most ∝ Ω2 (Diffusion coefficient in Ω due to standard drift gauge

introduction is ∝ Ω2G2k).
Combining this together, the (matrix elements of the) multipliers of P (C) ap-

pearing in the boundary term expression (6.1) will at most scale as :

≤ ∝ Ω3
∏

k

αakk β
bk
k e
−αkβk , (6.5)

where the coefficients take on all values ak ≥ 0 and bk ≥ 0 for various matrix

elements.

In an open phase space of complex variables zj (as here), the boundary lies at

|zj| → ∞. The multipliers of P(C) in (6.1) scale in these far tails as

≤ ∝ |Ω3|
∏

k

|αk|ak |βk|bkeck|αk||βk|, (6.6)

where ck = −ei∠αkei∠βk , can have positive real part. This implies that if one wants

to be sure that no boundary term errors are present, (assuming any drift gauges Gk
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are polynomial in αk, βk, or their conjugates, and independent of Ω), then: P (C)

should decay in the far tails no slower than

P (C) < ∝ 1/|Ω4+b̃k |, (6.7a)

P (C) < ∝ exp
(
−c̃k|αk|ãk

)
, (6.7b)

P (C) < ∝ exp
(
−c̃k|βk|ãk

)
, (6.7c)

where b̃k > 0, c̃k > 0 and ãk > 1. (And there should be no time-dependent discon-

tinuities in the drift or noise equations).

This does not preclude that by some canceling of terms, a less favorable scaling

of the tails may also become acceptable, but certainly if P scales like (6.7) or better

in the far tails, boundary term errors (of the first kind) will be absent in a gauge P

representation simulation. Note in particular that from (6.7):

1. Power law tails of P (C) in the α,β part of phase-space will invariably lead to

boundary term errors. For some matrix elements of B̂ for which the coefficient

of |n〉k 〈ñ|k in (6.4) is of high enough order, the boundary terms will become

nonzero. This is consistent with the conclusions drawn by Gilchrist et al [64]

that power law tails in a positive P distribution are an indicator of boundary

term errors.

2. Exponential decay of P (C) with |αk| or |βk| is also not good enough in general.

This is because the coefficient of (say) |αk| in the exponents of (6.7) is not

constant, but ∝ |βk| — which may be any arbitrarily large value. Only a

faster-than-exponential decay will be able to overcome this when |βk| is large.
However, Gilchrist et al [64] found no boundary term errors in a single-mode

anharmonic oscillator (6.9) simulation for which the far tail behaviour of P+

appeared to be exponential, and no indications of boundary term errors in this

system are seen here in Chapter 7 either. This may be because the single-mode

system is a special case — certainly in Chapter 8 it is seen that when acting

on several coupled modes, a similar Hamiltonian can lead to boundary term

errors.
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6.2 Boundary term errors of the second kind

Biases that do not abate for S → ∞ may also arise via a different mechanism when

the estimator functions to be averaged to obtain the expectation value of a given

observable grow too rapidly in phase space.

6.2.1 Mechanism and overview

Working at the level of the distribution P (C), expectation values of observables

are given by the real part of (3.13). When one takes a number S of samples of

this distribution, the estimator (3.14) is used, but if the real parts of the integrals

in (3.13) do not converge then this finite sample estimate does not approach the

quantum mechanical value even in the limit S → ∞. Systematic errors arising from

this source will be called here boundary term errors of the second kind, and have

very different properties to those of the first kind. Explicitly, from (3.13) and by

imposing Hermiticity, the integrals that must converge are

∫
P (C) Re

{
Tr
[
Ô
(
Λ̂(C) + Λ̂†(C∗)

)]}
dC (6.8a)

∫
P (C) Re

{
Tr
[
Λ̂(C)

]}
dC, (6.8b)

for any particular observable Ô.

One can see that even when (6.8b) is convergent, errors may occur for some ob-

servables for which only (6.8a) diverges. Given a particular distribution, divergences

may come about due to the matrix elements of either the kernel Λ̂, the operator Ô,

or both growing too rapidly as the boundaries of phase space are approached. Ob-

servables that involve an infinite sum of moments polynomial in the system variables

(such as the parity in the gauge P representation, whose estimate is given by the

sum (5.15)) may be particularly prone to these boundary term errors, because the

dependence of Tr
[
ÔΛ̂
]
on the phase-space variables will grow particularly rapidly.

Boundary term errors of the second kind depend on the equations of motion

only by their effect on the distribution of samples P (C), and so do not show up as

moving singularities or noise divergences in the equations.
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A sobering point is that, in theory, one could always come up with some ob-

servables that grow fast enough as the boundary of phase space is approached to

overcome whatever far tail behaviour occurs in Λ̂(C)P (C). Such an observable could

be defined as an infinite sum of polynomial moments whose terms grow appropri-

ately rapidly. Thus, boundary term errors of the second kind are likely to occur for

some observable estimates for any phase-space distribution simulation method, for

any model. In practice, fortunately, it suffices to make the estimators of only all

observables of interest convergent.

6.2.2 Example: un-normalized positive P representation

A good example of boundary term errors of the second kind occurs for the “anhar-

monic” oscillator single-mode Hamiltonian, when using an un-normalized coherent

state kernel. This Hamiltonian1 is

Ĥ = ~ â†2â2, (6.9)

the single-mode analogue of a repulsive two-body potential in the interaction pic-

ture2. Let us consider the kernel

Λ̂ = ||α〉〈β∗||, (6.10)

off-diagonal in the un-normalized Bargmann coherent states (5.1). It is convenient

to change to logarithmic variables nL = log(αβ), and mL = log(α/β), then the basic

operator correspondences are, from (5.6),

âΛ̂ = αΛ̂ = e(nL+mL)/2Λ̂ (6.11a)

â†Λ̂ = ∂
∂α
Λ̂ = e−(nL+mL)/2

(
∂

∂nL
+

∂

∂mL

)
Λ̂ (6.11b)

Λ̂â† = βΛ̂ = e(nL−mL)/2Λ̂ (6.11c)

Λ̂â = ∂
∂β
Λ̂ = e(mL−nL)/2

(
∂

∂nL
− ∂

∂mL

)
Λ̂. (6.11d)

It is also convenient to split the variables into real and imaginary parts: nL = n′L +

in′′L, and mL = m′L+ im
′′
L. For a dynamical evolution model with no coupling to the

1In some appropriate time units.
2That is, with terms linear in â and â† transformed away. Compare with (2.17).
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environment, utilizing the analytic nature of the kernel as explained in Section 3.4.3,

one obtains the FPE (provided no boundary term errors of the first kind are present)

∂P

∂t
=

{
2

∂

∂m′′L
+

∂2

∂n′L
2
+

∂2

∂n′′L
2
+

∂2

∂m′L
2
+

∂2

∂m′′L
2

− ∂2

∂n′L∂m
′′
L

− ∂2

∂m′′L∂n
′
L

− ∂2

∂n′′L∂m
′
L

− ∂2

∂m′L∂n
′′
L

}
P. (6.12)

This gives the Ito stochastic equations (with standard square root form of B0 =
√
D)

dnL = i
√
2i [dW (t)− idW̃ (t)] = 2dη(t) (6.13a)

dmL = i
√
2i [dW (t) + idW̃ (t)]− 2i dt = 2i[dη∗(t)− dt]. (6.13b)

dW (t) and dW̃ (t) are the usual independent Wiener increments, and the complex

noise dη(t) defined here obeys

〈dη(t)〉stoch = 0 (6.14a)

〈dη∗(t)dη(t′)〉stoch = δ(t− t′) dt2 (6.14b)

〈dη(t)dη(t′)〉stoch = 0. (6.14c)

The FPE (or stochastic equations) can be solved, and in the case of coherent state

initial conditions (with initial amplitude α0)

P (nL,mL, 0) = δ2(mL − 2i∠α0) δ
2(nL − 2 log |α0|), (6.15)

the distribution at time t is

P (nL,mL, t) = δ2
(
mL −

[
i(n∗L − 2 log |α0|)− 2it+ 2i∠α0

] )

× 1

2πt
exp

(
−|nL − 2 log |α0| |2

4t

)
. (6.16)

In this toy model, one can actually check if there really were no boundary terms

of the first kind, by substituting (6.16), and (6.10) into the expression for B̂. The

boundary term operator B̂ is given by the integrals (6.1) of operators B̂intj composed

of P , Λ̂ and coefficients T (•), with individual terms of B̂ evaluated at the boundaries

of phase space. In our case these boundaries are Cj → −∞ and Cj → ∞ for all

j = 1, . . . , 4, and one requires all the matrix elements of B̂ to be zero. By comparison

of (6.12) to (3.43), and labeling variables as n′L = C1, n
′′
L = C2, m

′
L = C3, and
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m′′L = C4, and also setting the term counter l = 1, the nonzero T (•) coefficients in

the B̂int
j are T

(1)
14 = −2, T (2)

1jj = 2 for all j, and T
(2)
114 = T

(2)
141 = T

(2)
123 = T

(2)
132 = −2. Also,

the matrix elements of Λ̂ (in a Fock basis |n〉) can be written (from the definition

(5.1) of ||α〉) as

〈ñ| Λ̂ |n〉 = 1√
n!ñ!

exp
[
nL(n+ ñ)/2 +mL(n− ñ)/2

]
. (6.17)

So:

1. The T (•) coefficients are constants.

2. The matrix elements of Λ̂ and ∂Λ̂/∂z are exponential in both variables z = nL

or mL, with some constant positive or negative coefficient.

3. The distribution P is Gaussian in real and imaginary parts of both variables

(nL around mean 2 log |α0|), mL around mean 2i(∠α0 − t)).

One can see that all matrix elements of all the integrands (〈ñ| Bint
j |n〉) will be dom-

inated by the Gaussian decay of P (C) in the far tails for all n and ñ. For j = 1, 2,

after integration over mL and a (real or imaginary) component of nL, the expression

to be evaluated at large nL will be Gaussian, hence zero in the far tail limit. Also,

for the terms (j = 3, 4) in which one integrates over nL and a component of mL, the

expression to be evaluated will be a Dirac delta function — also zero in the far tail

limit. Hence,

B̂ = 0. (6.18)

Thus it has been confirmed that there are no boundary term errors of the first kind.

So far it seems like this might be a very good kernel to try even for many-body

locally interacting Bose gases, which have the same kind of interparticle potential

term. The advantages would be that there are no boundary term errors of the first

kind, no moving singularities (compare to Section 6.1.4) and even no nonlinear terms

in the stochastic equations (compare to (5.17)).

Having the luxury of knowing P (C) for this toy problem, let us see what happens

when one tries to calculate an observable. Directly from (6.10) and (5.3):

Tr
[
Λ̂
]
= exp(αβ) = exp [enL ] . (6.19)
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The essential denominator term (6.8b) in any observable calculation, is then (using

(6.16) and defining nL = n′L + in′′L),
∫

Re {exp [enL ]} 1

4πt
e−|nL−2 log |α0||2/4td2nL

∝
∫

exp
[
en

′
L cosn′′L

]
cos
(
en

′
L sinn′′L

)
e−(n

′
L−2 log |α0|)2/4te−(n

′′
L)

2/4t d2nL .(6.20)

For nL with large positive real part, the factor from Tr
[
Λ̂
]
dominates (it’s an expo-

nential of an exponential!), and since the integrand is symmetric in n′′L and nonzero,

it must become unbounded, and the integral diverge.

A plot of the integrand PTr
[
Λ̂
]
for several time values is shown in Figure 6.1.

The unbounded behaviour at high n′L values indicates that (6.8b) will diverge and

boundary term errors (of the second kind) will be present. A comparison to the

probability distribution of n′L is also made there to indicate which contributions to

the integral (6.8b) are sampled by a stochastic simulation.

This means that: All observable estimates using (3.14) are suspect with this

representation!

6.2.3 In the gauge P representation

For the gauge P representation, Tr
[
Λ̂
]
= ez0 , and so the denominator integral (6.8b)

becomes simply
∫
P (C) ez

′
0 cos z′′0 dC (6.21)

in terms of z0 = z′0 + iz′′0 . This will be convergent provided the far tails of the

marginal probability distribution of z ′0 decay as e−z
′
0 , or faster in the limit |z′0| → ∞.

From the estimator expression (5.13) for an arbitrary observable that is a poly-

nomial function of â and â†, one can see that the numerator integral (6.8a) will be

of the form
∫
P (C)

∑

j

fj(C) dC, (6.22)

where the functions for each term fj are

fj(C) =
1

2
ez

′
0

(
∏

k

|αk|ak |βk|bk
)
cos

(
z′′0 ± θ +

∑

k

[ak∠αk + bk∠βk]

)
, (6.23)
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Figure 6.1: Integrands appearing in the denominator of observable estimates for anhar-

monic oscillator dynamics governed by the Hamiltonian (6.9). Values plotted are (Solid line):

∫
Tr

[
Λ̂(C)

]
P (C) d2mL, evaluated (using (6.19) and (6.16)) at n′′L = 0. Coherent state initial

conditions (6.15) were used with mean occupation number unity (|α0| = 1). To show what parts

of the integral (6.8b) would be sampled by a stochastic simulation, the probability distribution of

nL evaluated at n′′L = 0 (i.e.
∫
P (C)d2mL evaluated at n′′L = 0) is also plotted as the Dashed

line. Note the unbounded behaviour of the integrand at large positive n′L values (which are not

sampled).

with some non-negative integer coefficients ak and bk, which take on different values

for different fj. The behaviour of each such term as one approaches the boundaries of

phase space, where the modulus of at least one variable tends to +∞, is exponential

in z′0 (with unity coefficient), and polynomial in |αk| and |βk|.
This means that

• Boundary term errors can be expected for observables polynomial in âk and/or

â†k if the tails of P (C) decay as any power law in the |αk|, or |βk|, or as e−z
′
0

or slower in z′0.

Conversely, if the tails of P (C) decay faster than power law in all |αk| and |βk| and
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faster than e−z
′
0 in the modulus of the weight, then boundary term errors (at least

of the second kind) will not occur for any observable polynomial in the annihilation

and creation operators on subsystems. That is, any observable given by (5.10), or a

finite linear combination of such expressions.

Power law tails of P (C) in |αk| or |βk| do not immediately exclude all observables,

only those whose estimators grow too rapidly. By inspection of (5.10), (5.13), one

can see that an observable that is an akth polynomial of âk will lead to a term

fj ∝ ez
′
0|αk|ak . If P (C) ∝ e−cz

′
0|αk|−ãk in the far tails, then the indefinite integral

∫
P (C)fj(C)dC will be ∝ e(1−c)z

′
0|αk|ak−ãk+1 (if ak− ãk+1 6= 0), or ∝ e(1−c)z

′
0 log |αk|

(otherwise) in this far tail region. When this is evaluated in the far tail limit,

the integral will convergent if the decay of P (C) is fast enough. Similarly for the

relationship between â†k and βk. Hence, one can state the conditions for expectation

value estimates of a particular operator Â to not suffer from boundary term errors

of the second kind: When εj are infinitesimal positive real constants, one requires

Â ∝ âakk =⇒ lim
|αk|→∞

P (C) < ∝ 1

|αk|−(1+ak+ε1)
(6.24a)

Â ∝ â†k
bk =⇒ lim

|βk|→∞
P (C) < ∝ 1

|βk|−(1+bk+ε2)
(6.24b)

as well as

lim
z′0→∞

P (C) < ∝ e−(1+ε3)z
′
0 . (6.24c)

Non-polynomial observables defined as infinite sums (e.g. the parity (5.14)) can

be more troublesome, because the functions Tr
[
Λ̂Ô
]
etc. that are to be sampled

by (6.8a) can grow faster than polynomially as |α|k, |βk| → ∞. Conditions of the

kind (6.24) can also be derived, but will not scale as a power law. For example since

the parity estimator (5.15) has a numerator expression that scales ∝ e−2Re{αkβk},

one requires P (C) to decay faster than e2Re{αkβk} in the far tails for an unbiased

estimate of parity expectation values (remember that αkβk may have negative real

part in highly non-classical parts of phase-space).
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6.2.4 Locally-interacting Bose gas calculations

Here the likelihood of boundary term errors of the second kind is considered for

a many-mode interacting Bose gas model using the gauge P representation as de-

scribed in Sections 5.3 and 5.6. By inspection of the dynamics and thermodynamics

gauge P equations for the locally interacting Bose gas (5.17)–(5.21), and (5.50), one

sees that the stochastic terms (assuming no gauges) take the forms

dαn · · ·+ c αn dWn (6.25a)

dβn · · ·+ c̃ βn dW̃n, (6.25b)

with some complex constants c and c̃, apart from possibly additional terms caused

by finite temperature heat bath interactions (5.18)

dαn · · ·+
√
γnnbath(T )dηn (6.26a)

dβn · · ·+
√
γnnbath(T )dη

∗
n. (6.26b)

In this Subsection, the far-tail regime of phase space where |αn| and/or |βn| are large
will be of interest, and there the terms (6.26) are negligible, and hence are ignored

here.

Upon change of variables to zn = logαn and z̃n = log β∗n, one finds by the rules

of Ito calculus that these logarithmic variables will have stochastic evolution

dzn · · ·+ c dWn (6.27a)

dz̃n · · ·+ c̃ dW̃n. (6.27b)

This indicates that the short time evolution of zn and z̃n is dominated by Gaussian

noise. Thus at short times, (defining zn = z′n + iz′′n, and z̃n = z̃′n + iz̃′′n)

P (C, t)
∏

n

d2znd
2z̃n ∝ P (C, 0)

∏

n

exp

(
− [z′n(t)− z′n(0)]2

2Re {c}2 t
− [z̃′n(t)− z̃′n(0)]2

2Re {c̃2} t

)
.(6.28)

Changing back to the coherent state amplitude variables,

P (C, t)
∏

n

d2αnd
2βn ∝ P (C, 0)

∏

n

1

|αnβn|
exp




−

(
log
∣∣∣ αn(t)
αn(0)

∣∣∣
)2

2Re {c}2 t
−

(
log
∣∣∣ βn(t)βn(0)

∣∣∣
)2

2Re {c̃}2 t





.(6.29)
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The far tail decay as a Gaussian of a logarithm of |αn| or |βn| is strong enough to

overcome any polynomial of these variables if one moves far enough into the tails.

(polynomials will be only exponential in the logarithm). So, there is no immediate

reason to suspect boundary term errors of the second kind for polynomial observables

here. (They cannot be ruled out by the above discussion, however, because at longer

times the evolution of P (C) is much more complicated and no proof for such a regime

has been given).

On the other hand, (6.29) does not decay strongly enough to make an average

over a parity estimator converge, since these latter can grow as fast as exp(2ez
′
n+z̃

′
n)

(when αnβn is negative real), which grows much faster than (6.29) decays. One

thus suspects that parity expectation values will not be estimated by (5.15) in an

unbiased way for a gauge P representation of the locally interacting Bose gas model.

6.2.5 Unresolved issues

Lest one think that boundary term errors are fully understood, a variety of issues

are still unclear (to the best of the author’s knowledge). Some of these have to do

with tradeoffs between the two kinds of error. For example:

• The role of normalization: In Section 6.2.2 it was seen that for a (single-

mode) interacting Bose gas, the un-normalized positive P representation did

not suffer boundary term errors of the first kind, but had severe problems

with errors of the second kind when Re {αβ} → +∞. On the other hand, the

normalized positive P representation or the gauge P do not suffer from the

second kind of error for most observables, but (as will be seen in Chapter 8)

does have problems with moving singularities, and hence presumably the first

kind of boundary term error, when Re {αβ} → −∞.

There appears to be a tradeoff between the two processes causing boundary

term errors, which can involve the normalization of the kernel. Nevertheless,

the normalization does not parameterize the tradeoff in a straightforward way,

since the two kinds of boundary term error occur in different regions of phase-

space.
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• The role of moving singularities: Only the first kind of boundary term

error appears during derivation of the FPE and stochastic equations while on

the other hand, errors of the second kind can occur simply on a static initial

distribution, which does not evolve in any way. For these reasons it appears

that moving singularities in the deterministic part of the stochastic equations

should be related to boundary term errors of the first kind.

On the other hand, moving singularities do lead to pathological tail behaviour

in P (C) after a certain time tsing (even without any noise terms, if the initial

distribution is nonzero on any point of a trajectory that escapes to infinity at

finite time.) Because the far tail behaviour of P (C) changes in this qualitative

way after tsing, one should be able (at least in some cases) to find some ob-

servables that would be estimated in an unbiased way for t < tsing, but suffer

from boundary term errors of the second kind for t > tsing. So it appears that

moving singularities can also influence the second kind of boundary term error

in some way, presumably by causing slowly decaying distribution tails.

A better understanding of the relationship between the two kinds of error might

lead to a way to make an advantageous tradeoff that avoids both, at least in some

cases.

6.3 Removal of the errors using kernel gauges

6.3.1 Conceptual justification

If one introduces a kernel gauge F (e.g. a drift gauge Gk) using a gauge identity

J
[
Λ̂
]
= 0, defined by (4.1) as in Section 4.1, then zero is added to the master

equation in the form
∫
P (C)F(C)Ĵ

[
Λ̂
]
dC, as in (4.2). Introducing such a kernel

gauge can have an effect on the presence of boundary term errors in two ways:

1. Modification of the distribution: A change in the FPE due to addition of

extra gauge terms will cause a direct change to its solution P (C, t). A good

choice of gauge can lead to faster decaying tails, and hence directly to B̂ = 0

from evaluation of expression (6.1), and no boundary term errors of the first
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kind. This is the easiest approach in practice, and will be considered in some

detail in the next Subsection 6.3.2.

Less directly, this approach also has the potential to remove boundary term

errors of the second kind. This is again because P (C) changes, and if the far

tail behaviour is made to decay faster, the observable expressions (6.8a) and

(6.8b) may become convergent.

2. Renormalization of boundary terms: The expression (6.1b) gains extra

gauge terms, which can have an effect of the final value of B̂. During the

derivation of the FPE in Section 3.4.1, these extra added terms to the master

equation can be written in the T (•) notation of (3.41) and also (6.1) for B̂ as

T
(0)
0 = FJ (0) (6.30a)

T
(1)
0j = FJ (1)

j (6.30b)

T
(2)
0jk = FJ (2)

jk . (6.30c)

One finds that the additional boundary terms introduced by this kernel gauge

are (using (6.1)) are of the same general form as (6.1a), but with integration

over some additional terms B̂intJ ,j on top of the usual B̂intj . Using (6.1b), these

new terms are

B̂intJ ,j(C) = (6.31)

F(C)

{
P (C)J

(1)
j (C) +

1

2
P (C)

∑

k

T
(2)
jk

∂

∂Ck
− 1

2

∑

k

∂

∂Ck

(
P (C)T

(2)
kj (C)

)}
Λ̂(C).

The point to be made is that while the identity J
[
Λ̂
]
, which can be expressed

in differential form as (4.1), is zero, the integrands B̂intJ ,j for the boundary term

expression B̂ have a different form, and are not necessarily zero at all. This

then may open the possibility that if originally (with no gauges), the boundary

terms were nonzero, an appropriate choice of gauge can cancel these, again

leading to B̂ = 0, and no boundary term errors of the first kind.
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6.3.2 Practical implementation using drift gauges

Let us take the direct approach of changing P (C, t) to make the boundary terms

B̂ = 0. A difficulty is that the solution of P (C, t) is not known for non-trivial

cases, so one cannot work with it directly. However, as pointed out in Section 6.1.2,

moving singularities in the noiseless equations are very closely tied to boundary

term errors of the first kind. Certainly in the sense that their presence indicates

weakly decaying distribution tails, and hence boundary term errors. The drift part

of stochastic equations can be modified practically at will using drift kernel gauges

Gk (see Section 4.3), and in particular, the moving singularities can be removed in

this way. As will be shown in examples of Sections 6.4 and 6.5, removal of these

moving singularities does indeed appear to result in disappearance of the boundary

term errors.

Given a kernel amenable to drift gauges (i.e. possessing a global weight Ω), and

keeping in mind the symptoms of boundary term errors of the first kind outlined in

Section 6.1.2 one wishes to choose drift gauges according to the following heuristic

criteria:

1. Moving singularities that were present in the original (ungauged) stochastic

equations are removed. This can be assessed by analysis of the deterministic

parts of the stochastic equations. See examples in subsequent sections.

2. No new moving singularities are introduced.

3. No noise divergences are introduced (in the dΩ = · · ·+Ω
∑

k GkdWk evolution).

4. No discontinuities in the drift or diffusion of any variables are introduced.

5. Given the above criteria 1–4 are satisfied (which can be assessed by inspection

or analysis of the gauged stochastic equations), one wants to minimize the

weight spread in the resulting simulation, to optimize efficiency.

A broadly applicable rule of thumb is to keep the gauges as small as

possible while achieving the goal of removing boundary term errors.

This can be aimed for using several complementary approaches:
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(a) Make the gauge functions zero in regions of phase space where no correc-

tion to the un-gauged drift is necessary.

(b) Minimize a relevant variance of the weights. This weight spread has

been considered in detail in Section 4.3.4. Depending on the situation,

the quantity
∑

k |Gk|2 (more generally) or
∑

k Re {G}
2
k (for short time

calculations of some observables) can be minimized, since the short-time

growth of the variance of |Ω| or Re {Ω} (respectively) has been shown in

Section 4.3.4 to be proportional to these quantities.

(c) Ensure that drift gauges are zero at deterministic attractors in phase-

space, so that no weight spread is accumulated when no significant evo-

lution is taking place.

(d) Minimize the variances of estimators of observables of interest. That is,

the variance of quantities Tr
[
ÔΛ̂
]
and Tr

[
ÔΛ̂†

]
appearing in the numer-

ator of observable estimates (3.14). In this manner, one can optimize the

simulation for the estimation of a particular observable Ô, rather than

more generally as in point (a) above.

6. One should also avoid gauges with the following features:

(a) Gauges that are nonzero only in a rarely visited region of phase space.

The problem is that good sampling of the gauged region is needed to make

the correct change to observable estimates — otherwise, if the gauged re-

gion is not visited by any trajectories, one has practically the same sim-

ulation as without gauges! In a less extreme case where only a tiny (but

nonzero) fraction of trajectories visit the gauged region, the correction

from biased-ungauged to unbiased-gauged observable estimates is badly

resolved, and the simulation results become very noisy. Furthermore, if

the bias to be corrected is significant, then the change in the few gauged

trajectories needs to be large to compensate for the bias, and hence the

weight correction on those trajectories will become large as well. This

leads to a large weight spread. It is much better to make small changes

in many trajectories contribute to removal of the bias.
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(b) Gauges rapidly changing in phase-space. These typically lead to stiff

equations, and a gauged region of phase space that is badly sampled by

reasonable-sized ensembles. This bad sampling arises when no single tra-

jectory stays in the gauged region long, to such a degree that at a given

time few (or, on average, possibly less than one) trajectories are sam-

pling the gauged region, i.e. sampling the resulting observable estimate

corrections. This results in similar problems as in the previous point (a).

(c) Non autonomous gauges (i.e. depending directly on the weight Ω). The

problem with these is that they are usually much more difficult to analyze

to check whether or not new moving singularities or noise divergences

have been introduced.

(d) Gauges analytic in complex variables if the kernel is also analytic in these.

As discussed in Section 6.1.4, it is desirable to break the analyticity of

the stochastic equations to avoid moving singularities.

Note that an explicit variational minimization according to 5(b) or 5(d) could

be in conflict with the recomemndations 6(a) or 6(b), in which case it is prob-

ably best to try the simulations and see which works better.

This technique appears to be broadly applicable, and only requires the recog-

nition of what instabilities in the stochastic equations could lead to problems. It

does not require detailed knowledge of what the boundary terms B̂ are, nor of the

behaviour of the far tails of P (C), provided instabilities are removed.

6.3.3 Ito vs. Stratonovich moving singularities

There is a subtle ambiguity that can arise when using the method just presented:

Should one remove moving singularities from the Ito or the Stratonovich form of the

stochastic equations?

As indicated in Appendix B, when one numerically integrates the stochastic

differential equations using a finite but small time step ∆t, the exact form of the

drift that is integrated can depend on details of the integration algorithm chosen. For
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example, if one evaluates the derivatives using the variable values at the beginning

of a time step (i.e. simply those calculated using the previous step), then one

integrates the standard Ito form of the equations. However, with a semi-implicit

method, where one first estimates the variables in the middle of the time step,

before using these to calculate the derivative and actually advance the simulation,

one must integrate the Stratonovich form of the stochastic differential equations.

The difference between these is given by the Stratonovich correction to the drift

(B.7). In practice, multiplicative3 stochastic equations, such as those considered in

this thesis, are more stable (and hence, efficient) using the semi-implicit method[82].

In some situations it may occur that moving singularities occur in the determin-

istic parts of the Stratonovich equations but not the Ito equations (or vice-versa).

To arrive at practical guidelines on this issue, one can argue in the following way:

• Since both the explicit (Ito) and semi-implicit (Stratonovich) algorithm sim-

ulate the same underlying equations, then to be sure that no bias is being

introduced, moving singularities should not occur in either algorithm. In fact,

a whole family of hybrid Ito-Stratonovich algorithms are possible where deriva-

tives are evaluated at arbitrary time values during the time step ∆t, and the

difference in the drift terms between two such algorithms is a multiple ∈ [0, 2]

of the Stratonovich correction (B.7) — See Appendix B. None of these algo-

rithms should contain moving singularities, otherwise some kind of bias may

be suspected.

• The Stratonovich correction for variable Cj (B.7) is highly dependent on the

form of the noise matrix elements (∝ ∑
klBkl∂Bjl/∂Ck). If one finds that

moving singularities are present for one algorithm but not for another, this in-

dicates that the Stratonovich correction is growing very rapidly as one heads

for the boundaries of phase space. This in turn indicates that the noise ma-

trix elements must be growing in some appropriately rapid fashion as well —

possibly rapidly enough to cause noise divergences.

3i.e. equations in which the noise terms are proportional to the variables, and hence of non-
constant variance.
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Taking the above points into consideration, it is conjectured here that:

1. In a simulation that does not suffer from boundary term errors, there must be

no moving singularities in the deterministic part of either the Ito, Stratonovich,

or any of the hybrid Ito-Stratonovich forms of the stochastic equations.

2. If a simulation has moving singularities for one of the family of algorithms (e.g.

Ito), but not for some other member of this family, then noise divergences may

be suspected as an additional cause of boundary term errors.

3. To eliminate biases caused by moving singularities using a drift gauge, one

must remove moving singularities from all hybrid Ito-Stratonovich algorithms

with the same gauge choice.

6.4 Removal example 1: Two-particle absorber

Two examples will now be worked through — those systems in which boundary term

errors in positive P simulations have been reported in published work. Removal of

boundary term errors using the guidelines of Section 6.3.2 will be demonstrated, and

the procedure considered in some detail. The first example will be a single-mode

two-boson absorber (in this section), while the second example of a single-mode laser

will be treated in Section 6.5. These two examples demonstrate somewhat different

aspects of boundary term errors and their removal.

This section is closely based on Section IV of the published article by Deuar and

Drummond[66].

6.4.1 The single-mode model

Consider a single optical cavity mode driven by coherent radiation, and damped by a

zero temperature bath that causes both one- and two-photon losses. For convenience,

units of time are chosen so that the rate of two-photon loss is unity. The scaled one-

photon loss rate is γ, and ε is the scaled (complex) driving field amplitude. Following
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standard techniques, the system can be described with the master equation

∂ρ̂

∂t
=

[
εâ† − ε∗â , ρ̂

]
+
γ

2
(2 âρ̂ â† − â†âρ̂− ρ̂ â†â)

+
1

2
(2 â2ρ̂ â†2 − â†2â2ρ̂− ρ̂ â†2â2) . (6.32)

This is also the master equation of two-particle absorption in an interaction picture

where kinetic processes have has been relegated to the Heisenberg picture evolution

of the operators.

Let us use the gauge P representation to convert this master equation into a set

of stochastic equations. The single-mode kernel is written as

Λ̂( C = {α, β,Ω} ) = Ω||α〉〈β∗||e−αβ. (6.33)

Following the treatment of Sections 3.4, 4.3, and 5.3, and converting to Stratonovich

form using (B.7), one arrives at the Stratonovich stochastic equations

dα = [ ε − α(αβ + iG + {γ − 1}/2)] dt+ iαdW (6.34a)

dβ = [ ε∗ − β(αβ + iG̃ + {γ − 1}/2)] dt+ iβdW̃ (6.34b)

dΩ = SΩ dt+ Ω
[
GdW + G̃dW̃

]
. (6.34c)

Here SΩdt is the appropriate Stratonovich correction term given by (B.7), which

depends on the functional form of the particular gauges chosen.

With no gauge (G = G̃ = 0), the positive P Stratonovich equations are recovered:

dα = [ ε − α(αβ + {γ − 1}/2)] dt+ iαdW (6.35a)

dβ = [ ε∗ − β(αβ + {γ − 1}/2)] dt+ iβdW̃ . (6.35b)

This two-particle loss model can give either correct or incorrect results when

treated with the usual positive P representation methods. Generally, problems only

arise when any accompanying single-particle losses have small rates or when the

number of bosons per mode is small (see Figure 6.3). It is a well-studied case,

and a detailed treatment of the boundary term errors that appear can be found in

[64]. It also has the merit that exact solutions can be readily found using other

means. Analyzing this example gives a good check that the moving singularity
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removal procedure of Section 6.3.2 does in fact eliminate boundary terms and leads

to correct results. Several simplifications of this model will now be concentrated on,

which correspond to existing literature.

6.4.2 Two-boson absorber

In the simplest form of this model, corresponding to γ = ε = 0, only two-boson

absorption takes place. One expects that for some state |ψ〉 =∑∞n=0 cn|n〉 in a Fock

number state basis, all even boson number components will decay to vacuum, and

all odd-numbered components will decay to |1〉, leaving a mixture of vacuum and

one-boson states at long times.

The positive P representation has been found to give erroneous results [70, 83, 84,

85] accompanied by moving singularities [64]. There are power-law tails in the distri-

bution that lead to boundary term errors — consistently with the conditions (6.7).

The observable usually concentrated on in this system is the occupation number

n̂ = â†â, which is estimated by n = 〈αβ = n̆〉stoch in the positive P representation.

The variable n̆ = αβ has a convenient closed equation (Stratonovich),

dn̆ = −2n̆(n̆+ iG+ − 1/2) dt+ in̆ dW+ (6.36)

with dW+ = (dW + dW̃ ), and G+ = (G + G̃)/2.
Let us examine the behavior of the above equation when G+ = 0, i.e., in the

standard, un-gauged formulation. The deterministic part of the evolution has a

repellor at n̆ = 0, and an attractor at n̆ = 1/2. The noise is real, finite, and of

standard deviation
√
dt/2 at the attractor. The deterministic part of the evolution

has a single trajectory of measure zero that can escape to infinity along the negative

real axis,

α(t) = −β(t) = 1√
2(tsing − t)

, (6.37)

where tsing = 1/2α(0)2 = −1/2n̆(0). This moving singularity is a symptom of likely

boundary term errors.

Indeed, in the steady-state limit, all trajectories in a simulation will head toward

n̆ = 1/2, with some remnant noise around this value being kept up by the stochastic
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term. This noise does not affect the average, however, and the estimator of 〈n̂〉
becomes limt→∞ n = limt→∞ 〈n̆〉stoch = 1/2 in the many trajectories limit. Quantum

mechanics, however, predicts that if we start from a state ρ̂(0), the steady state will

be

lim
t→∞
〈n̂〉 =

∞∑

j=0

〈1 + 2j| ρ̂(0) |1 + 2j〉 , (6.38)

since all even occupations decay to vacuum, and all odd to |1〉. For a coherent state

|α0〉 input, say, this will be

lim
t→∞
〈n̂〉 = 1

2

(
1− e−2|α0|2

)
. (6.39)

Thus one expects that the positive P simulation will give correct results only when

e|α0|2 À 1.

To correct the problem one has to change the phase-space topology in some way

to prevent the occurrence of such moving singularities. It was found that a good

gauge for a two-boson absorber nonlinearity in general is

G = G̃ = G+ = i(n̆− |n̆|) . (6.40)

This will be dubbed the “circular” gauge due to the creation of an attractor at

|n̆| = 1/2.

This gauge has the effect of replacing the −2n̆2 term in (6.36) with −2n̆|n̆|, which
is always a restoring force, and so never leads to any escape to infinity in finite time.

With the gauge (6.40), the Stratonovich equations become

dn̆ = n̆(1− 2|n̆|) dt+ in̆dW+ , (6.41a)

dα = −α(|n̆| − 1/2) dt+ iαdW , (6.41b)

dΩ = Ω
{
[n̆+ (n̆− |n̆|)2] dt+ i(n̆− |n̆|) dW+

}
. (6.41c)

How do these new equations measure up to the four symptoms of boundary term

errors of the first kind outlined in Section 6.1.2? In logarithmic variables αL = logα,

nL = log n̆, and z0 = log Ω, the Stratonovich system equations are

dnL = (1− 2|n̆|) dt+ idW+ (6.42a)

dαL = −(|n̆| − 1/2) dt+ idW (6.42b)

dz0 = [n̆+ (n̆− |n̆|)2] dt+ i(n̆− |n̆|) dW+. (6.42c)
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One now has an attractor on the circle |n̆| = 1/2, and a repellor at n̆ = 0, with

free phase diffusion of n in the tangential direction. Once trajectories reach the

attractor, only phase diffusion occurs. So:

1. Moving singularities: There are no moving singularities in nL, since |n̆| always
remains bounded. Also, since the deterministic evolution of the remaining

independent variables αL and z0 depends only on n̆ or |n̆| in such a way that

dαL and dz0 remain finite for finite n̆, then these variables never escape to

infinity in finite time (being just a time integral of finite values of n̆). Thus,

no moving singularities occur.

2. Noise divergences: Similarly because the noise coefficient of nL is constant,

while the noise coefficients of αL and z0 depend only on n̆, and in such a way

that for finite n̆ the noise magnitude remains finite — then one concludes that

noise divergences are not present either.

3. Discontinuous drift or noise: Not present, by inspection.

4. Initial distribution: Initial coherent state has P (0) = δ2(α− α0)δ
2(β − α∗)δ2(Ω− 1).

There are no boundary terms at the outset with such an infinitely-peaked dis-

tribution.

How does this change in the Ito formulation? Using (B.7) on (6.42), one finds that

the Ito and Stratonovich equations are identical for nL and αL, while the Ito weight

equation is dz0 = (n̆−|n̆|)2dt+ i(n̆−|n̆|) dW+. The above arguments apply without

change to Ito, and to hybrid Ito-Stratonovich algorithms. So — no symptoms of

boundary term errors remain in any formulation.

Let us see how the gauge P simulation compares with the positive P in practice

— i.e. are boundary term errors really removed along with the moving singularities?

Figure 6.2 compares results for an (exact) truncated number-state basis calculation,

a positive P calculation, and a gauge calculation using the circular gauge (6.40) for

an initial coherent state of α0 = 1/
√
2. Figure 6.3 compares steady-state values for

exact, positive P, and gauge calculations for a wide range of initial coherent states.

It is seen that the gauge calculation is correct to within the small errors due to
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Figure 6.2: Comparison of two-boson absorption simulations: time-varying mode oc-

cupation. circles: positive P simulation; solid line: gauge simulation using circular gauge

(6.40); dashed line: exact calculation (truncated number-state basis). Simulation parameters:

S = 4× 104 trajectories; initial coherent state.

finite sample size, whereas the positive P calculation leads to severe errors at low

occupations.

6.4.3 One- and two-boson absorber

If one now considers single-boson decay as well, but still with no driving, one expects

that all states will decay to the vacuum on a time scale 1/γ on top of the two-particle

losses, which produce decay of particle numbers on a timescale of 1 (although not

necessarily right down to the vacuum.) When γ À 1, the single-particle decay

dominates and nothing interesting is seen beyond an exponential decay of particle

number. However, if γ . 1, one should first see a rapid decay to a mixture of

vacuum and one-boson states due to the two-boson process, and then a slow decay

of the one-boson state to the vacuum on a time scale of t ≈ 1/γ.

In this case the positive P (Stratonovich) equations display different behavior

depending on whether γ is above or below the threshold γ = 1. Below threshold,

there is an attractor at n̆ = (1−γ)/2, and a repellor at n̆ = 0, while above threshold,

the attractor is at n̆ = 0, and the repellor at n̆ = −(γ−1)/2. In either case, there is a
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Figure 6.3: Steady state expectation values of boson number 〈n̂〉 obtained by gauge

simulations (double triangles) compared to exact analytic results (6.39) (solid line) and

positive P simulations (circles) for a wide range of initial coherent states. Size of uncertainty in

gauge results due to finite sample size is indicated by vertical extent of ‘double-triangle’ symbol.

Steady state was observed to have been reached in all simulations by t = 3.5 or earlier (compare

with Figure 6.2 and 6.4), hence this is the time for which the simulation data is plotted. S = 105

trajectories
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divergent trajectory along the negative real axis, which is again a moving singularity.

It turns out that the steady state calculated with the positive P is erroneous while

γ < 1, and that there are transient boundary term errors while γ < 2 [70]. The false

steady state below threshold lies at the location of the attractor: (1− γ)/2.
Let us try to fix this problem using the same circular gauge (6.40) as before. The

gauged equation for nL is now

dnL = (1− γ − 2|n̆|) dt+ idW+ , (6.43)

while the α and Ω evolution is unchanged. So, above threshold one is left with only

an attractor at n̆ = 0, while below threshold one has a repellor at n̆ = 0 surrounded

by an attracting circle at |n̆| = (1 − γ)/2. This phase space again has no moving

singularities or noise divergences.

The results of simulations for the parameter γ = 0.1 are shown in Figure 6.4

(γ ¿ 1 was chosen so that a system with two widely differing time scales is tested.)

The gauge simulation tracks the exact results and avoids the false results of the

positive P simulation. Note also that the gauge simulation remains efficient for a

wide range of occupation numbers — from 〈n̂〉 ≈ 100 À 1, where the positive P is

also accurate, to 〈n̂〉 ≈ 0.1¿ 1 where it is totally incorrect.

6.4.4 Driven two-boson absorber

The other type of situation to consider is when there is a driving field as well as

two-boson damping. In this Subsection the coherent driving ε is nonzero, but the

single-particle loss rate is assumed negligible (γ = 0), since this process never causes

any of the simulation problems anyway, but leaving it out simplifies analysis. Failure

of the positive P representation method has been found in this limit as well [71], and

is evident in Figure 6.5. The equation for n̆ is no longer stand-alone in this case, and

all three complex variables must be simulated as in (6.34c), the Ω equation being

the same as in the undriven case (6.41).

A treatment of the singular trajectory problem with the same circular gauge (6.40)

leads again to correct results, as seen in Figure 6.5.
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Figure 6.4: Comparison of simulations for system with both one- and two-boson

damping. Relative single-boson damping strength γ = 0.1; Circles: positive P simulation.

solid line: simulation using the circular gauge (6.40); dashed line: exact calculation (truncated

number-state basis). Gauge simulation parameters: 100 000 trajectories; initial coherent state |10〉

with 〈n̂〉 = 100 bosons.

6.4.5 Relevance to interacting Bose gas

The master equation (6.32) was first considered in the context of quantum optics.

There, single-photon losses are usually large relative to two-photon processes, and

mode occupations are high, so the boundary term errors have not been a practical

problem in their original quantum optics regime. However, for other physical systems

such as interacting Bose gases (which this thesis is most interested in), two-particle

losses can be stronger, one expects a large number of modes to have low or practically

zero occupation, and so the boundary term errors may be significant. For example,

collisional many-body processes that remove particles in pairs from the modeled

field Ψ̂, will lead to similar two-particle loss terms (2.24) in the master equation.

6.5 Removal example 2: Single-mode laser

Let us now consider the second quantum system for which systematic errors have

been seen with the positive P representation. The mechanism by which boundary
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Figure 6.5: Driven two-boson absorber with ε = 0.05. Circles: positive P simulation (1000

trajectories); solid line: circular gauge (6.40) simulation (100 000 trajectories); dashed line:

exact calculation (truncated number-state basis). Initial vacuum state.

term errors occur here is somewhat different than in the two-boson absorber. For

two-boson damping, boundary term errors occur even when one chooses an optimal

(i.e., compact) initial distribution to represent the starting state |α0〉 〈α0|, whereas
for this laser model the systematic errors occur only if one starts with unusually

broad initial distributions. Nevertheless, such broader distributions may arise during

time-evolution from some other state, so consideration of what occurs for significant

distribution broadness is also relevant to practical simulations.

This section is closely based on Section IV of the published article by Deuar and

Drummond[66].

6.5.1 The laser model

For a simple model of a photonic or atomic laser, using the single-mode positive P

representation,

Λ̂( C = {α, β} ) = ||α〉〈β∗||e−αβ, (6.44)

one can derive[71, 64] the the Fokker-Planck equation

∂P

∂t
=

{
∂

∂α

[
αβ

N −G
]
α +

∂

∂β

[
αβ

N −G
]
β + 2QN ∂2

∂α∂β

}
P, (6.45)
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where the average number of photons in the mode is n = 〈αβ〉stoch, and N is a

scaling parameter that equals the number of atoms in the gain medium. Both G,

the gain parameter, and Q ≥ G/N , the noise parameter, are real and positive. One

usually considers the scaled variables

α̃ = α/
√
N (6.46a)

β̃ = β/
√
N , (6.46b)

The stochastic Ito equations are then[71, 64]

dα̃ = (G− α̃β̃) α̃ dt+
√

2Qdη (6.47a)

dβ̃ = (G− α̃β̃) β̃ dt+
√

2Qdη∗, (6.47b)

where dη is a complex Wiener increment obeying 〈dη∗dη〉stoch = dt, 〈dη〉stoch =

〈dη2〉stoch = 0.

One is again usually interested in the (scaled) occupation of the lasing mode

nsc =
〈
nsc = α̃β̃

〉
stoch

= 〈â†â〉/N , (6.48)

i.e. the number of bosons in the lasing mode per each atom in the gain medium.

Changing variables to nsc and an auxiliary “phase-like” variable z2 = α̃/β̃, the FPE

becomes

∂P

∂t
=

{
2
∂

∂nsc
[Q+ nsc(nsc −G)] + 2Q

∂

∂z2

nsc
z2

+ 2Q
∂2

∂n2sc
nsc − 2Q

∂2

∂z2

z22
nsc

}
P.

(6.49)

The diffusion matrix is now decoupled

4Q


 nsc 0

0 −z22/nsc


 , (6.50)

and so the two complex variables can evolve under independent noises. In fact the

entire nsc evolution decouples from z2, and can be written as the closed Ito equation

dnsc = −2(nsc − a)(nsc − b)dt+ 2
√
QnscdW , (6.51)
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where now the real Wiener increments (implemented as Gaussian noises) have vari-

ance 〈dW 2〉stoch = dt, and the deterministic stationary points are

a = 1
2

(
G+

√
G2 + 4Q

)
≥ 0 (6.52a)

b = 1
2

(
G−

√
G2 + 4Q

)
≤ 0. (6.52b)

(In the Stratonovich calculus, [ ab ] =
1
2
(G±

√
G2 + 2Q) ). One finds that the station-

ary point at a is an attractor, and at b there is a repellor. Defining nneg = b − nsc,
as the distance (in the negative direction) from the repellor, one obtains

dnneg
dt

= 2nneg(nneg +
√
G2 + 4Q) + noise , (6.53)

which shows that there is a singular trajectory escaping to infinity in finite time

along the negative real axis nsc < b — i.e. a moving singularity.

6.5.2 Initial conditions

Let us consider the case of vacuum initial conditions. A vacuum can be represented

by the positive P representation

P+(α̃, β̃) = δ2(α̃) δ2(β̃) , (6.54)

but also by Gaussian distributions of any variance σ2
0, around the above,

P (+)(α̃, β̃) =
1

4π2σ40
exp

{
−|α̃|

2 + |β̃|2
2σ20

}
. (6.55)

It can be checked that this satisfies the vacuum positive P representation condition

(3.34), giving another family of equivalent vacuum distributions different to (3.35),

which was found in Section 3.3.6. Note: the distribution of nsc is non-Gaussian, but

has a standard deviation of σnsc ≈
√
2σ20 in both the real and imaginary directions.

It has been found by Schack and Schenzle [71] that for this single-mode laser

model, a positive P simulation of pumping from a vacuum will give correct answers

if the usual δ-function initial condition (6.54) is used, but will have systematic errors

if an initial condition (6.55) has a sufficiently large variance (see Figure 6.6).

This can be understood by inspection of the stochastic equation (6.51). If

one has a sufficiently broad initial distribution, that some trajectories start with
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Re {nsc} < b, then the singular trajectory will be explored by the distribution.

From this it appears that for all σ0 > 0, some boundary term errors may be present.

In practice, no errors were seen by Schack and Schenzle for small enough σ0, pre-

sumably because their magnitude was below the signal-to-noise resolution obtained

in those simulations — an interesting effect in itself. Additionally, even if initially

no trajectories fall on the singular trajectory (e.g. some initial distribution that is

exactly zero for Re {nsc} < b), the region Re {nsc} < b may be subsequently explored

due to the presence of the noise terms.

Apart from the obvious δ-function initial condition, one might want to try the

canonical distribution (3.10) applicable generally to any density matrix. For optical

laser models, this will not cause practical problems as then the variance is σ2
0 = 1/N ,

which for any realistic case will be very small (i.e., σnsc ¿ |b|). Hence, boundary term

errors would be negligible for a wide range of simulation times, based on the evidence

that they were not seen [71] in this regime. Nevertheless, broader distributions may

arise during time-evolution of some other state to a vacuum, so consideration of

what occurs for significant σ0 is also relevant to practical simulations.

Incidentally, the anomalous results were discovered in [71] when σ2
0 = 1 was

chosen by the erroneous procedure of scaling the equations while not simultaneously

scaling the canonical initial condition in α.

6.5.3 Drift gauged equations

Let us introduce the single-mode gauge P kernel (5.4) (compare with (6.44), which

differs only by lack of the global weight factor ez0). Proceeding to introduce drift

gauges as in Section 4.3 (for nsc but not for z2, as averages of this variable will not

figure in what follows), one obtains the Ito stochastic equations

dnsc = 2nsc(G− nsc) dt+ 2Qdt+ 2
√
Qnsc (dW − G dt) (6.56a)

dz0 = −1

2
G2 dt+ GdW, (6.56b)
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as per the standard gauge formulation (4.90). It is convenient to define a transformed

gauge function

G(n) = G
√

Q

nsc
(6.57)

, which is also arbitrary and enters into the simulation as

dnsc = 2nsc(G− nsc − G(n)) dt+ 2Qdt+ 2
√
Qnsc dW (6.58a)

dz0 = −
nscG2(n)
2Q

dt+ G(n)
√
nsc
Q
dW. (6.58b)

6.5.4 Correcting for the moving singularity

Consider the (Ito) deterministic evolution of, n′sc, the real part of nsc = n′sc + in′′sc,

dn′sc
dt

= −2n′sc2 + 2Gn′sc + 2Q+ 2n′′sc
2 − 2Re

{
nscG(n)

}
. (6.59)

The moving singularity is due to the −2n′sc2 leading term for negative values of n′sc.

The drift gauge is now chosen according to the criteria below (as in Section 6.3.2,

but in a different order):

1. As pointed out in Sections 4.3.4 and 6.3.2, it is desirable to keep the gauge

terms to a minimum because whenever they act the weights of trajectories

become more randomized. Thus, let us restrict ourselves to functions G(n)
that are only nonzero for n′sc < 0.

2. There should not be any discontinuities in the drift equations, as this might

lead to bad sampling of some parts of the distribution and thus possibly to

systematic biases. A further problem with discontinuous gauges is that the

Stratonovich correction term for dz0 cannot be calculated at the discontinu-

ity, preventing use of the more stable semi-implicit numerical algorithm (See

Appendix B).

Hence, in particular, in light of the previous point 1., one should have limn′sc→0( G(n) ) =
0. For ease of analysis, let us start with a simple form for the gauge, G(n) =
c− λn′sc + λyn

′′
sc. Continuity immediately implies c = λy = 0, hence

G(n) =




−λn′sc if n′sc < 0

0 if n′sc ≥ 0
, (6.60)
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3. The next necessary (and most important) condition, to remove moving singu-

larities, is that the −2n′sc2 term is canceled, hence:

λ ≥ 1 . (6.61)

Using (B.7), the Stratonovich correction for dnsc is −Qdt, and so the family

of hybrid Ito-Stratonovich equations differ only in having this term a multiple

of Qdt in the range [0, 2Qdt]. This has no effect on the removal or not of the

moving singularity.

4. Now, if λ = 1 there are no systematic errors, but the sampling error very

quickly obscures any observable estimates because n′sc still heads to −∞ ex-

ponentially fast due to the 2Gn′sc term. This takes it into regions of ever

increasing |G(n)|, and weights quickly become randomized. For slightly larger

parameters λ, the n′sc evolution takes trajectories to a point lying far into the

negative n′sc region where the two leading terms balance. Here the trajecto-

ries sit, and rapidly accumulate weight noise. It is clear that for an optimum

simulation all stationary points of n′sc in the nonzero gauge region must be

removed. In this system the condition for this is

λ > 1 +
G2

2Q
, (6.62)

for the Stratonovich calculus, and λ > 1 +G2/4Q for Ito.

5. Are any new moving singularities or noise divergences introduced? The gauged

equation for the imaginary part of nsc is

dn′′sc = 2n′′sc[G+ n′sc(λ− 2)] dt+ 2
√
Q|nsc| sin ( 1

2
∠nsc) dW, (6.63)

which is attractive towards n′′sc = 0 when λ > 2 in the gauged (n′sc < 0) region,

and exponentially growing otherwise. In either case, no super-exponential es-

cape occurs, and no moving singularities. The evolution of z0 depends only on

finite expressions of finite nsc, is thus an integration over the history of a tra-

jectory, and so does not diverge in finite time. The Stratonovich correction for

dz0 is λ (n
′
sc + nsc + |nsc|) /2 in the gauged region, zero otherwise. Introduction
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Figure 6.6: One-mode laser G = 1, Q = 0.25. Dashed line: (correct) positive P simulation

with δ-function initial conditions (6.54) σ2
0 = 0, and 100000 trajectories. Dotted-dashed line:

erroneous positive P simulation with Gaussian initial conditions (6.55) σ2
0 = 0.1 initially, and

100000 trajectories. Dotted line: erroneous positive P simulation with σ2
0 = 1, and 10000

trajectories. Solid line: gauge calculation for σ2
0 = 0.1 with λ = 4, which corrects the systematic

error of the positive P. Only 4000 trajectories, so as not to obscure other data.

of such a term or its multiple does not lead to any moving singularities for

z0 evolution either. One concludes that no new moving singularities or noise

divergences are introduced by the gauge (6.60).

The results for an example have been plotted in Figure 6.6. The parameters

there were G = 1, Q = 0.25 (leading to a ≈ 1.1124 and b ≈ −0.1124 in Stratonovich

formulation ). The initial condition in the example was σ2
0 = 0.1, which is already

much larger than the canonical variance for physically likely parameters in a photonic

laser. Typical values of |nsc| initially will be of order σnsc ≈ 0.14 & |b| here. A good

choice of gauge was found to be λ = 4. The use of this gauge restores the correct

results.

6.5.5 Non-optimal initial conditions

As one increases the spread of the initial distribution beyond σnsc ≈ |b|, it becomes

increasingly difficult to find a gauge that will give reasonable simulations. For ex-

ample a wide variety of what seemed like promising gauges for σ2
0 = 0.3 have been



Section 6.6 Summary of main boundary term results 153

tried (with the same values of parameters Q and G as in Figure 6.6), and none have

come close to success. The problem is that while systematic errors are removed,

large random noise appears and obscures whatever one is trying to calculate.

Trajectories that start off at a value of n′sc lying significantly beyond b require a

lot of modification to their subsequent evolution to (1) stop them from escaping to

−∞ and (2) move them out of the gauged region of phase space so that they do not

accumulate excessive weight noise. If there are many of these, the trade-off between

the gauge size and length of time spent in the gauged region does not give much

benefit anymore. Some consolation is gained in knowing that results will at worst

be noisy and unusable, rather than being systematically incorrect.

6.6 Summary of main boundary term results

The two mechanisms that lead to boundary term errors have been specified and

investigated for general phase-space distribution methods: 1) Errors of the first kind,

which are caused by discarding nonzero boundary terms in the partial integration

step between the master and Fokker-Planck equations, and 2) Errors of the second

kind, which can arise if the estimator of a particular observable for a given kernel

grows too rapidly as the boundaries of phase-space C are approached, and may be

present or absent depending on the moment chosen.

The exact expression for the first kind of boundary terms has been found: (6.1),

and the integrals that must converge for moment calculations to avoid the second

kind are given by (6.8). While these cannot in general be explicitly evaluated for

non-toy models because the exact form of the distribution P (C) at the boundaries

of phase space is required, a simple example has been solved for instructive purposes

in Section 6.2.2, and these boundary term expressions explicitly evaluated. For the

gauge P representation, conditions on P (C) (6.7) and (6.24) are found, which are

sufficient to avoid boundary term errors of the first and second kind (respectively).

In particular, for the gauge P representation:

1. The simulation will be free of boundary terms of the first kind when: A) Kernel

drift gauges are polynomial in the system variables or their conjugates, and B)
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the far tails of P (C) decay faster than exponential in the coherent amplitudes

and faster than power law in Ω.

2. Estimators of observables polynomial in the âk and â†k operators are found to

be free of boundary term errors of the second kind provided that the far tails

of P (C) decay faster than a power law.

This is consistent with the results found by Gilchrist et al [64]. No indication that

such biases will occur for interacting Bose gas simulations is found in Section 6.2.4.

In Section 6.1.2, four symptoms of boundary term errors of the first kind are

pointed out. These are moving singularities, noise divergences, discontinuities, and

excessively broad initial conditions. All four can be checked for by inspection and

some analysis of the stochastic equations and initial condition, before any simulation.

Explicit conditions (6.3) have been found for simulations on open complex phase-

spaces, which are sufficient to ensure that neither moving singularities nor noise

divergences occur. It is also noted that by the Painleve conjecture, boundary term

errors of the first kind are likely to be generically present in ungauged many-mode

simulations based on analytic kernels.

All the above results have been collected here with the aim of systematizing

and reducing the confusion on the topic of boundary term errors. Subsequently,

Section 6.3.2 introduces a broadly-applicable heuristic method by which the symp-

toms of boundary term errors of the first kind can be removed using drift kernel

gauges (and hence, presumably, also the boundary term errors as such). This re-

moval method is applied to the two cases in the literature where systematic bias has

been reported when using the positive P representation: two-boson absorption, and

a single-mode laser model. It is found that the systematic bias is indeed removed

from simulation results by this method for these examples.


